

1 **1. Title: Shamba Maisha: Agricultural intervention for food security and HIV health**
2 **outcomes in Kenya**

3 **2. Investigators and Institutional Affiliations**

Name	Organization	Role on Project
Craig R. Cohen, MD, MPH	Department of Obstetrics, Gynecology, and Reproductive Sciences, Bixby Center for Global Reproductive Health, University of California, San Francisco	Co-Principal Investigator
Sheri D. Weiser, MD, MPH	Division of HIV/AIDS, San Francisco General Hospital, University of California, San Francisco, Department of Medicine	Co-Principal Investigator
Elizabeth A. Bukusi, MBChB, MMed, MPH, PhD	Center for Microbiology Research, Kenya Medical Research Institute	KEMRI Principal Investigator
Shari Dworkin, PhD, MS	University of California, San Francisco, Dept. of Social & Behavioral Sciences	Co-Investigator
Edward A. Frongillo, Jr., PhD, MS	Department of Health Promotion, Education, and Behavior, Arnold School of Public Health, University of South Carolina	Co-Investigator/Biostatistician
Lisa M. Butler, PhD, MPH, MA	Institute for Collaboration on Health, Intervention, and Policy, University of Connecticut	Co-Investigator
James G. Kahn, MD, MPH	Dept. of Epidemiology & Biostatistics, IHPS, and Global Health Sciences, University of California, San Francisco	Co-Investigator
Harsha Thirumurthy, PhD, MPhil	Perelman School of Medicine, University of Pennsylvania	Co-Investigator
Starley Shade, PhD, MPH	Department of Epidemiology & Biostatistics, Division of Prevention Science, University of California, San Francisco	Co-Investigator
Martin Fisher, PhD	Kickstart	Consultant

4

5 **A. COLLABORATING INSTITUTIONS**

6 UNIVERSITY OF CALIFORNIA SAN FRANCISCO (UCSF)

7 **UCSF is the only University of California campus dedicated exclusively to the health**
8 **sciences and is home to graduate professionals in medicine, nursing, pharmacy, and**
9 **dentistry, and a graduate division for pre-doctoral and postdoctoral scientists. In**
10 **addition to its main campus, where the Schools of Medicine, Nursing, Pharmacy, and**
11 **Dentistry and the UCSF Medical Center are located, UCSF encompasses several major**
12 **sites in San Francisco, including UCSF Mount Zion, the Comprehensive Cancer Center,**
13 **and Mission Bay. UCSF is considered one of the United States' premier health sciences,**
14 **training, and research centers and has a well-established reputation in biomedical**
15 **research.**

16 **UCSF Department of Medicine** The Department of Medicine has been the number one
17 recipient of research dollars from the National Institutes of Health (NIH) among all departments
18 of internal medicine in the nation. Eight of the adult specialty clinical programs are ranked in the

19 top 10 by the US News & World Report - AIDS, Diabetes & Endocrinology, Primary Care,
20 Cancer, Kidney Disorders, Pulmonology, Geriatrics and Rheumatology. The department's
21 continued success in this highly competitive arena attests to the quality and impact of the
22 research performed by its basic and clinical scientists.

23 **UCSF Department of Obstetrics/Gynecology and Reproductive Sciences:** The Department
24 boasts a diverse portfolio of research activities, from basic biological, translational, and clinical
25 investigation to epidemiological inquiry and the development of public health policy. The
26 Department is home to the University of California National Center of Excellence in Women's
27 Health. The Department's exemplary academic reputation (consistently among the top three
28 departments of obstetrics and gynecology in the nation to receive federal funding) derives from
29 long-standing integrative and multidisciplinary partnerships within the UCSF community of
30 nursing and medical scholars.

31 **UCSF Department of Epidemiology and Biostatistics**

32 The UCSF Department of Epidemiology & Biostatistics - the largest department of epidemiology
33 in the University of California system in terms of full-time primary faculty and the number of
34 affiliated faculty. It aims to carry out its educational, scientific, and clinical missions within the
35 highly interdisciplinary culture of UCSF and to take a transdisciplinary approach to education
36 and research.

37 **UCSF AIDS Division: Positive Health Program (PHP)**

38 Drs. Sheri Weiser is a faculty member in the PHP/HIV/AIDS Division at San Francisco General
39 Hospital. The HIV/AIDS Division is part of the Department of Medicine at UCSF. PHP consists
40 of a multidisciplinary HIV/AIDS clinic, an AIDS Inpatient Unit, and a strong clinical research
41 program. The program has focused on clinical, research and educational issues of HIV and HIV-
42 associated illnesses (e.g., sexually transmitted and blood borne infections) for over 25 years.
43 Academically, PHP holds weekly clinical grand rounds, monthly research forums and periodic
44 seminars, which provide ample opportunity for peer review as well as dissemination of study
45 information. The Positive Health Program has become an internationally recognized center of
46 clinical excellence and "standard-setter" for HIV care, pioneering a number of medical and
47 scientific advances. The treatment model practiced at PHP has been widely adopted around the
48 world. PHP has also had a major presence in the developing world, training local providers and
49 leading global research. PHP's faculty is among the most cited in scientific publications and
50 conducts work in all major areas of HIV science.

51 **UCSF Center for AIDS Prevention Studies (CAPS)**

52 Dr. Sheri Weiser holds a secondary appointment at CAPS. The mission of CAPS is to develop
53 research focused on three long-term goals: preventing new HIV infections, behavioral
54 approaches to optimizing health outcomes among HIV-infected people, and reducing disparities.
55 These goals are advanced through multidisciplinary research supported by six cores. CAPS is
56 located at 550 16th Street along with the AIDS Research Institute (ARI) administrative offices,
57 the Pacific AIDS Education and Training Center (PAETC) and the UCSF program in Global
58 Health Sciences (GHS). CAPS hosts a weekly town hall series, in which scientists from UCSF
59 and around the world present findings from their ongoing and recent research. In addition, the
60 UCSF Global Health Sciences program (co-located with CAPS) hosts a regular speaker series
61 and offers a degree program with classes in epidemiology, biostatistics, and qualitative and
62 quantitative behavioral research methods.

63 Both CAPS and PHP are programs of the AIDS Research Institute (ARI). The AIDS research
64 program at UCSF constitutes an organized set of research activities aimed at all aspects of the

65 epidemic domestically and internationally. ARI is committed to harnessing the extraordinary
66 resources of UCSF to advance scientific discovery in the service of fighting HIV/AIDS. UCSF
67 faculty represent a mix of expertise in the basic, clinical, prevention, and policy sciences. The
68 faculty is internationally renowned for their contributions to immunology, virology, vaccine
69 research, pediatrics, genetics, behavioral science, and advanced treatment research. Further,
70 UCSF scientists have the expertise in health economics, epidemiology, and health care delivery
71 needed to determine how optimal treatments can be integrated into evolving health care
72 systems to reach all HIV-affected populations. ARI brings together scientists from the four
73 professional schools at UCSF (Medicine, Dentistry, Pharmacy, and Nursing), from the UCSF-
74 affiliated laboratories (The Gladstone Institute of Virology and Immunology, Blood Centers of the
75 Pacific, and the California State Labs), the San Francisco Department of Public Health, and the
76 School of Public Health at UC Berkeley. Activities are conducted at all four hospital sites:
77 Parnassus, San Francisco General, Mt. Zion, and the SF Veterans Affairs Medical Center.

78 **UCSF Bixby Center for Global Reproductive Health:** The Bixby Center was formed in 1999
79 to integrate research and training efforts in contraception and family planning with work in
80 sexually transmitted infections (STIs) and HIV/AIDS. Projects and research range from primary
81 prevention to treatment interventions and include epidemiologic and behavioral approaches,
82 clinical and biomedical research, and public health and policy development, as well as
83 leadership training programs. Faculty and staff from diverse disciplines, including medicine,
84 epidemiology, public health, sociology and anthropology, use sound science to seek solutions to
85 the reproductive health issues of most pressing concern to women, men and youth in the United
86 States and internationally.
87

88 **UCSF Department of Social & Behavioral Sciences, School of Nursing:** The Department
89 of Social and Behavioral Sciences (SBS) research mission is to advance knowledge through
90 theory and research; to design and evaluate the organization, financing, and delivery of health
91 care; and to examine one broad dynamics of health, healing, and the production of knowledge
92 and its application in these domains.

93 **UC GLOBAL HEALTH INSTITUTE (UGCHI)**

94 UCGHI advances the mission of the 10-campus University of California system to improve the
95 lives of people in California and around the world. By stimulating education, research, and
96 partnerships, UCGHI leverages the diverse intellectual resources across the University to train
97 the next generation of global health leaders and accelerate the discovery and implementation
98 of transformative global health solutions. UCGHI includes three Centers of Expertise (COE),
99 including the **COE in Women's Health & Empowerment (WHE)**. The COE in WHE believes
100 that advances in women's health globally are impeded by poverty, limited access to
101 educational and economic opportunities, gender bias and discrimination, unjust laws, and
102 insufficient state accountability. By prioritizing women's health concerns, rights, and
103 empowerment, this COE is uniquely poised to catalyze societal-level changes that will yield
104 sustainable improvements in health and well-being for women on a global scale.

105 **KENYA MEDICAL RESEARCH INSTITUTE (KEMRI)**

106 The Kenya Medical Research Institute (KEMRI) is one of the leading health research institutes
107 in Africa. KEMRI was established in 1979 under the Science and Technology (Amendment) Act
108 of that year to represent the national body responsible for carrying out health science research
109 in Kenya. KEMRI's mission is to conduct health research and generate research findings to be
110 applied towards improvement of health in Kenya and the world over. Under the Amendment Act,
111 KEMRI was charged with the responsibility of carrying out health research with the following
112 mandates:

113 1. To carry out research in the field of biomedical sciences;
114 2. To co-operate with other organizations and other institutions of higher learning in training
115 programs and on matters of relevant research;
116 3. To liaise with other research bodies within and outside Kenya carrying out similar
117 research;
118 4. To disseminate research findings;
119 • To co-operate with the Ministry of Health, the Ministry responsible for research, the
120 National Council for Science and Technology, and the Medical Science Advisory
121 Committee on matters pertaining to research policies and priorities.
122

123 With health research and training expertise in infectious disease, parasitic disease,
124 epidemiology, and biotechnology and non-communicable diseases, KEMRI has grown to
125 become one of the leading centers of excellence in health research development and Africa's
126 largest health research institute. KEMRI has trained cadres of professionals and maintains over
127 80 professors with PhD degrees or equivalent, over 148 with MA or equivalent, and nearly 400
128 highly trained and skilled technical staff. As a partner in global health initiatives, KEMRI
129 collaborates with the World Health Organization (WHO), the Japan International Cooperation
130 Agency (JICA), U.S. Center for Disease Control and Prevention (CDC), among others. KEMRI
131 serves as the Collaborating Center for HIV/AIDS, Tropical Research, Polio Immunization, Viral
132 Hemorrhagic Fevers, and Anti-Microbial Resistance.

133 **Research, Training, and Care Program (RTCP), KEMRI**

134 Drs. Bukusi and Cohen with others established the Research, Training, and Care Program
135 (RTCP) with KEMRI and the University of Nairobi in 1994. Through this collaboration, Dr. Cohen
136 and Dr. Elizabeth Bukusi (KEMRI) established the Research, Care, and Treatment Program
137 (RCTP), a program with research projects in Nyanza Province and Nairobi, Kenya. In 2007,
138 RCTP became registered as an NGO in Kenya and in 2013, the name of the NGO was changed
139 to RCTP-FACES. In addition to facilitating collaborative research on STIs and HIV treatment
140 and prevention between investigators from the US and Kenyan counterparts, the mission of
141 RCTP-FACES is to provide administrative management of the biomedical research conducted
142 by researchers from KEMRI, UCSF, and other collaborating institutions. The largest RCTP-
143 FACES program is the PEPFAR/CDC-funded Family AIDS Care and Education Services
144 (FACES) program, which works with the government of Kenya to strengthen comprehensive
145 HIV prevention, care, and treatment service delivery and expand primary prevention efforts in
146 Nyanza and Nairobi Provinces.

147 **UNIVERSITY OF SOUTH CAROLINA (USC)**

148 Established in 1801, USC is a full-service, state-supported research university that includes the
149 358-acre Columbia campus and seven regional campuses with a total full-time student body
150 population of more than 39,500 and 2,100 full-time faculty members. USC offers a broad
151 spectrum of educational opportunities with 14 colleges and schools that encompass 324
152 undergraduate and graduate degree-granting programs.

