

1 **Title:** Maternal continuous glucose monitoring surveillance compared to finger-stick
2 glucose monitoring in pregnancies with type 2 pregestational diabetes

3
4 **NCT Number:** not yet assigned

5
6 **Document Date:** 9/10/25

7
8

RESEARCH PROTOCOL TEMPLATE INVESTIGATOR INITIATED TREATMENT TRIALS

Title of Project: Maternal continuous glucose monitoring surveillance compared to finger-stick glucose monitoring in pregnancies with type 2 pregestational diabetes

Principal Investigator: Rodney McLaren; MD; Department of OBGYN

Co-Investigators: Rupsa Boelig; MD; Department of OBGYN

Kavisha Khanuja, MD; Department of OBGYN

Dante Varotsis; MD; Department of OBGYN

Anne Bocage; MD; Department of OBGYN

Mymy Nguyen; MD; Department of OBGYN

Jordan Beacham; BS; Sidney Kimmel Medical

Abstract

About 1-2% of pregnant patients in the United States have pregestational type 2 diabetes (T2DM). The current standard of care for patients needing pharmacotherapy is to initiate basal and postprandial insulin as determined by patient's reported blood glucose levels after a week of finger-stick glucose monitoring (FSG). This approach is dependent on the patient performing four finger sticks daily and keeping a record of those values. Titration of medication is also dependent on this process. Patient adherence is reported at 50%. Continuous glucose monitors (CGMs) allow for continuous collection of blood glucose data without the patient needing to stick themselves or record their values. The goal of this randomized control trial is to determine if CGMs have greater adherence compared to FSG.

A. Specific Aims

Our first aim is to compare adherence to glucose monitoring using CGM vs. finger stick monitoring in pregnant patients with T2DM. Our second aim is to compare neonatal and maternal outcomes using CGM vs. finger stick monitoring in pregnant patients with T2DM. We hypothesize that CGMs will have increased adherence compared to finger stick glucose monitoring. We also hypothesize that CGM will lead to improved glycemic control, improved neonatal outcomes, and improved maternal outcomes compared to finger stick glucose monitoring

B. Background and Significance

Pregnancy is a state of insulin resistance to ensure that the growing fetus has ample nutrition. However, in patients where insulin resistance already exists, e.g., patients with T2DM, they have higher risks of pregnancy complications. They are at risk of having larger neonates, neonates with low sugar levels in the first 24 hours of life, higher rates of cesarean delivery, stillbirth, and hypertensive or high blood pressure disorders of pregnancy, such as preeclampsia^{1,2}. Prior studies have demonstrated that treating elevated blood glucose can reduce these risks. However, patient adherence to FSG is reported at 50%³. There are no studies published on adherence to CGMs among patients with T2DM.

55

56 **C. Preliminary Studies/Progress Report**

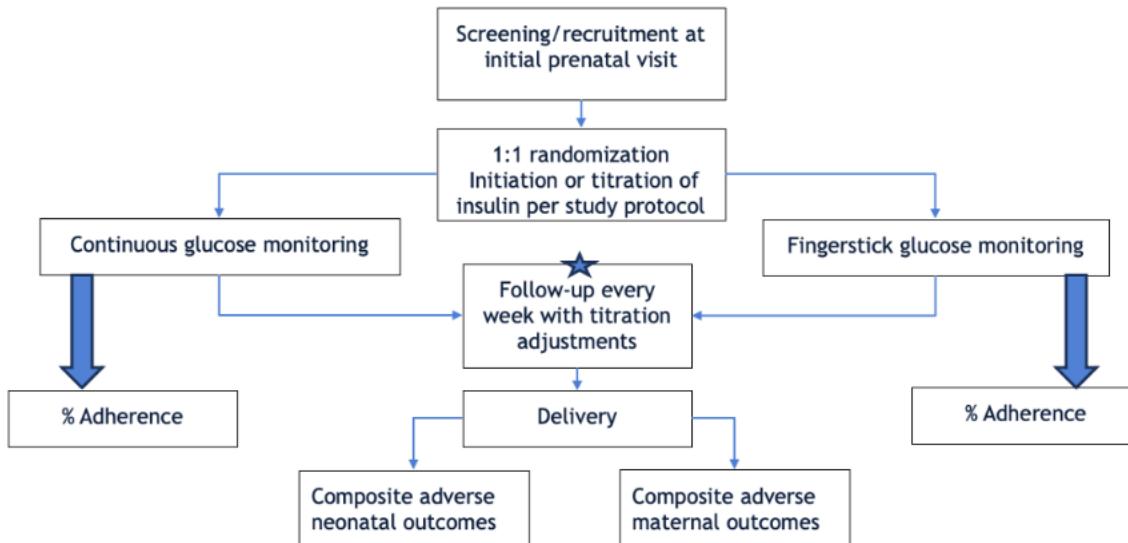
57 The CONCEPTT trial demonstrated that continuous glucose monitoring (CGM) use in
58 pregnancy for type 1 diabetics (T1DM) was associated with improved neonatal
59 outcomes when compared to FSG⁴. However, for T2DM, there are minimal evidence of
60 CGM use in this population. There have been no large clinical trials evaluating CGM
61 use among T2DM. The current published literature is underpowered, and contradictory.
62 Murphy, et al. showed improved glycemic control, reduced birthweight and reduced
63 macrosomia⁵, while Secher, et al. and Voormolen, et al. showed no difference^{6,7}. Thus,
64 there remains a dearth of literature to assess the utility of this glucose monitoring
65 modality in T2DM.