153 **The Arnold School of Public Health (ASPH)** Based at USC's main campus in Columbia,
154 ASPH is one of 49 schools of public health fully accredited by the Council on Education for
155 Public Health (CEPH), and is accredited through 2017. Dr. Edward Frongillo is a professor and
156 chair of the *Department of Health Promotion, Education, and Behavior* (HPEB) at the USC. This
157 department has as its focus understanding how policy, environmental, institutional, and
158 individual actions can improve the public's health. This work, usually done in partnership with

159 organizations and communities, uses principles and methods from the social and behavioral
160 sciences to promote health in diverse settings across South Carolina, the US, and the globe.

161 **UNIVERSITY OF PENNSYLVANIA**

162 Academic life at the University of Pennsylvania, Penn, is unparalleled, with 100 countries and
163 every U.S. state represented in one of the Ivy League's most diverse student bodies.
164 Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000
165 undergraduate students and welcomes an additional 10,000 students to our world-renowned
166 graduate and professional schools. Penn is one of the world's most powerful research and
167 teaching institutions, with a research budget last year of nearly \$1 billion and more than 4,000
168 active faculty members. The scale and interdisciplinary character of research and teaching sets
169 Penn apart, and our highly ranked Perelman School of Medicine is one of the top recipients of
170 NIH funding in the country.

171 Department of Medical Ethics and Health Policy at the Perelman School of Medicine

172 The Department is one of the premier institutions of research and education in medical ethics
173 and health policy in the world. The Department's distinguished faculty produce and disseminate
174 scholarship and lead three bioethics master's degree programs. In addition to their own
175 projects, faculty members supervise research being carried out by undergraduates, graduate
176 students, medical students, doctoral students and post-doctoral fellows. The
177 Department's presence in the world of biomedical ethics education is ever-growing. In 2017,
178 the department will launch the Master of Health Care Innovation, an online master's program
179 aiming to train future leaders in health policy, administration, and ethics.

180 **UNIVERSITY OF CONNECTICUT**

181 The University of Connecticut is one of the top public research universities in the United States,
182 with more than 30,000 students pursuing answers to critical questions in labs, lecture halls, and
183 the community. Knowledge exploration throughout the University's network of campuses is
184 united by a culture of innovation. An unprecedented commitment from the state of Connecticut
185 ensures UConn attracts internationally renowned faculty and the world's brightest students. As a
186 vibrant, progressive leader, UConn fosters a diverse and dynamic culture that meets the
187 challenges of a changing global society.

188 The Institute for Collaboration on Health, Intervention, and Policy

189 The University of Connecticut's Institute for Collaboration on Health, Intervention, and Policy
190 (InCHIP) is a multidisciplinary research institute dedicated to the creation and dissemination of
191 new scientific knowledge and theoretical frameworks in the areas of health behavior, health
192 behavior change, and health intervention and prevention at multiple levels of analysis (e.g.,
193 individual, environmental, social, and policy). InCHIP researchers lead novel, influential health
194 behavior change initiatives at UConn, institutions across the United States, and globally in
195 countries including Albania, Brazil, China, Kenya, Ethiopia, India, Mozambique, South Africa,
196 Russia, Uganda, and Vietnam. Our investigators have expertise in the areas of HIV prevention
197 and treatment adherence, diabetes management, cancer prevention and control, nutrition,
198 pharmacology, substance abuse, obesity, autism, digital health technologies, school and child
199 health, and complementary and alternative approaches to medicine, among other health
200 domains.

201 **KICKSTART**

202 KickStart, an international NGO, developed a low-cost micro-irrigation pump which is purchased
203 by local entrepreneurs and used to establish small agricultural businesses. These pumps
204 enable farmers to irrigate their crops year-round avoiding dependence on seasonal rainfall thus
205 capitalizing on higher crop prices in the marketplace. KickStart has been one of the leaders in
206 micro-irrigation technologies since 1991, through the development and sales of manually
207 operated "MoneyMaker" pumps, which are now widely available in Kenya.

208
209

210 **3. ABSTRACT**

211 Despite major advances in care and treatment for those living with HIV, morbidity and mortality
212 among people living with HIV/AIDS (PLHIV) remain unacceptably high in sub-Saharan Africa
213 (SSA), largely due to the parallel challenges of poverty and food insecurity. Food insecurity and
214 poverty contribute to higher morbidity and mortality among PLHIV, and there has been
215 increasing international recognition of the need to address these factors for a successful global
216 response to the HIV epidemic. Yet, to date there have been few studies to systematically
217 evaluate the impact and cost-effectiveness of promising food security interventions on health
218 outcomes among PLHIV. To address these gaps, together with KickStart, a non-governmental
219 organization based in SSA, we have developed a multisectoral intervention in Nyanza Region,
220 Kenya that includes: a) a loan (~\$175) for purchasing agricultural implements and commodities;
221 b) agricultural implements to be purchased with the loan including a human-powered water
222 pump, seeds, fertilizers and pesticides; and c) education in financial management and
223 sustainable farming practices. We successfully completed a pilot intervention trial that showed
224 that the intervention was feasible, acceptable and may improve HIV-related health. We now plan
225 to conduct a cluster randomized controlled trial (RCT) of this intervention with the following
226 specific aims: **Aim 1:** To determine the impact of a multisectoral agricultural intervention among
227 HIV-infected farmers on ART on HIV clinical outcomes. We hypothesize that the intervention will
228 lead to improved viral load suppression (primary outcome) and decreased HIV-related morbidity
229 in the intervention arm compared to the control arm. **Aim 2:** To understand the pathways through
230 which the multisectoral intervention may improve HIV health outcomes. Using our theoretical
231 model, we hypothesize that the intervention will improve food security and household wealth,
232 which in turn will contribute to improved outcomes through nutritional (improved diet quality,
233 nutritional status), mental health (less depression, improved empowerment), and behavioral
234 (improved ART adherence, and retention in care) pathways. **Aim 3:** To determine the cost-
235 effectiveness of the intervention and obtain the information necessary to inform scale-up in
236 Kenya and similar settings in SSA. We hypothesize that the intervention will be cost-effective,
237 and that we will be able to translate lessons learned into successful scale up. To accomplish
238 Aims 1 & 2, we will randomize 8 matched pairs of health facilities in the Nyanza Region in a 1:1
239 ratio to the intervention and control arms, and enroll up to 65 participants per facility (total up to
240 n=1,040). All participants will be followed for 2 years. To accomplish Aim 3, we will: a) conduct a
241 cost-effectiveness analysis; b) identify the characteristics of individuals most likely to benefit from
242 the intervention (e.g., gender, education, family size, wealth, risk tolerance, etc.); and c) perform
243 a mixed-methods process evaluation to guide future scale-up efforts of the intervention. Our
244 ultimate goal is to develop and test an intervention to reverse the cycle of food insecurity and
245 HIV/AIDS morbidity and mortality in SSA.

246
247 **4. LAY SUMMARY**

248 We plan to test the hypothesis that a multisectoral agricultural and finance intervention will
249 improve food security, prevent antiretroviral treatment failure, and reduce co-morbidities among
250 people living with HIV/AIDS.

251
252 **5. BACKGROUND**

253 **HIV/AIDS and food insecurity are two of the leading causes of morbidity and mortality in**
254 **sub-Saharan Africa (SSA).**¹⁻⁶ There are an estimated 35.3 million people living with HIV/AIDS
255 (PLHIV) worldwide, 70.8% of whom live in SSA.⁷ Food insecurity, defined as "the limited or
256 uncertain availability of nutritionally adequate, safe foods or the inability to acquire personally
257 acceptable foods in socially acceptable ways,"⁸ is also highly prevalent in SSA. As of 2013, 223
258 million people were food insecure in SSA, an estimated 25% of the population.⁹ Food insecurity

259 in the region stems from the combined effects of extreme poverty, infections, environmental
260 change, insufficient agricultural output, rising food prices, and high rates of population
261 growth.^{10,11} While the agricultural sector accounts for 51% of Kenya's gross domestic product¹²,
262 crop productivity is low because of limited irrigation, unreliable rainfall patterns, and land that is
263 highly depleted of nutrients.¹³ At the same time, food prices have increased since 1995 due to
264 globalization, economic shifts and human conflict.¹¹ The prevalence of Critical Food Poverty
265 (pCFP) (the proportion of the population whose daily income is lower than the cost of a
266 macronutrient-balanced food basket that meets minimum dietary needs) in the Nyanza Region
267 of Kenya is 28%, exceeding the national average.¹⁴ The prevalence of food insecurity is even
268 higher among PLHIV in SSA. Studies from Kenya and Uganda have found that 70% or more of
269 PLHIV are moderately or severely food-insecure.¹⁵⁻¹⁷

270 **Food insecurity and HIV/AIDS are intertwined through biological, behavioral, and socio-**
271 **economic pathways.** Our novel evidence-based causal framework (Figure 1) builds upon our
272 previously-published conceptual framework^{18,19} adapted from existing theoretical models for
273 understanding the linkages between HIV/AIDS, food security, and socio-economic well-
274 being.^{3,18,20-22} The bi-directional linkages between HIV/AIDS and food insecurity are embedded
275 within a context of weak healthcare systems, poor agricultural infrastructure, and entrenched
276 poverty. These structural determinants of health interact to create a vicious cycle of household
277 poverty, food insecurity, and ill-health.^{20,22} Each condition heightens the vulnerability to, and
278 worsens the severity of the other. For example, if a household affected by HIV/AIDS has few
279 agricultural skills, they may experience food insecurity and poverty (A1, A2) leading to
280 malnutrition (A4a), decreased ART adherence (A4b), poor mental health (A4c), and
281 disempowerment (A4d). These, in turn, can worsen immunologic and virologic responses, and
282 lead to increased morbidity and mortality (A3). Likewise, when a household loses a family
283 member to HIV-related illness or death, they are less able to produce agricultural outputs and
284 may sell off household assets as a source of income. This further cements families into the
285 cycle of poverty and food insecurity (A5, A6). In the sections that follow, we provide evidence for
286 each linkage in our causal framework.

287 **Food insecurity and poverty are key contributors to poor health outcomes among PLHIV**
288 **receiving treatment.** In studies by our group and others, food insecurity has been associated
289 with a range of adverse clinical effects among PLHIV on ART, including declines in physical
290 health status,^{16,23,24} decreased viral suppression,²⁵⁻²⁸ worse immunologic status,^{23,25,29,30} increased incidence of serious illness,^{16,31,32} and increased mortality.^{33,34} In several longitudinal
291 analyses, we found that after controlling for clinical and socioeconomic variables, HIV-infected
292 people who were food insecure were 50%-95% more likely to die compared with individuals who
293 were not food insecure.^{33,34} Studies have also documented negative health impacts of other
294 indicators of low socioeconomic status (SES) for HIV.³⁵ For example, in a prospective cohort
295 study in Uganda, we found that lack of education, unemployment and lower wealth index were
296 associated with mortality.³⁶ In Kenya, we have demonstrated an association between low SES
297 and lower CD4 increase upon ART initiation.³⁷

298 **Food insecurity and poverty can impact HIV outcomes through four mediating pathways:**
299 **nutritional, behavioral, mental health and empowerment (Figure 1).**

300 **1) Nutritional pathways:** Food insecurity is associated with macronutrient and micronutrient
301 malnutrition,^{38,39} and malnutrition in turn has been shown to hasten progression to AIDS and
302 death.⁴⁰⁻⁴³ Among HIV-infected individuals, weight loss, low body mass index (BMI), and low
303 albumin have been shown to predict opportunistic infections, immunologic decline, and shorter
304 survival time in both untreated and ART treated individuals.⁴⁴⁻⁵² HIV increases metabolic
305 requirements^{50,53} and is associated with diarrhea and malabsorption of fat and carbohydrates,⁵³
306 which further compounds the links between malnutrition and disease progression. Also, lack
307

308 of food may impede optimal absorption of
 309 certain ARVs,⁵⁷⁻⁵⁹ which may contribute to
 310 treatment failure. Additionally, oxidative
 311 stress caused by micronutrient deficiencies
 312 may cause HIV viral loads to increase.⁶⁰
 313 Poverty and nutrition have also been
 314 closely linked in a number of studies
 315 conducted in developing countries. In
 316 Kenya we have shown that higher SES –
 317 achieved as a result of ART initiation – led
 318 to increased nutritional status.⁶¹ Other
 319 studies have also shown that economic
 320 shocks, that make households fall below
 321 the poverty line, result in poorer nutrition.⁶²