66

67 **D. Research Design and Methods**

68 This is a prospective randomized controlled trial (RCT) comparing the rate of adverse
69 neonatal and maternal outcomes between groups comparing CGM vs. FSG in patients
70 with pregestational T2DM prior to initiating prenatal care. T2DM will be defined as the
71 American Diabetes Association (ADA) criteria for diagnosis prior to the date of
72 conception. Patients will receive a CGM after diagnosis will target blood glucose ranges
73 between 65-140 mg/dL. Participants will be recruited at their initial prenatal visit for
74 T2DM.

75


76 Participants will be screened, consented, and recruited at their initial prenatal visit. They
77 will then be randomized to either the control FSG arm or the intervention CGM arm.
78 Patients with T2DM are seen every 1 to 2 weeks for medication titration and BG checks,
79 and we would continue this workflow, following patients to delivery. If the patient
80 requires insulin uptitration, a weight-based regimen as described by the ADA will be
81 used. Patients will be seen every 1-2 weeks to titrate insulin to meet target ranges.
82 Percent adherence will be recorded in the medical record, which will be ear tagged in
83 pinky sticky on EPIC by research personnel after enrollment and these patients will be
84 seen by the same providers throughout their pregnancy. The only difference in
85 management between two groups will be the way we measure blood glucose. Any
86 indications for delivery will be managed in the same manner independent of group
87 assignment based on the institution's clinical guidelines. After delivery, we would review
88 the documented neonatal and maternal outcomes and documented adherence. Please
89 see Figure 1 below for workflow.

90

91 The primary outcome is percent adherence, which will be calculated as number of days
92 used with >75% of time coverage divided by the number of days from initiation to
93 delivery for CGM and number of values reported divided by 28 (4 values are intended to
94 be reported daily), divided by weeks from initiation to delivery for FSG. Secondary
95 outcome is a composite of adverse neonatal outcomes, including the following
96 measures: stillbirth, miscarriage, large for gestational age (LGA) of neonate defined as
97 birth weight >90th percentile for gestational age, fetal hypoglycemia defined as glucose
98 <40 mg/dL <48 hours after birth or glucose, hyperbilirubinemia, stillbirth or neonatal
99 death, or birth trauma. Another secondary outcome is a composite of adverse maternal

100 outcomes, including the following measures: maternal hypoglycemia < 60 mg/dL,
 101 shoulder dystocia, OASIS Injuries, operative delivery or c-section, postpartum
 102 hemorrhage, or hypertensive disorder of pregnancy.

103
 104 Figure 1. Study workflow

105
 106

107 **E. Statistical Methods**

108 We will compare the percent adherence between the finger stick glucose and the
 109 continuous glucose monitoring group. We will need to recruit 70 patients to achieve a
 110 power of 0.80 for an effect size of 0.5 and alpha level of 0.05, anticipating 80%
 111 enrollment and 10% attrition from the study. Descriptive statistics will be performed to
 112 summarize continuous and categorical data. Continuous data will be tested for
 113 normality. Student's t test will be used to compare continuous data between groups if
 114 the data is normal and Wilcoxon rank sum test will be used to compare continuous data
 115 that is not normally distributed. Fisher exact test will be used to compare categorical
 116 data. Intention to treat analysis will be used for the primary outcome.

117
 118

119 **F. Gender/Minority/Pediatric Inclusion for Research**

120 There will be no effort to recruit any particular racial or ethnic group. We expect our
 121 study population to reflect the patient population at large. Economically disadvantaged
 122 persons will be eligible to participate. Funding is provided in the study budget to pay for
 123 any needed medical evaluations for screening, for any patient who is not insured or has
 124 limited insurance coverage. Financial incentives for participation are reasonable to
 125 compensate for time, but not so large as to represent a coercive inducement to
 126 participation. Students and employees will be able to participate if referred via usual
 127 channels. No student or employee will be pressured to participate. Any student or
 128 employee wishing to participate will be explicitly told that a decision not to participate

129 will in no way affect their educational or employment status.
130

131 **G. Human Subjects**

132 There will be a total of 70 patients needed for the trial. Inclusion criteria include patients
133 >18 years of age, singleton pregnancies, fetuses without anomalies, diagnosis of Type
134 2 diabetes, initiation of prenatal care at <20 weeks gestation. Among those meeting
135 inclusion criteria, patients will be excluded for Type 1 diabetes, allergy to insulin, and
136 inability to wear CGM. Research materials will be acquired in the form of patient data
137 recorded in electronic medical records. Patients will be recruited and consented at their
138 prenatal visit. Continuous glucose monitors are well-validated as alternatives to finger-
139 stick glucose and have passed safety measures for their approval for use in diabetic
140 patients by the FDA. The direct benefit that can be achieved by the continuous glucose
141 monitor is increased adherence, and therefore improved insulin titration for the pregnant
142 patient. Potential risks include subject difficulty in using the continuous glucose monitor
143 (low likelihood).