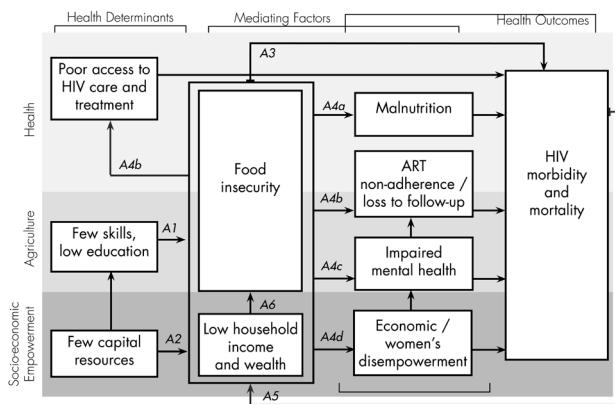


Figure 1. Causal Diagram

322 **2) Behavioral pathways:** Studies from our group and others have shown that food insecurity and
 323 poverty indicators are consistently associated with ART non-adherence and treatment
 324 interruptions,⁶³⁻⁷² which are both well-known determinants of HIV treatment outcomes.⁷³⁻⁸⁰ Food
 325 insecurity and poverty contribute to non-adherence in SSA because of competing demands
 326 between costs of food, basic needs, and medical expenses, and because of worsened ART side
 327 effects in the absence of food.^{65,67} In addition to ART non-adherence and treatment
 328 interruptions, individuals who struggle with food insecurity and poverty often miss scheduled
 329 clinic visits, and may have decreased uptake of ART.^{16,81} In rural Uganda, we reported that
 330 severe food insecurity was associated with decreased outpatient clinic visits,¹⁶ and our other
 331 work in Uganda provided support for the hypothesis that poverty contributes to lower retention in
 332 care.⁸² In Uganda, participants in a cohort study reported foregoing food in order to obtain ART
 333 (83%), access outpatient care (76%) and access inpatient care (44%).¹⁶ This suggests that the
 334 relatively high levels of adherence reported among ART-treated individuals in SSA⁸³⁻⁸⁵ may not
 335 be sustainable unless reduction of food insecurity and poverty become essential components of
 336 comprehensive HIV care programs. Interventions aimed at improving food insecurity and
 337 economic status may contribute to better ART adherence and retention outcomes.

338 **3. Mental health pathways:** Food insecurity has been found to be associated with poor mental
 339 health status independent of other indicators of low socioeconomic status.^{86,87} Specifically, it has
 340 been associated with anxiety,⁸⁸ depression,⁸⁶ and stress.^{88,89} Among PLHIV, we have published
 341 several studies demonstrating that food insecurity is associated with depression and poor
 342 mental health status in SSA and elsewhere.^{31,33,90} A number of studies have also documented
 343 that poverty has a negative, causal effect on mental health among PLHIV.⁹¹⁻⁹³ The mental health
 344 consequences of food insecurity and poverty can contribute to lower ART adherence and worse
 345 HIV clinical outcomes.⁹⁴⁻⁹⁷ Even after adjusting for ART adherence, depression has been
 346 associated with worsened HIV treatment outcomes, including CD4+ T-lymphocyte count
 347 decline,⁹⁴ increased probability of AIDS-defining illness,⁹⁸ and AIDS-related mortality.⁹⁴ The role
 348 of depression in accelerating disease progression is strengthened by the fact that the treatment
 349 of depression has been demonstrated to improve ART adherence⁹⁹ and viral suppression.⁹⁹
 350 Together, these data suggest that improving the food security and economic status of ART
 351 patients should result in better mental health outcomes, which in turn can contribute to better
 352 HIV clinical outcomes.

353 **4. Empowerment pathways:** Food insecurity and poverty also contribute to lower levels of
 354 empowerment, including women's empowerment, which can negatively impact health outcomes
 355 for HIV. Often dependence on male partners for food and other resources disempowers women
 356 by making it difficult to exercise control in household or sexual decision-making. In qualitative
 357 and quantitative studies from our group from Uganda, Botswana and Swaziland, we found that

358 lack of food impeded women's ability to refuse sex or to insist on condom use.^{100,101} For
359 example, in Botswana and Swaziland, we found that women who were food insecure reported
360 lower control over sex, and experienced twice the odds of sexual victimization in the past
361 year.^{101,102} Research also suggests that low sexual relationship power is associated with
362 adverse physical and mental health outcomes.¹⁰³⁻¹⁰⁶ In Uganda, we have shown that, among
363 HIV-infected women low sexual relationship power is associated with malnutrition,¹⁰³
364 depression,¹⁰⁷ and worse virologic outcomes.¹⁰⁶

365 **Morbidity and mortality from HIV/AIDS poses adverse social and economic**
366 **consequences for households with HIV, perpetuating the vicious cycle of food insecurity,**
367 **poverty and HIV/AIDS.**^{108,109} Households affected by HIV/AIDS lose income, assets, and skills
368 when working-age adults fall ill, and the subsequent treatment and funeral costs can be doubly
369 catastrophic.¹¹⁰⁻¹¹⁹ National survey data from Kenya indicate that the net value of household
370 crop production declines by 68% following the death of a male household head, and that
371 affected households adopt short-term survival strategies (such as selling off productive assets
372 and shifting from high-value to subsistence crops) that impair financial viability in the long
373 term.¹²⁰ Furthermore, intergenerational transmission of poverty and food insecurity occurs when
374 children are withdrawn from school to provide informal care or to compensate for lost
375 labor.^{61,121,122} Put differently, the epidemic represents a decade-long setback in human capital
376 accumulation in Kenya.¹²³

377 **PLHIV may be particularly susceptible to food insecurity and poverty and are least able**
378 **to rely on social support for assistance when faced with health and agricultural shocks.**

379 Borrowing and other transfers from kin and social networks serve as a source of informal
380 insurance against shocks.¹²⁴⁻¹²⁷ Due to higher poverty and greater stigma, however, HIV-
381 affected households are generally less capable of drawing on these informal sources of support
382 when faced with shocks.¹²⁸ As a result, HIV-affected households may be even more susceptible
383 to worsening food insecurity.¹²⁹ Livelihood strategies are needed to improve both food security
384 and HIV-related stigma, helping to interrupt the cycle of food insecurity and poor health.¹³⁰

385 **Given the evidence base, there is a critical need to develop cost-effective structural**
386 **interventions that address food insecurity and poverty to reduce HIV morbidity and**
387 **mortality for PLHIV receiving care.** Although allocation of international resources towards HIV
388 treatment and care programs in Africa has increased, food insecurity can significantly
389 compromise the effectiveness of these programs.¹³¹ As more individuals are initiated on
390 treatment, the importance of addressing food insecurity and poverty for achieving good clinical
391 outcomes will likely grow. As a result, the World Health Organization, UNAIDS and the World
392 Food Programme have recommended integrating sustainable food production strategies into
393 HIV/AIDS programming.¹³²⁻¹³⁵ Specifically, UNAIDS calls for international partners to *"fund*
394 *multisectoral HIV programming that incorporates effective food and nutrition interventions, in*
395 *line with scale-up towards universal access to treatment, care and support."*¹³⁶ Yet, little
396 research exists to test the effect of food security or sustainable agricultural interventions on HIV
397 clinical outcomes among PLHIV in Africa or elsewhere. Furthermore, economic efficiency is
398 increasingly important in the context of structural interventions to address food insecurity and
399 HIV treatment. Today's strained global economic climate imposes practical constraints on goals
400 for expanded use of ART.¹³⁷⁻¹³⁹ The mismatch between global health goals and resources calls
401 for close examination of promising means to obtain maximum health benefits using available
402 funds.

403 **Existing approaches to impacting HIV treatment outcomes via food security and poverty**
404 **alleviation have numerous limitations.** Economic, health and agricultural programs have
405 historically been highly compartmentalized and poorly coordinated.¹⁴⁰⁻¹⁴² Several small studies
406 using macronutrient supplementation have demonstrated that directly addressing food security

407 can improve health outcomes among PLHIV, including ART adherence and nutritional
408 status.^{131,143-150} Yet, a recent Cochrane review identified that there are no RCTs conducted in
409 developing countries examining the impacts of either macronutrient supplementation or
410 sustainable food production strategies on HIV morbidity and mortality.¹⁵¹ Additionally,
411 macronutrient supplementation is limited in scalability,¹⁵² does not address all of the
412 downstream health consequences of food insecurity, and perpetuates dependency on health
413 and assistance programs.¹⁴⁷ Moreover, relying on clinics for food may be socially unacceptable
414 and may contribute to ongoing anxiety about food supply. Livelihood interventions that address
415 the root causes of food insecurity have a better chance of sustainably improving health
416 outcomes by addressing the nutritional, mental health and behavioral pathways through which
417 food insecurity negatively impacts HIV-related health. Likewise, while microcredit programs can
418 improve health and prevent disease acquisition by helping to address poverty and gender
419 inequality,¹⁵³⁻¹⁵⁵ these have been criticized in terms of their effectiveness as a stand-alone
420 strategy. As a result, experts have recommended an integration of finance and other livelihood
421 approaches to maximize health and reduce poverty.^{156,157} Income generating activities are well-
422 suited to improving food security due to a strong empirical relationship between income and
423 food consumption,^{158,159} and to retaining patients in HIV care.^{131,160} Agricultural interventions
424 have significant potential to improve health since the sector is a primary source of income in
425 many parts of SSA; in Kenya, agriculture accounts for >75% of the total workforce, and 51% of
426 the GDP.¹² Randomized trials are urgently needed to test the impacts of combined livelihood
427 and microcredit interventions on PLHIV health.

428 Preliminary data

429 **A. In our *Shamba Maisha* feasibility study, we have shown that a similar intervention**
430 **using agricultural training, microfinance and the KickStart pump was feasible and**
431 **acceptable, and improved income and clinical outcomes.** In 2007- 2008, FACES, in
432 collaboration with KickStart, carried out a feasibility study with 30 HIV-positive patients in
433 Kisumu, Kenya.¹⁶¹ Mean annual income increased by \$1,332 (range \$1,187 - \$2,518) over
434 baseline, and mean CD4 count increased by 95.5 ± 139.2 cells/ml.¹⁶¹ At baseline, 27% of
435 individuals had BMI<18.5 compared with 13% at follow-up.¹⁶¹

436 **B. In our *Shamba Maisha* pilot intervention study (R34MH094215; Cohen/Weiser, PIs;**
437 **Bukusi site PI; Dworkin co-I), we have shown the current intervention to be feasible and**
438 **acceptable.** In 2012-213, UCSF and FACES, in collaboration with KickStart, carried out a pilot
439 study of the proposed intervention with 140 HIV-positive patients at two district hospitals in the
440 Nyanza Region, one randomized to the intervention (n=72 participants) and one to the control
441 arm (n=68 participants). Eligibility criteria and the intervention were the same as the current
442 study (see C5a). Enrollment of the 140 participants took only four months, and the screening-to-
443 enrollment ratio was similar between study arms. Thus enrollment into the control conditions did
444 not appear to mitigate interest in study participation. Four participants withdrew from the study
445 (98% retention). Only one of the 72 participants in the intervention arm failed to save the down
446 payment for the loan and was withdrawn from the study. All intervention participants completed
447 the agricultural and finance training, and found these trainings to be beneficial. Together, these
448 findings have important implications concerning the feasibility for advancing the intervention into
449 a definitive cluster randomized controlled trial.

450 **C. In our *Shamba Maisha* pilot R34 study, the intervention improved food security, HIV**
451 **clinical outcomes, and child nutrition outcomes.** Using difference-in-difference mixed-effect
452 models, when compared to the control arm, participants enrolled in the intervention arm had
453 statistically significant improvements in food security (3.6 scale points higher, p<0.001),
454 frequency of food consumption (9.4 times per week greater frequency, p=0.013) and self-
455 confidence (p=0.004). Even though the study was not powered for HIV clinical outcomes, we

456 also found statistically significant improvements in CD4 cell counts (165 cells/mm³, p<0.001)
 457 and proportion virologically suppressed in the intervention arm compared to the control arm
 458 (comparative improvement in proportion of 0.33 suppressed, (OR 7.6, 95% CI: 2.2-26.8).
 459 Children <5 years who resided in intervention-arm households (n=97) had significantly larger
 460 increases in height-for-age Z-scores compared to children in the control arm (n=100) (p=0.04).
 461 Weight-for-age Z-score declined in the control arm over time but not in the intervention arm
 462 (p=0.01). While these results are promising, with only two hospitals randomized to the
 463 intervention or control, it is difficult to definitely separate intervention effects from cluster-level
 464 variables, highlighting the need for the proposed RCT.
 465 In a concurrent longitudinal qualitative study (n=60), participants in the intervention arm
 466 described notable improvements in food security, income and HIV-related health, including
 467 improved energy and fewer symptoms of illness compared to before initiating the intervention.
 468 Participants described improved health through nutritional, behavioral, mental health and
 469 empowerment pathways, in line with our theoretical framework (Figure 2, and Appendix 1).
 470 Nutritional pathway: Food quantity and diet quality improved and led to weight gain as a result of
 471 a) increased consumption of fresh fruits and vegetables from their farms; and b) increased
 472 income from selling produce, which was then used to purchase foods such as meat and grains.

473 Behavioral pathway: Participants
 474 missed fewer clinic visits by using
 475 money earned from selling produce
 476 for transportation. Some reported
 477 better ART adherence because of an
 478 improved food supply resulting in
 479 fewer medication side effects.
 480 Mental health pathway: Participants
 481 reported improved mood and fewer
 482 symptoms of depression, as they
 483 became more active members of the
 484 community, were better able to
 485 financially support their family, and
 486 had less anxiety about household
 487 food supply. Participants also
 488 described more hope for the future.

489 Empowerment pathway: Due to improved health and work productivity, participants described a
 490 transformation in their identity from “patients living with HIV” to productive “farmers.” Since
 491 joining Shamba Maisha, they were consulted by neighbors on farming techniques leading to
 492 increased visibility, influence, and engagement in community networks. Women’s empowerment
 493 increased in several domains: a) improved equity over decision-making related to agricultural
 494 production, sales, and finances; b) improved control over intra-household resource distribution,
 495 and c) increased control over sexual relationships. These changes were most notable when
 496 women were responsible for bringing the intervention into the household.

497 **Our team has extensive experience in conducting complex research and large clinical**
 498 **programs in the region, including recruiting and retaining intervention cohorts.** FACES
 499 (CDC PS001913-01; PI C. Cohen; site PI E. Bukusi) is a PEPFAR-supported program that
 500 provides HIV care, treatment and prevention services and has enrolled more than 136,020
 501 adults and children at 124 health facilities in Homa Bay, Migori, and Kisumu counties. The
 502 FACES program serves as the platform for over 12 clinical and implementation research studies
 503 conducted by teams from UCSF and the Kenya Medical Research Institute (KEMRI) including
 504 the *Shamba Maisha* pilot study and proposed cluster RCT. In one trial called “Sustainable East
 505 Africa Research for Community” (Site PIs: C. Cohen and E. Bukusi; co-Is Drs. Kahn and

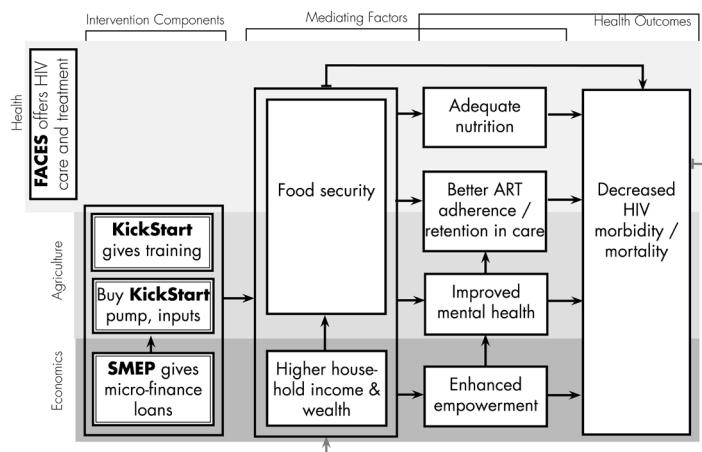


Figure 2. Intervention Theory of Change

506 Thirumurthy), our team is contributing to a multi-site community RCT (enrolled over 335,000
507 individuals) that will quantify the health and economic impact of early HIV diagnosis and
508 immediate ART using a streamlined care delivery system in 32 rural communities in East Africa.
509 Our team has also conducted a cluster RCT (PI: C. Cohen; Site PI: E. Bukusi) that showed that
510 integrating family planning services into HIV care is associated with increased use of more
511 effective contraceptive methods (sterilization, intrauterine device, implant, injectable or oral
512 contraceptives).¹⁶² We have also carried out two large HIV prevention trials among discordant
513 couples in Kisumu (site-PIs, C. Cohen and E. Bukusi). Each study had at least 94% of
514 participants retained after 24 months of follow-up.^{163,164}

515 **We have been leaders in research documenting negative health impacts of food
516 insecurity on HIV health outcomes.** Dr. Weiser (along with Drs. Frongillo, Cohen, and Butler)
517 has published 30 manuscripts in peer- reviewed journals describing impacts of food insecurity
518 on HIV health outcomes, mental illness, adherence, and women's empowerment (see sections
519 A3, A4, A5 for details) in SSA and elsewhere. These include: a) longitudinal studies linking food
520 insecurity with poor ART adherence and worse virologic and immunologic outcomes,^{25,165} b)
521 longitudinal studies showing that food insecurity is associated with increased measures of
522 morbidity (opportunistic infections, physical health status), acute care utilization
523 (hospitalizations, acute care visits)^{16,32} and higher mortality among HIV-infected
524 individuals.^{34,166} One of Drs. Weiser's and Butler's articles published in PLoS Medicine won the
525 NIH/Council of Science Editors Award for the Global Theme Issue on Poverty and Human
526 Development and was chosen among more than 1000 articles published in 235 journals.¹⁰¹
527 Based on the above work, Drs. Weiser, Frongillo, and Cohen published several review papers
528 and a theoretical framework that forms the basis for our framework for the current study.^{19,167 18}

529 **We have experience evaluating health impacts of food insecurity and economic
530 interventions.** In Kenya, Drs. Weiser, Cohen and Bukusi have demonstrated that patients
531 enrolled in the food by prescription program achieved greater gains in BMI compared to those
532 not enrolled.¹⁵ Dr. Frongillo has been a leader in documenting impacts of food insecurity
533 interventions on nutrition and health in Burkina Faso,¹⁶⁸ Bangladesh,¹⁶⁹⁻¹⁷² and the US.¹⁷³ The
534 longitudinal studies in Burkina Faso and Bangladesh¹⁷⁴ had 99.2% and 90.4% retention rates,
535 respectively, after two years. Dr. Thirumurthy has led studies of the effects of
536 structural/economic interventions such as cash transfers on health outcomes in Kenya.¹⁷⁵ The
537 novel intervention we are proposing here will build on the team's experience with these previous
538 interventions as well our prior pilot study.

539 **Our group has experience measuring empowerment, studying the linkages between
540 gender empowerment, food insecurity and health outcomes, and studying microfinance
541 interventions.** Drs. Weiser and Dworkin developed a compendium of measures of
542 empowerment for the UC Global Health Institute Center of Expertise on Women's Health &
543 Empowerment. Drs. Weiser, Butler, and Dworkin have shown that food insecurity and poverty
544 contributes to lower levels of empowerment for women,^{100,176} and that low sexual relationship
545 power is associated with malnutrition and depression.^{107,177} In reviews of structural interventions
546 for HIV prevention, Dr. Dworkin has shown how women's economic independence through
547 microfinance contributes to improved sexual negotiation, safer sex and decreased gender-
548 based violence.^{178,179} In a rigorous meta-analysis examining the impacts of economic programs
549 on women's empowerment, Dr. Dworkin and colleagues found that women's economic groups
550 have a positive and statistically significant impact on women's economic and social
551 empowerment.¹⁸⁰

552 **We are leaders in research on the intersection between economic variables and
553 HIV/AIDS, and in evaluating cost-effectiveness.** Dr. Thirumurthy has extensive experience in
554 the measurement of poverty and economic status among rural households in Kenya and

555 Uganda. He has led analyses of the economic impact of HIV-associated health deterioration as
556 well as ART-induced health improvements in individual productivity and on a broad array of
557 socio-economic outcomes at the individual and household level.^{25,37,181-185} Our team has also
558 documented an association between the CD4 cell count of HIV-infected adults and their
559 economic status.¹⁸⁶ Dr. Kahn has led the development of novel approaches to perform cost-
560 effectiveness analysis in the context of HIV care, treatment and prevention, and has
561 collaborated with Dr. Thirumurthy on cost-effectiveness analyses in East Africa related to
562 HIV/AIDS.^{61,186-189} In Tororo, Uganda, he assessed a safe water intervention (\$1,252
563 dollars/disability-adjusted life year [DALY] averted)¹⁹⁰ and ART (\$597 per DALY averted). In
564 South Africa, he found that expanding ART to CD4 count <350 cells/ μ L would prevent 15% of
565 new HIV infections, deaths, and DALYs, with savings of \$4 billion over 40 years. He assessed
566 the cost-effectiveness of ART across 45 clinics in Zambia, finding \$833 per DALY averted
567 compared to cotrimoxazole alone.¹⁹¹ Recently, he assessed the cost-effectiveness of integrated
568 community health campaigns in 70 countries, finding \$49 per DALY averted for the 10 countries
569 with the most favorable cost-effectiveness.¹⁹²

570 **6. JUSTIFICATION**

571 The proposed cluster RCT will be the first definitive study to our knowledge to evaluate whether
572 a multisectoral agricultural and finance intervention aimed to improve food insecurity and
573 household economic indicators will lead to direct health benefits for HIV-infected persons. This
574 will also be the first RCT to evaluate the impacts of an irrigation intervention on health for any
575 condition including HIV. Finally, we will apply a novel theoretical framework to elucidate the
576 mechanisms through which improvements in food security and economic indicators may impact
577 HIV health outcomes. By demonstrating the role of sustainable agricultural and economic
578 development in improving the health of HIV-positive individuals, the proposed investigation can
579 have a major public health impact and has the potential to improve the ways in which
580 development and HIV health care services are integrated and delivered throughout rural Africa.

581 Our work also provides an innovative approach to address the intersections between
582 health, agricultural and socio-economic problems. This project brings together an
583 interdisciplinary team of experts in agriculture, economics, epidemiology, biostatistics,
584 behavioral science, HIV medicine, medical sociology, and gender studies. We will collaborate
585 with an HIV care and treatment program (Family AIDS Care & Education Services, or
586 FACES),¹⁹³ an international non-governmental organization (KickStart), a Kenyan finance
587 organization, and the Kenyan Ministry of Health (MOH). Such collaborations are well positioned
588 to contribute toward sustainable public health solutions that resolve the intersecting problems of
589 food insecurity, poverty, and HIV/AIDS morbidity and mortality in SSA. By contributing to
590 dialogue among those involved in international agricultural policy and ART delivery in SSA, the
591 proposed study can impact both sectors, facilitating effective utilization of resources. Also, the
592 intervention may play an important role in improving women's empowerment, and for child
593 nutrition, as suggested by observational studies conducted in Kenya¹⁹⁴ and elsewhere.¹⁹⁵⁻²⁰¹

594 **7. HYPOTHESIS**

595 Hypothesis 1 (Aim 1): The intervention will lead to improved viral load suppression (primary
596 outcome) and other measures of morbidity such as changes in CD4 cell count, physical health
597 status, WHO stage III/IV disease, and hospitalizations (secondary outcomes) in the intervention
598 arm compared to the control arm.

599 Hypothesis 2 (Aim 2): The intervention will improve food security and household income, which
600 in turn will contribute to improved outcomes through nutritional (improved diet quality, nutritional
601 status), behavioral (improved ART adherence and retention in care), mental health (improved
602 mental health/less depression) and empowerment (gender role attitudes, household decision-
603 making) pathways¹⁸ (Figure 2).

604 **8a. GENERAL OBJECTIVES**

605 Our interdisciplinary team will conduct a randomized control trial in the Nyanza Region,
606 Kenya to understand whether a multisectoral agricultural and finance intervention improves HIV
607 clinical outcomes, and to elucidate the causal pathways (nutritional, mental health, and
608 behavioral) through which the intervention may lead to these outcomes. We also aim to
609 determine whether the intervention is cost-effective and sustainable.