144 145 **H. Data and Safety Monitoring Plan**

146 This protocol poses minimal risk. Only study investigators and personnel will have
147 access to secure RedCAP database linking patient identifier with study ID. Due to the
148 need to follow pregnancy outcome, it will be necessary to collect identifiable information
149 such as name, date of birth, and medical record number. This information will be
150 maintained on a separate secure RedCAP database linking patient identifiers with study
151 IDs.

152 153 **I. Literature Cited**

- 154 1. Alexopoulos AS, Blair R, Peters AL. Management of Preexisting Diabetes in Pregnancy: A Review. *JAMA*. 2019 May 14;321(18):1811-1819. doi: 10.1001/jama.2019.4981. PMID: 31087027; PMCID: PMC6657017.
- 155 2. Malaza N, Masete M, Adam S, Dias S, Nyawo T, Pheiffer C. A Systematic Review to Compare Adverse Pregnancy 156 Outcomes in Women with Pregestational Diabetes and Gestational Diabetes. *Int J Environ Res Public Health*. 2022 Aug 31;19(17):10846. doi: 10.3390/ijerph191710846. PMID: 36078559; PMCID: PMC9517767.
- 157 3. Wernimont SA, Sheng JS, Tymkowicz A, Fleener DK, Summers KM, Syrop CH, Andrews JI. Adherence to self-glucose 158 monitoring recommendations and perinatal outcomes in pregnancies complicated by diabetes mellitus. *Am J Obstet 159 Gynecol MFM*. 2019 Aug;1(3):100031. doi: 10.1016/j.ajogmf.2019.100031. Epub 2019 Aug 5. PMID: 33345801; PMCID: 160 PMC9797350.
- 161 4. Feig DS, Donovan LE, Corcoy R, Murphy KE, Amiel SA, Hunt KF, Asztalos E, Barrett JFR, Sanchez JJ, de Leiva A, Hod 162 M, Jovanovic L, Keely E, McManus R, Hutton EK, Meek CL, Stewart ZA, Wysocki T, O'Brien R, Ruedy K, Kollman C, 163 Tomlinson G, Murphy HR; CONCEPTT Collaborative Group. Continuous glucose monitoring in pregnant women with type 164 1 diabetes (CONCEPTT): a multicentre international randomised controlled trial. *Lancet*. 2017 Nov 25;390(10110):2347- 165 2359. doi: 10.1016/S0140-6736(17)32400-5. Epub 2017 Sep 15. Erratum in: *Lancet*. 2017 Nov 25;390(10110):2346. doi: 166 10.1016/S0140-6736(17)32712-5. PMID: 28923465; PMCID: PMC5713979.
- 167 5. Murphy HR, Rayman G, Lewis K, Kelly S, Johal B, Duffield K, Fowler D, Campbell PJ, Temple RC. Effectiveness of 168 continuous glucose monitoring in pregnant women with diabetes: randomised clinical trial. *BMJ*. 2008 Sep 25;337:a1680. 169 doi: 10.1136/bmj.a1680. PMID: 18818254; PMCID: PMC2563261.
- 170 6. Secher AL, Ringholm L, Andersen HU, Damm P, Mathiesen ER. The effect of real-time continuous glucose monitoring in 171 pregnant women with diabetes: a randomized controlled trial. *Diabetes Care*. 2013 Jul;36(7):1877-83. doi: 10.2337/dc12- 172 2360. Epub 2013 Jan 24. PMID: 23349548; PMCID: PMC3687305.
- 173 7. Voormolen DN, DeVries JH, Sanson RME, Heringa MP, de Valk HW, Kok M, van Loon AJ, Hoogenberg K, Bekedam DJ, 174 Brouwer TCB, Porath M, Erdtsieck RJ, NijBijvank B, Kip H, van der Heijden OWH, Elving LD, Hermsen BB, Potter van 175 Loon BJ, Rijnders RJP, Jansen HJ, Langenveld J, Akerboom BMC, Kiewiet RM, Naaktgeboren CA, Mol BWJ, Franx A, 176 Evers IM. Continuous glucose monitoring during diabetic pregnancy (GlucoMOMS): A multicentre randomized controlled 177 trial. *Diabetes Obes Metab*. 2018 Aug;20(8):1894-1902. doi: 10.1111/dom.13310. Epub 2018 May 8. PMID: 29603547.

178

179

180

181 Date 1/12/2025

182

183

184

185

186

187 Research Protocol Template, 11/15/2010

Version 1.1