610 **8b. SPECIFIC OBJECTIVES**

611 1. To determine the impact of a multisectoral agricultural intervention among HIV-infected
612 farmers on ART on HIV clinical outcomes. The primary outcomes is improved viral load
613 suppression secondary outcomes include changes in CD4 cell count, physical health status,
614 WHO stage III/IV disease, and hospitalizations.
615 2. To understand the pathways through which the multisectoral intervention may improve HIV
616 health outcomes. We will investigate nutritional, behavioral, mental health and empowerment
617 pathways.
618 3. To determine the cost-effectiveness of the intervention and obtain the information necessary
619 to inform scale-up in Kenya and similar settings in SSA. We will quantify the cost per disability-
620 adjusted life year averted, and identify lessons to inform successful scale-up.

621 **9. STUDY DESIGN AND METHODOLOGY**

622 **Overview**

623 We plan to conduct a matched pair cluster RCT of a multisectoral agricultural intervention
624 among HIV-infected farmers on ART to determine the impact of the intervention on HIV viral
625 load suppression (primary outcome), and additional health outcomes including changes in CD4
626 cell counts, WHO Stage III/IV disease, hospitalizations, physical health status and mortality
627 (secondary outcomes). We will also determine the impact of this intervention on mediating
628 outcomes in the hypothesized causal framework. Proximal mediators include food security and
629 household economic indicators. We will also look at nutritional (diet quality, anthropometry),
630 behavioral (ART adherence, engagement and retention in care), mental health (depression,
631 mental health status), and empowerment (gender role attitudes, household decision-making)
632 mediators as per our causal framework (see Figure 2). We will randomize 8 matched pairs of
633 health facilities in the Nyanza Region in a 1:1 ratio to the intervention and control arms, and
634 enroll up to 65 participants per health facility (total up to n=1040). All participants will be
635 followed for 2 years. Impacts of our intervention on primary health outcomes and mediators will
636 be investigated to assess direct and indirect intervention effects. Control participants will be
637 eligible for the intervention at the end of the 2-year follow-up period. Alongside the trial, we will
638 conduct a cost-effectiveness analysis and a process evaluation, which includes interviews with
639 study participants, staff and various stakeholders to understand strengths and pitfalls of the
640 intervention and translate lessons learned to guide a possible scale-up of the intervention in
641 similar settings in East Africa.

642 The *Shamba Maisha* intervention has three components. *Shamba Maisha* will be spearheaded
643 by UCSF and KEMRI. The agricultural components of the intervention will be led by KickStart.
644 The economic elements will be implemented by a Kenyan finance institution. Following our
645 causal framework, the intervention diagram (Figure 2) illustrates the relationship between
646 intervention components and hypothesized outcomes (Page 11). We hypothesize that the 3
647 intervention components will act synergistically to impact outcomes.

648 **KickStart Irrigation pump:** Recognizing the need for improved agricultural tools for poor farmers
649 in Kenya, KickStart, an international NGO, developed a low-cost irrigation pump for use by local
650 entrepreneurs seeking to establish small agricultural businesses. KickStart has been a leader in
651 irrigation technologies since 1991 through their manually operated “MoneyMaker” pumps, which
652 are widely available in Kenya (retail cost: ~\$60). These portable, low-cost, human-powered

653 pumps can pull water from up to 23 feet (either surface water or a shallow well) and push water
654 an additional 46 feet above the pump. These pumps enable farmers to irrigate larger amounts of
655 land, harvest more crop cycles, and plant crops with less regard for the seasonality of rainfall,
656 thus capitalizing on higher off-season crop prices in the marketplace. This technology has
657 reduced food insecurity and poverty for 800,000 users in 22 countries in the subcontinent since
658 1991²⁰² Farmers using this irrigation pump enjoy up to a ten-fold increase in income.²⁰³⁻²⁰⁶
659 Similarly successful models of irrigation in India and Nepal have been found to improve income
660 and food insecurity by increasing crop yields by up to 200% and reducing water consumption by
661 40-70%.²⁰⁷ As a result of its documented success in our previous studies and local availability,
662 KickStart's irrigation pump, as part of an agricultural intervention, has the potential to improve
663 food security, economic and health outcomes. As described below, participants receive a
664 voucher for the pump at the time of receipt of their asset loan.

665 *Agricultural training:* Upon loan receipt, participants in the intervention arm will receive training
666 on the use of the MoneyMaker irrigation pump. Participants will also attend approximately 8
667 separate 3-hour training modules over the agricultural season (didactic sessions and practical
668 demonstrations) in sustainable farming techniques, including seed selection, soil and water
669 conservation, fertilization and crop rotation, integrated pest and disease management (IPM), pre
670 and post-handling and marketing, and identifying improved market access for selling
671 horticultural products. Participants will be encouraged to grow locally available and
672 environmentally sustainable crops, and to diversify crops to ensure a diverse diet and adequate
673 markets for their produce. All trainings will be delivered by agricultural trainers, will take place on
674 participant's farms or a nearby location, and will occur in the context of patient support groups.
675 Agricultural trainers will also conduct 1-hour visits to individual farms as needed to support study
676 participants. We developed initial field-based trainings based on a needs assessment
677 conducted prior to launching the R34 pilot, and tested and refined the training course during the
678 pilot. Trainings were further updated based on process evaluation findings from our R34 study,
679 and will be tailored to the needs of farmers based on crop selection. Nearly all pilot intervention
680 participants found the training to be extremely useful and reported rapid improvements in
681 agricultural practices and yields.

682 *Loan program and finance training:* Participants will be given an asset loan (worth ~US \$175)
683 for the purchase of the irrigation pump and other agricultural implements. The loans will be
684 managed by a Kenyan finance organization. In accordance with standard practice for individual
685 loans, and as done in our pilot study, participants will be required to save no more than 2,000
686 KSH (~US \$20) prior to receiving the loan. These savings will be placed in a bank account at
687 one of the local branches. Each participant will receive the loan in the form of vouchers to
688 purchase the irrigation pump, 50 feet of hosing, fertilizer, and government certified seeds. These
689 materials will be made available at local farm stores ("agrovets") that are easily accessible in
690 study communities. Loan repayment will follow the guidelines of the local MFI with payment
691 expected within 16 months (starting with a 4-month grace period of no payment, followed by 12
692 months of monthly payments). The finance organization will document the loan payments made
693 by each participant and will provide a quarterly financial report to the study coordinator and PIs.
694 The finance organization will be solely responsible for collection of loan payments, following
695 their usual standard protocol for participants who fail to repay their loan. Participants will not be
696 asked to forfeit personal belongings to cover loan payments. Those who repay their loans may
697 choose to take out additional loans (in accordance with standard policies), to allow for further
698 investment and development. Our goal is to provide an enduring relationship between
699 participants and the finance organization.

700 The intervention arm will receive training at baseline and at key intervals coordinated with
701 harvesting seasons on financial management, group formation and management, record
702 keeping, micro enterprise development, market planning and research, customer relations,

703 preparation of a business plan, and marketing skills. Trainings will be facilitated by the finance
704 organization in collaboration with our study team. All trainings will take place on participants'
705 farms or a nearby location.

706 **a. Study site (geographical)**

707 Residents of Nyanza Region including our target counties (Homa Bay, Kisumu, and Migori)
708 have significant potential to benefit from the proposed intervention: The Nyanza Region has the
709 highest prevalence of HIV in Kenya (15.1%),²⁰⁸ and a very high prevalence of food insecurity.¹⁴
710 Unlike more urban environments, there are few alternatives to agricultural production for
711 income.²⁰⁹ Farming and fishing are the primary means of income generation. Lack of irrigation
712 and unpredictable rainfall lead to an inconsistent water supply and pose a central barrier to
713 successful farming for many in the region.²¹⁰ Entrenched poverty and limited access to financial
714 services means that few farmers are able to obtain quality agricultural inputs.

715 Eight matched pairs of facilities will be selected for inclusion in the study. Pair matching helps
716 protect study credibility and validity with a limited numbers of clusters, and also can substantially
717 improve power.^{211,212} With newer matching algorithms/schemes, we can get close matches with
718 multiple variables predictive of the outcome.²¹³⁻²¹⁶ Therefore, we will match facilities on the
719 following criteria: 1) size of facility (district, sub-district hospital, health center, dispensary) 2)
720 geography defined by sub-county, 3) primary source of water for irrigation (lake, river, shallow
721 wells), and 4) access to markets. We will select matched pairs that limit the chance of
722 contamination between intervention and control health facilities based on geographic proximity
723 and ethnographic mapping. Based on our pilot work, the minimum requirement for health facility
724 inclusion in the study are: Ministry of Health facility that serves a minimum of 350 patients on
725 ART, proximity to permanent water source/s (river, lake, and streams), suitable soil for farming,
726 proximity to markets, and where farming is one of the a key economic activities in the
727 community (i.e.: 50% of the population is involved in agriculture as the primary means of
728 income, which will apply to most of the Ministry of Health facilities in Nyanza Region).
729 Randomization, based on a computer-generated assignment, will occur after the 8 matched
730 pairs have been selected.

731 **b. Study populations**

732 Participants will be recruited from the Kenyan Ministry of Health (MOH) facilities. As patients in
733 the MOH facilities, all participants at intervention and control health facilities will receive
734 HIV/AIDS care and treatment, including ART, in accordance with MOH standards.

735 **i. Criteria for inclusion of subjects**

736 At both intervention and control health facilities, we will enroll up to 65 persons currently
737 enrolled in HIV care per health facility. Eligibility criteria will be similar to our pilot study.

- 738 1. HIV-infected adults
- 739 2. 18-60 years old
- 740 3. Currently receiving ART
- 741 4. Belong to a patient support group or demonstrate willingness to join one.
- 742 5. Have access to farming land and available surface water in the form of lakes, rivers, ponds
743 and shallow wells.
- 744 6. Have evidence of moderate to severe food insecurity based on the Household Food
745 Insecurity Access Scale (HFIAS), and/or malnutrition (BMI<18.5) based on medical records
746 during the year preceding recruitment.
- 747 7. Participants must also agree to save the down payment (no more than 2,000 KSH) required
748 for the loan

749
750 These criteria are likely to be met by the majority of HIV-infected patients on ART in Nyanza
751 Region, as we saw in our pilot study.

752 **ii. Criteria for exclusion of subjects**

753 1. People who do not speak Dholuo, Swahili, or English
754 2. Inadequate cognitive and/or hearing capacity to complete planned study procedures, at
755 the discretion of the research assistant

756 **c. Sampling**

757 **i. Sample size determination**

758 Data from the *Shamba Maisha* pilot R34 intervention study were used to estimate the sample
759 size needed for this proposed study for the outcomes of changes from month 0 to month 24 in
760 food insecurity score (key mediating variable), CD4 count, and viral load suppression (key
761 outcome variable). The standard deviations (SD) seen in the proposed study likely will be similar
762 to that in the pilot study because the two studies draw from a similarly geographically dispersed
763 population. To be conservative, we assumed a coefficient of variation due to clustering of 0.150,
764 ignoring the matched pairs.²¹⁷ Retention in the pilot study was 98%; to be conservative,
765 retention in the proposed study was assumed to be 90%. For two-sided testing at $\alpha=0.05$ in a
766 longitudinal analysis, a sample of 8 health facilities per arm with up to 44 enrolled participants
767 per health facility (total enrollment of up to 352 per arm) will provide power of 80% for an
768 important clinical difference of 0.138 between the intervention and control arms in the proportion
769 becoming virally suppressed from month 0 to month 24 (primary outcome).²¹⁷ We plan to over-
770 enroll the number of participants by up to 65 per facility to account for participants that may not
771 be able to save the down payment. That is, assuming as in our pilot study that 0.150 of the
772 sample in the control arm becomes suppressed from baseline to month 24, there is 80% power
773 to detect differences such that the proportion becoming suppressed from baseline to month 24
774 in the intervention arm is 0.288 or greater. In regards to two secondary outcomes, the within-
775 arm SD for changes in food insecurity score and CD4 count were estimated from the pilot study
776 as 2.95 and 208.9 cells/mm³, respectively. The proposed sample size will provide power of 80%
777 for differences of 1.2 for food insecurity (HFAIS score) and ≥ 57 cells/mm³ for CD4 count.

778 **ii. Recruitment procedures**

779 Following the procedures from our pilot intervention study, participants will be recruited through
780 organized meetings held at each health facility, publicized through announcements at patient
781 support group sessions. At each meeting, research staff will present study details and eligibility
782 guidelines. Among interested and potentially eligible individuals, home visits will be conducted
783 to verify that the participant has access to agricultural land and surface water. Individuals that
784 meet eligibility criteria but decline to participate in the study will be asked to discuss reasons for
785 declining participation. Using female recruiters and promotional material geared towards
786 recruiting women, we will enroll at least 40% of participants at each health facility from each
787 gender. At intervention health facilities, participants will be enrolled in a savings program in
788 anticipation of receiving the asset loan. In control health facilities, participants will be enrolled in
789 the intervention at the end of 2 years follow-up.

790 **iii. Enrollment procedures**

791 Individuals who express interest in the study will be asked to consent to screening for the study
792 in order to assess their eligibility. The screening procedures will involve a brief questionnaire
793 (up to 10 minutes) on food security and access to farming land and surface water and a brief
794 review of medical records. If they are eligible based on this information, a home visit will be
795 conducted to confirm access to farming land and available surface water. If they are still eligible
796 for the study and continue to be interested in participating, the individual will undergo the
797 informed consent process for the study. Enrolled participants in the intervention arm are
798 required to save a down payment of no more than 2,000 KSH for the asset loan by the end of
799 the finance training. Control participants must also agree to save the down payment (~\$20)
800 required for the loan by the study end. At each data collection point conducted at the health

801 clinic, participants will receive up to 800 Kenyan Shillings (~\$8.40) depending on the distance
802 they have to travel, and at each data collection point conducted at their home or farm, they will
803 receive up to 400 Kenyan Shillings (~\$4.20).

804 **d. Procedures**

805 **Conduct a cluster RCT of a multisectoral agricultural intervention among HIV-infected**
806 **farmers on ART to determine the impact of the intervention on HIV clinical outcomes**

807 After study enrollment, participants in Intervention health facilities will be immediately formed
808 into a patient support group of 8-14 Shamba Maisha participants for delivery of the intervention.
809 During the pilot study, we found that the patient support groups were a vital source of social and
810 emotional support and strength for study participants. The groups provided an opportunity for
811 sharing information, knowledge, ideas, and experiences in a confidential manner. Members also
812 benefited from the coping skills gained, insight into the issues affecting others, and bonds made
813 with others going through a similar experience. HIV positive people living positively and thriving
814 also serve as role models and inspiration to others, and encourage care and treatment
815 adherence. All agriculture and finance trainings will be conducted within the patient support
816 group setting so that participants can learn from and support each other and help address any
817 challenge that individuals may face on their farms (i.e. pest control) or in repayment of their
818 asset loan. Participants will also be enrolled in a savings program in anticipation of receiving the
819 asset loan. In control health facilities, HIV-infected patients between the ages of 18-60 receiving
820 ART, have access to farm land and surface water, and have demonstrated evidence of food
821 insecurity or malnutrition during the year preceding the study will be recruited as controls.
822 Control participants must also agree to save the down payment of no more than 2,000 KSH
823 (~\$20) required for the loan by the study end. All intervention and control participants will be
824 reimbursed for their transportation and time up to 800 Kenyan Shillings (~\$11) for data
825 collection that take place at the clinic and up to 400 Kenyan Shillings (~\$5.5) for data collection
826 that takes place at home.

827 **Data collection**

828 The research staff will administer surveys to both arms at baseline and at 6, 12, 18, and 24
829 months. Data will be collected within a window period around each data collection time point of
830 +/- 2 months. For example, the six-month data collection period must take place 4 – 8 months
831 after enrollment. The content of these interviews will cover demographic information; household
832 economic indicators; detailed agricultural information; income, physical and mental health
833 status; food and water insecurity and dietary diversity; healthcare utilization; social support and
834 HIV-related stigma; ARV treatment status and adherence; intimate partner violence; risk
835 tolerance and entrepreneurial ability; HIV risk behavior, including sexual activity and substance
836 use; well-being, hope, relationship quality; and gender empowerment.

837 A section of the interview will be administered at the health facility (for either clinical or sensitive
838 information), and another section will be administered at the participant's farm or household
839 (see below). At the end of the home visit, we will also capture the GPS coordinates of the
840 home for data verification purposes. In addition to interview data, we will also abstract clinical
841 data from the Comprehensive Care Clinic Patient Card, known as the blue card or green card
842 (every 6-months for viral loads, CD4 T-cell counts, ART treatment interruptions and episodes of
843 opportunistic infections). Clinicians or trained phlebotomist will collect additional blood for viral
844 load and CD4 testing once per year. For those who miss their yearly blood draw, we will
845 conduct an additional blood draw to ensure that we have these measures twice yearly on all
846 participants. Phlebotomy will be performed using universal precautions, and specimens will be
847 aliquoted, assigned an accession number, and stored at -70 C until shipment to the laboratory
848 for processing. We will also perform mid upper arm circumference measurements to assess

849 nutritional status, body mass index measurements. Table 1 shows measures and health
850 outcomes following our theoretical model.

851 **Table 1. Measures**

Nutritional Pathway	<p>Nutritional status: We will use <u>BMI</u> and <u>MUAC</u>, commonly used to assess nutritional status.^{218,219} The BMI reflects protein and fat reserves²²⁰ and will be assessed using an established grading system.²²¹ For MUAC, we will use WHO sex-specific cut-offs of 22.0 cm for women and 23.0 cm for men with chronic energy deficiency.²²²</p>
Behavioral Pathway	<p>ART adherence: Participants will receive a <u>Medical Electronic Monitoring System (MEMS)</u> bottle to record bottle opening events providing a graphical printout of adherence. MEMS is one of the most extensively validated objective measures of ART adherence for use of studies in SSA, is closely correlated with undetectable viral loads,²²⁴ and has been found to be feasible and acceptable to patients in the Nyanza Region by our study team.^{225,226} For self-report adherence, we used the visual analog scale,²²⁷ which corresponds to the percentage of prescribed doses taken, and is correlated with unannounced pill count and MEMS.^{228,229,226}</p>
Behavioral Pathway	<p>Health care utilization and competing demands: We will collect data on <u>urgent care visits</u> and <u>adherence to regular clinic visits</u> using both self-report and abstraction of data from medical records comparing their scheduled visit date with their actual visit date. This method has been used to assess clinic attendance in the literature.^{230,231} Questions will be modified from Gelberg and Anderson's Behavioral Model for Vulnerable Populations^{232,233} to assess how often lack of food interferes with ability to procure drugs or visit the clinic.</p>
Mental Health Pathway	<p>Mental health status will be measured using the <u>MOS-HIV</u>, a tool for assessing health-related quality of life²³⁴ that has been validated among HIV-infected populations in resource-limited settings.^{235,236} Depression will be screened using the <u>Hopkins Symptom Check-list for Depression</u>, a 15-item scale²³⁷ which has been validated in sub-Saharan Africa.²³⁸ Alcohol use: We will use the <u>AUDIT-C</u> indicators. The AUDIT-C is a 3-item alcohol screen that can help identify persons who are hazardous drinkers or have active alcohol use disorders.²³⁹</p>
Mental Health Pathway	<p>Wellbeing, hope, and relationship quality. The 'Cantril ladder' was developed by Kilpatrick and Cantril (1960) and has since been used in several cross-national studies including Gallup's World Poll of more than 150 countries to measure general well-being. The relationship quality questions were adapted from the four item Couple Satisfaction Scale by Funk, J.L. & Rogge, R.D (2007).</p>
Mental Health Pathway	<p>HIV-related stigma and disclosure: We will use the <u>Earnshaw Stigma Scale</u>, which has been extensively validated in sub-Saharan African settings. We will ask about disclosure of HIV status to partners, family members, and others using questions adapted from our previous studies in SSA.^{101,240,241}</p>

Empowerment Pathway	<p>Empowerment indicators will be adapted from a large cluster-randomized trial of an intervention including: <u>greater challenges to established gender roles, communication with relationship partner about sexual matters, measures of financial decision-making, measures of attitudes towards gender roles and gender-based violence, and experience of controlling behavior by relationship partner</u>.²⁴² In addition, we will use the <u>Sexual Relationship Power Scale (SRPS)</u>,²⁴³ which conceptualizes sexual relationship power as a multi-dimensional construct assessing relative degrees of relationship control and decision making dominance. The SRPS has been used successfully in observational research conducted in South Africa^{244,245} and Uganda.²⁴⁶ We will also collect data on <u>sexual victimization and perpetration</u> in the prior 3 months.</p>
Proximal Mediators	<p>Food insecurity: The Household Food Insecurity Access Scale (HFIAS) has been validated in eight countries^{168,247-249} and used successfully by our team in Kenya and rural Uganda.^{24,246,250-254}</p> <p>Agricultural measures include questions about <u>production, costs, harvesting and marketing, labor, irrigation, and post harvesting practices</u>. Measures were designed to evaluate uptake and adoption of the intervention, and measure changes in agricultural practices including crop diversity, agricultural practices and production.</p>
	<p>Household economic indicators: <u>Household economic indicators</u> will be collected using a modified version of the World Bank Living Standards Measurement Study (LSMS) questionnaire.²⁵⁵ Because the economic impact of the intervention likely will differ with where agricultural production is directed (e.g., market, household consumption, bartering produce for other goods) we will measure several economic outcomes: a) expenditures (food, health, education, and productive investments); b) consumption (food and non-food); c) income (from agriculture and all sources); d) savings and debt; and e) inter-household commodity and cash transfers. We have extensively used these questionnaires for prior studies in Kenya including in the ongoing SEARCH trial.</p>
Health Outcomes	<p>HIV related mortality: The 2012 <u>WHO verbal autopsy instrument</u> will be used to determine cause of death.²⁵⁶ Information will also be gathered from the hospital record review and hospital discharge diagnosis.</p> <p>Viral load testing will be performed on venous blood on the COBAS TaqMan HIV viral load platform (Roche Molecular Diagnostics, Pleasanton, CA) with a lower limit of detection of <20 copies/mL.</p>
	<p>Absolute CD4 count testing on whole blood will use the BD FACSCount (BD Bioscience, San Jose, CA).</p>
	<p>HIV morbidity: We will abstract data on <u>hospitalizations, opportunistic infections, and changes in WHO disease stage</u> from medical records. We will also gather self-report data on opportunistic infections, hospitalizations and HIV symptoms during structured interviews.</p>
	<p>Physical health status will be measured using the <u>MOS-HIV</u>, a tool for assessing health-related quality of life²³⁴ that has been validated in resource-limited settings.^{235,236}</p>
Covariates	<p>Demographics: Age, religion, education, marital/partnership status, cost/time to reach the health facility, number of children, and household census will be collected at baseline. Changes to the household census will be captured every year.</p> <p>Social support: We will adapt the <u>Functional Social Support Scale</u>,²⁵⁷ a modified version of the Duke University-University of North Carolina Functional Support Questionnaire²⁵⁸ consisting of questions related to perceived emotional and instrumental support.</p> <p>Risk tolerance and entrepreneurial ability: We will adapt established questionnaires that have been used to measure individuals' attitudes towards risk as well questionnaires from microfinance studies that seek to measure individuals' entrepreneurial ability.^{259,260}</p>

852 **Data quality and management:** The Comprehensive Care Clinic Patient Card includes
853 detailed information on health indicators (CD4 counts, WHO staging, OIs, drugs, etc.).
854 Data from the blue card and those specifically conducted for this study (questionnaires,
855 VL measurements, MUAC, weight and height) will be entered into a handheld computer
856 tablet for data entry operating Open Data Kit (ODK) Collect. We successfully piloted the
857 use of tablets and the ODK system during the pilot study. Procedures to promote data
858 quality of these databases will include range and logical checks built into the data entry
859 program, and running a series of additional error checks on the databases after data
860 entry. We will investigate the patterns and types of missing data and non-response.
861 Initial analyses also will involve inspection of the distributions of our mediating and
862 outcome variables to identify outlying or unusual values and to assess distributional
863 characteristics. We will also assess validity of scale constructs via exploratory and
864 confirmatory factor analysis and perform internal consistency analyses to assess scales'
865 reliabilities.

866 **Facility Viral Load Checklist**

867 From the award of the PEPFAR III program in 2016- FACES now offers technical support to
868 Kisumu County and some of the sites are now under the Elizabeth Glazer Paediatric Foundation
869 (EGPAF) and the University of Maryland (UMB).

870 The interpretation of the viral load results and the actual treatment changes made for
871 participants in our study who are patients at these health facilities is determined by those given
872 care at those health units. In order to appreciate differences in how study facilities interpret
873 viral load data and make decisions on how to care for these patients, some of whom are our
874 participants – we propose to use a Viral Load Readiness Check list to assess the protocols
875 used at these facilities to guide their decisions making. And how they use this information to
876 guide ART therapy, patient follow-up, and adherence counseling.

877 This will allow us to analyze the relationship between possible disparities in viral load readiness
878 across sites and any disparities we observe in our primary outcome, viral load suppression at
879 the time of our data analysis. This tool will be a program evaluation tool for the clinics and we
880 also communicate information regarding any identified weaknesses in viral load interpretation
881 practices to individual facilities in order to improve patient care for all facility patients.

882 The study staff will conduct the viral load readiness initiative at the sixteen Shamba Maisha
883 study facilities in Kisumu, Homa Bay, and Migori counties. The purpose and procedures of the
884 assessment will be explained to administrators and clinicians at each facility by a representative
885 of Shamba Maisha during a face-to-face meeting prior to the assessment. Study staff will
886 subsequently administer an approximately one-hour assessment at each site using the attached
887 Viral Load Readiness Assessment form, a version of the International Center for AIDS Care and
888 Treatment Program (ICAP) Viral Load Readiness assessment form's "Clinical Care Related
889 Questions" section that has been adapted with input from FACES staff and clinicians for the
890 context of our study. The form consists of a checklist of facility practices that comprise both self-
891 report data and data verified by visual inspection, as indicated by an asterisk. Additional notes
892 will be kept in the "Comments" section of each form. Assessments will be conducted with the
893 primary ART clinician at each site in English. Assessments will not include any individually
894 identifiable or personal data and will include clinic-level information only.

895 Immediately after administration of the form, study staff will score the form using the scoring
896 template provided by ICAP. A "percentage readiness" will then be recorded on each
897

902 assessment form according to the total composite score. Results of the assessment will be used
903 to aid Shamba Maisha investigators in interpreting viral load data across sites. All results will
904 also be disseminated to facility administrators within one month of assessment completion.

905
906 We believe this assessment will provide us with critical information that will enhance our
907 analysis of the study's primary outcome and contribute to long-term improvement of patient care
908 at our study facilities.

909
910 **Conduct a Process Evaluation to Inform Scale-up:** We will assess implementation, feasibility
911 and acceptability of intervention components to inform scale up. Using mixed methods, we will
912 collect qualitative and quantitative data throughout the study. Staff will collect information on
913 training attendance and participation levels (assessed on a 1-5 scaled rubric). Participant
914 observation will be led by a researcher trained in ethnographic methods who will collect notes
915 on observed delivery of key study and intervention components, community recruitment
916 meetings, home visits to determine eligibility, agricultural training, business skills training and
917 loan repayment procedures. Weekly meetings with detailed minutes including research staff and
918 health care personnel will document challenges with recruitment and procedures in both the
919 intervention and control arms, including reactions by participants, difficulties encountered, areas
920 for improvement, and overall assessment of implementation. Twice monthly debriefings to
921 review minutes will occur with the intervention team and study investigators. Structured exit
922 interviews will be conducted with up to 350 intervention and up to 350 control participants to
923 further assess intervention acceptability to inform scale-up. We will ask for detailed feedback on
924 the key intervention components (microcredit loan, agricultural/finance training, use of the
925 irrigation pump, patient support groups), and elicit suggestions for improvement. With control
926 participants, we will ask if they participated in a farming training, received a loan, or own a pump
927 to determine if there was study contamination. In-depth interviews with up to 124 intervention
928 participants and up to 25 key informants (study coordinators, health care providers, and
929 representatives from partner organizations) will assess challenges and facilitators of intervention
930 components from the perspective of those who received and delivered the intervention.
931 Interview themes will include: a) participation and attendance; b) securing loans; c) agricultural
932 training topics, d) loan receipt and repayment; d) relationship between program participation and
933 clinic attendance f) sense of empowerment and gender equity among participants; and g)
934 perceptions of intervention efficacy based on land tenure and ownership; and h) perceptions of
935 climate change, the impact of climate change on farming, food security, nutrition and health,
936 changes participants are making to address climate change, and if Shamba Maisha is impacting
937 how participant's deal with climate change. We will also ask pregnant women and women who
938 were recently pregnant about the impact of Shamba Maisha on their health, antenatal care,
939 family planning, diet, farming, income, and relationships. To gain diverse perspectives, we will
940 interview both male and female participants and participants who completed the study as well
941 as those who dropped out. These interviews will be conducted in either D'Luo or Kiswahili, last
942 approximately 60 minutes and will be digitally recorded and transcribed.

943
944 As part of intervention refinement, we will conduct open-ended interviews with up to 25 key
945 stakeholders to gather information to help us with adapting and improving the intervention. Key
946 stakeholders to be contacted include leading experts in agriculture and finance in Kenya,
947 relevant government officials, and health experts. Topics that may be covered will include: 1)
948 Experiences, successes and challenges with loans, and specifically among individuals with
949 chronic illness; 2) strategies to maximize loan repayment while minimizing stress and any risks
950 to participants; 3) Recommendations for maximizing agricultural yields including seed selection,

951 and improving market access; 4) Experiences and suggestions on maximizing agricultural and
952 finance trainings, and 5) Other topics related to the implementation of the intervention.

953 **10. ETHICAL CONSIDERATIONS**

954 The study protocol and forms will be submitted to the UCSF Committee on Human Research,
955 as well as the Scientific and Ethical Review Unit (SERU) of the Kenya Medical Research
956 Institute (KEMRI).

957 **Human Subjects Involvement and Characteristics:**

958 ***Involvement of human subjects:***

959 All participants will be asked to consent to screening for the study in order to assess their
960 eligibility. This will involve a brief questionnaire (up to 10 minutes) on food security and
961 availability of surface water, a brief review of medical records, and a home visit to confirm
962 access to surface water.

963 Individuals who meet eligibility criteria 1-6 (section 8.b.i) will be asked to provide informed
964 consent and will be enrolled to participate in the study. We will ask these individuals to
965 participate in interviews, have their blood drawn by a trained phlebotomist for measurement of
966 HIV viral load and CD4 count, MEMS data collection, and also to have nutritional assessments
967 done.

968 Participants will be asked to provide written informed consent for the following procedures for
969 the 2 year study: a) Participation in the agriculture and finance training and the loan program, in
970 order to purchase the Kickstart irrigation pump and other farm commodities, b) collection of data
971 through clinic at baseline and 6-month intervals; c) collection of agricultural and economic data
972 at baseline and approximately 5-7 times over the two year period; d) measurement of MUAC,
973 height, and weight to assess their nutritional status at baseline and 6 month-intervals; e) MEMS
974 data collection to measure ART adherence; f) collection of blood for testing of HIV viral load and
975 CD4 count at baseline and 6 month intervals (note that the MoH program includes annual VL
976 and CD4 testing, which the study will supplement with additional testing to ensure every 6-
977 month VL and CD4 testing); and f) data abstraction from their medical records g) take and use
978 photographs of them and their farms . Potentially vulnerable populations likely to be included in
979 this study are those with limited household incomes, HIV and food insecurity. Our study staff
980 and personnel are well-trained and experienced in working in a respectful, fair, and non-
981 coercive manner with these populations. All study investigators and staff members with
982 participant contact will have completed training on the protection of human subjects.

983 The lead investigators at the University of California, San Francisco (UCSF) and the Kenya
984 Medical Research Institute (KEMRI) are well-respected research scientists who are experienced
985 in human subjects research and trained in excellent clinical and/or laboratory practices. Drs.
986 Cohen, Weiser, and Bukusi, with guidance from the co-investigators, will be responsible for
987 seeking and maintaining the required IRB approvals.

988 **j. Study enrollment:**

989 **Criteria for inclusion of subjects**

- 991 1. HIV-infected
- 992 2. 18-60 years old
- 993 3. Currently receiving ART
- 994 4. Belong to a patient support group or demonstrate willingness to join a support group.
- 995 5. Have access to farming land and available surface water

996 6. Have evidence of food insecurity based on the Household Food Insecurity Access Scale
997 (HFIAS), and/or malnutrition (BMI<18.5) based on medical records during the year
998 preceding recruitment
999 7. Potential participants must also agree to save the down payment (no more than 2,000
1000 KSH) required for the loan.

1001
1002 **Criteria for exclusion of subjects**

1003 1. People who do not speak Dholuo, Swahili, or English
1004 2. Inadequate cognitive and/or hearing capacity to complete planned study procedures, at
1005 the discretion of the research assistant

1006
1007 **Recruitment procedures**

1008 **Recruitment and retention plan:** HIV-infected adult (18-60 years old) patients receiving ART
1009 will be recruited from the Ministry of Health (MoH) facilities. All participants at intervention and
1010 control health facilities will receive HIV/AIDS care and treatment, including ARV medications, in
1011 accordance with MoH standards.

1012 A research staff person will approach eligible subjects selected for recruitment to introduce the
1013 study and gauge potential subjects' interest. Relevant study staff will be fluent in the local
1014 dialect to obviate the need for translators and, as such, optimize confidentiality. The study site
1015 has prior experience in obtaining informed consent for research and clinical trials within the
1016 cultural context of Kenya, and specifically among HIV-infected individuals. The informed
1017 consent procedure for this study has been designed to maximize understanding of potential
1018 risks. All consent forms will be translated into the local languages (Dholuo and Kiswahili) and
1019 back-translated into English to ensure correct use of language. Consent forms will be
1020 summarized aloud to participants by study interviewers. Potential participants will be informed
1021 of: (1) the purpose and methods of the study, (2) procedures to protect their confidentiality, (3)
1022 their rights to withdraw from the study at any time, (4) the fact that their participation or non-
1023 participation will not affect the care and services they receive at the Ministry of Health facility,
1024 and (5) persons to contact if they have any questions about the study after the completion of the
1025 interview, or to report any adverse events associated with study participation. Prior to seeking a
1026 signature, interviewers will ask participants to summarize the study and explain the reasons why
1027 they want to participate to the interviewers. The participant will also be given a copy of the
1028 consent form written in the local language to keep. The consent form will include names and
1029 phone numbers of persons to contact with any questions regarding the study. During the
1030 consent process, any misunderstandings regarding procedures, risks, or benefits can be
1031 clarified. Individuals will be provided with information on how to contact the study staff to report
1032 adverse events associated with study participation. Study staff will be trained extensively on
1033 how to assure that individuals provide voluntary informed consent. If a woman wishes to obtain
1034 the assent of her husband, father or chief, such assent may not substitute for her informed and
1035 voluntary consent. Individuals who cannot write will be invited to mark consent forms with a
1036 thumbprint (a standard practice for KEMRI clinical research), along with a co-signature by a
1037 witness otherwise not affiliated with the study. Each participant's signed informed consent form
1038 will be kept on file by the investigators for possible inspection by regulatory authorities.

1039 Study retention will be monitored monthly by the research team. We plan to implement several
1040 proactive retention strategies successfully used during our pilot study and in our other studies in
1041 the region. These strategies include obtaining extensive contact information, building
1042 relationships with participants, calling participants to remind them of their up-coming study
1043 appointments, and field outreach to participant's homes. Participants will receive a copy of the
1044 scheduled visits to take home. If a participant misses his/her 6-monthly visit, a research
1045 assistant will make an attempt to communicate by phone, or when necessary will make a

1046 "home" visit to the participant's previously agreed upon location (e.g. home, work, market, etc.).
1047 Research assistants will receive extensive training on procedures required for making "home"
1048 visits to maintain confidentiality and reduce the risk of inadvertent disclosure of the participant's
1049 HIV serostatus, other confidential information, and study participation to others.

1050 Provision of HIV care and treatment will not be contingent upon participation in research, and
1051 participants will continue to receive standard of care at the same clinic should they decline
1052 enrollment or choose to leave the study at any point in time.
1053

1054 **Enrollment procedures**

1055 At both intervention and control health facilities, we will enroll up to 65 persons currently
1056 enrolled in HIV care. Participants will be recruited through discussions about the study in the
1057 clinic patient waiting areas, and through organized meetings held at each health facility,
1058 publicized through posters and announcements at patient support group sessions. At each
1059 meeting, research staff, will present study details and eligibility guidelines. Among interested
1060 and potentially eligible individuals, home visits will be conducted to verify that the participant has
1061 access to farming land and surface water. Individuals that meet eligibility criteria, but decline to
1062 participate in the study, will be asked to discuss their reasons for declining participation.
1063 Through utilizing female recruiters and promotional material geared towards recruiting women,
1064 the study will plan to enroll at least 40% of participants at each health facility from each gender
1065 (which would include at least 18 women/men at each of the intervention health facilities and 18
1066 women/men at each of the control health facilities). This will enable us to obtain data on whether
1067 the effects of our intervention on health outcomes differ by gender.

1068 **Collaborating Institutions**

1069 Much of the on-site research will be carried out in collaboration with the Centre for Microbiology
1070 Research at the Kenya Medical Research Institute (KEMRI). KEMRI will comply with all
1071 pertinent U.S. federal regulations and policies. Dr. Bukusi, as the local site Principal
1072 Investigator, serves an integral role in this proposal, as she will take responsibility for the
1073 scientific conduct of this project in Kenya. Specifically, she will supervise the implementation of
1074 this protocol, oversee the clinical and laboratory procedures, and be available as the primary
1075 point of contact in Kenya. She will represent the study to local regulatory and oversight
1076 agencies, and KEMRI. As Chief Research Officer at KEMRI, Dr. Bukusi will work closely with
1077 Drs. Weiser and Cohen to oversee the program's operations and ensure that all activities are
1078 within KEMRI and national Kenyan guidelines and policies. Kickstart will lead the agricultural
1079 components of the intervention. Kickstart is a prominent non-governmental organization (NGO)
1080 based in sub-Saharan Africa. It has been a leader in irrigation technologies since 1991 through
1081 the development and sales of a manually operated "MoneyMaker" irrigation pump, enabling
1082 farmers to grow high yield crops year-round. We have been collaborating with them since 2008.
1083 The economic elements of the intervention will be implemented by a Kenyan finance institution.

1084 Drs. Weiser and Cohen as the study PIs will be responsible for registering and providing
1085 updated information about the clinical trial on ClinicalTrials.gov.

1086 **Sources of Materials**

1087 **Structured and unstructured interviews: Quantitative data** in the form of structured
1088 interviews and laboratory tests will be collected by trained research staff. Surveys will collect
1089 data on sociodemographics, food security and nutritional status, women's empowerment, health
1090 status, and measures along the nutritional, behavioral, and mental health pathways (see table 1,
1091 page 19-20). All of the proposed measures were used during the pilot study with the exception
1092 of the Medical Electronic Monitoring System (MEMS) caps, water insecurity, Intimate Partner

violence, Risk tolerance and entrepreneurial ability, and a verbal autopsy instrument. During our pilot study, we used an unannounced pill count and the visual analogue scale to measure ART adherence. However, based on some challenges conducting pill counts in this setting due to inconsistent dispensing practices by pharmacy staff and based on recent literature, we have chosen to use MEMS caps as our objective adherence measure. MEMS is one of the most extensively validated objective measures of ART adherence for use of studies in SSA, is closely correlated with undetectable viral loads,²²⁴ and has been found to be feasible and acceptable to patients in the Nyanza region by our study team.^{225,226} **Qualitative data**, including in-depth interviews and participant observation, will be collected by researchers trained in qualitative research methods. Interviews will be done with up to 5124 intervention participants and 10 key informants at study exit and will include questions about reasons for program adherence or non-adherence, positive and negative experiences with the intervention, suggestions for future implementation, sense of empowerment, capabilities and knowledge in the agricultural domain, impacts of the intervention on household decision-making, and perception of women in the family/community, and perceptions of climate change and the impact on farming, food security, nutrition and health. We hope to understand if Shamba Maisha mitigates the negative impacts of climate change on food security, nutrition, and health. We will also ask pregnant women and women who were recently pregnant about the impact of Shamba Maisha on their health, antenatal care, family planning, diet, farming, income, and relationships. The qualitative study will utilize a semi-structured guide which will be adapted, with additional probes and questions added, depending on needs and emergent data. The sample IDI guide, however, captures all the topics that will be explored during the interview. All in-depth interviews will be conducted in a private room designated for this purpose at the study health facilities or a nearby location. Audio-recordings, transcripts, and forms will be stored in a locked cabinet at the research office and on password protected computers only accessible by members of the research team.

Home visits will be conducted prior to enrolling in the research study and will be required to assess study eligibility. These visits will ascertain information on participant eligibility for study enrollment including access to agricultural land and a year-round water source. As mentioned above, the research assistants will be trained on the importance of confidentiality to avoid disclosure of a participants HIV serostatus and/or study participation. The “home” visits can either take place at home, or at another previously agreed upon location. Thus, any subject who is concerned about a potential breach of confidentiality related to a home visit can decline the home visit and select instead one of several alternatives, each of which avoids potential disclosure to family members or neighbors. We plan to use procedures similar to those we have successfully used in ongoing and past projects in Kenya, Uganda and San Francisco, in which some subjects have elected to meet the home visitor at our research site at the Ministry of Health clinic, or some other site of the subject’s choosing. Because home visiting is perceived as the most convenient method of contact, none of the participants in the pilot study declined them. If we have participants decline home visit, the clinic or an alternative location can be utilized.

Community health workers in Kenya have experience conducting home visits for a variety of conditions in addition to HIV, including maternal child health, malaria, tuberculosis, malnutrition, and diarrheal diseases. As such, conducting a home visit by a research assistant itself is not associated with HIV infection in the target communities. Nonetheless, confidentiality is their primary concern. We believe that a careful description the home visits during informed consent, the option to decline home visits at any time during follow-up, the convenience from the participant’s perspective, and the low-impact of home visits themselves justifies their inclusion in this study.

Data from medical record: The Comprehensive Care Clinic Patient Card is filled out by health workers and will be entered into tablet computers on a regular basis by the Research

1143 Assistants. Data will be entered on tablets operating Open Data Kit (ODK) Collect. We
1144 successfully piloted the use of tablets and the ODK system during the previous NIH-funded R34
1145 pilot study. The medical record dataset will include detailed information on health indicators (ex:
1146 CD4 T-cell count, WHO staging, opportunistic infections, ARV drugs).

1147 ***Data management and security:***

1148 These data will be subjected to a variety of quality control procedures. Data collected for this
1149 study (questionnaires, HIV viral load (VL) measurements, height, weight, MUAC) will be entered
1150 into the tablet computer operating ODK system adapted from the R34 pilot study. Procedures to
1151 promote data quality within these databases will include range and logical checks built into the
1152 data entry program, and running a series of additional error checks on the databases after data
1153 entry. The database will be protected by a separate password on password-protected tablets.
1154 Data from the tablets will be uploaded twice a week to a server located at UCSF. All Research
1155 Assistants will receive training on the requirements of strict confidentiality regarding patient
1156 identifying information, and security regarding tablet computers.

1157 Study record keeping and access to participant identifying information will follow strict, written
1158 standard operating procedures. All records will be kept on password protected tablet computers
1159 at KEMRI and UCSF. Primarily, participants will be identified by their study number and/or their
1160 patient ID number. All participant record forms will be kept in individual files in a secured filing
1161 cabinet in an access-limited room at the health facility. Additional records will be kept in the
1162 clinical and laboratory record books, which will be stored in the local study laboratory.
1163 Participant names and addresses will be stripped from the database prior to analysis. No
1164 individual identifying information will be used in any reports or publications resulting from the
1165 study.

1166 **Potential Risks:**

1167 The primary risks associated with the study are loss of confidentiality and risks to reputation.
1168 There may also be risks associated with phlebotomy to obtain the additional VL specimens,
1169 including pain and/or bruising. There is also the risk of fatigue from interviewing. In addition,
1170 participants will be asked some sensitive questions regarding sexual practices and symptoms of
1171 depression, which may lead to personal discomfort or embarrassment. Finally, participants may
1172 experience discomfort in the case that they cannot make loan repayments. Research personnel
1173 are trained in strategies designed to minimize these risks and their potential impact on subjects'.
1174 All serious and unexpected adverse events will be reported to the Study PIs and to the relevant
1175 IRBs per local regulation.

1176 **Recruitment and informed consent**

1177 Research will be conducted according to Good Clinical Practice guidelines, the U.S. Code of
1178 Federal Regulations (CFR) Title 21 CFR (Part 50 – Protection of Human Subjects and Part 56 –
1179 Institutional Review Boards), and the Declaration of Helsinki. This protocol will be submitted to
1180 UCSF's Committee on Human Research for approval. The informed consent of each participant
1181 will be obtained before protocol-specified procedures are carried out.

1182 Participants will be asked to provide written informed consent for the following
1183 procedures for the 2 year study: a) Participation in the agriculture and finance training and the
1184 loan program, in order to purchase the Kickstart irrigation pump and other farm commodities, b)
1185 collection of data through clinic at baseline and 6-month intervals; c) collection of agricultural
1186 and economic data at baseline and approximately 5-7 times over the two year period; d)
1187 measurement of MUAC, height, and weight to assess their nutritional status at baseline and 6
1188 month-intervals; e) MEMS data collection to measure ART adherence; f) collection of blood for
1189 testing of HIV viral load and CD4 count at baseline and 6 month intervals (note that the MoH

1190 program includes annual VL and CD4 testing, which the study will supplement with additional
1191 testing to ensure every 6-month VL and CD4 testing); and g) data abstraction from their
1192 medical records. Potentially vulnerable populations likely to be included in this study are those
1193 with limited household incomes, HIV and food insecurity. Our study staff and personnel are well-
1194 trained and experienced in working in a respectful, fair, and non-coercive manner with these
1195 populations. All study investigators and staff members with participant contact will have
1196 completed NIH-required training on the protection of human subjects. The lead investigators at
1197 UCSF and KEMRI are well-respected research scientists who are experienced in human
1198 subjects research and trained in excellent clinical and/or laboratory practices.

1199 A research staff person will approach eligible subjects selected for recruitment to
1200 introduce the study and gauge potential subjects' interest. Relevant study staff will be fluent in
1201 the local dialect to obviate the need for translators and, as such, optimize confidentiality. The
1202 study site has prior experience in obtaining informed consent for research and clinical trials
1203 within the cultural context of Kenya, and specifically among HIV-infected individuals. The
1204 informed consent procedure for this study has been designed to maximize understanding of
1205 potential risks. All consent forms will be translated into the local languages (Dholuo and
1206 Kiswahili) and back-translated into English to ensure correct use of language. Consent forms
1207 will be summarized aloud to participants by study interviewers. Potential participants will be
1208 informed of: (1) the purpose and methods of the study, (2) procedures to protect their
1209 confidentiality, (3) their rights to withdraw from the study at any time, (4) the fact that their
1210 participation or non-participation will not affect the care and services they receive at Ministry of
1211 Health Facility, and (5) persons to contact if they have any questions about the study after the
1212 completion of the interview, or to report any adverse events associated with study participation.
1213 Prior to seeking a signature, interviewers will ask participants to summarize the study and
1214 explain the reasons why they want to participate to the interviewers. The participant will also be
1215 given a copy of the consent form written in the local language to keep. The consent form will
1216 include names and phone numbers of persons to contact with any questions regarding the
1217 study. During the consent process, any misunderstandings regarding procedures, risks, or
1218 benefits can be clarified. Individuals will be provided with information on how to contact the
1219 study staff to report adverse events associated with study participation. Study staff will be
1220 trained extensively on how to assure that individuals provide voluntary informed consent. If a
1221 woman wishes to obtain the assent of her husband, father or chief, such assent may not
1222 substitute for her informed and voluntary consent. Individuals who cannot write will be invited to
1223 mark consent forms with a thumbprint (a standard practice for KEMRI clinical research), along
1224 with a co-signature by a witness otherwise not affiliated with the study. Each participant's signed
1225 informed consent form will be kept on file by the investigators for possible inspection by
1226 regulatory authorities. Participants will also be asked to give consent for photography.

1227 Protection against Risk:

1228 **1229 *Planned procedures for protecting against fatigue:*** Baseline and follow-up interviews will
1230 last 1-2 hours, including phlebotomy and weight, height, and MUAC measurements. Participants
1231 will be informed that they can take a break or stop at any time. Staff will be well-trained and
supervised under the direction of experienced clinical researchers.

1232 **1233 *Planned procedures for protection of confidentiality or risks to reputation:*** To ensure
1234 confidentiality of participation, all data will be coded by a unique participant identifier number.
1235 Data will be kept in locked cabinets and will only be provided to a subject's clinician upon the
written request of the subject. Research records will be kept confidential to the level allowed by
1236 law. The participant's name or other public identifiers will not be included with laboratory data,
1237 which will be identified only by a code number. For interview data collected as part of the study,
1238 subjects will be assigned a unique study identification number. Interviewers and support staff
1239 will be trained on procedures for maintaining privacy and will sign a pledge of confidentiality. All

1240 transcripts and computer records will be password-protected to prohibit illicit access. All
1241 personal identifiers will be removed from any paper or electronic study forms, which will be
1242 coded only by numerical identifiers. When these procedures are followed, it is highly unlikely
1243 that any information revealed by participants during the course of the interviews or clinic visits
1244 will be disclosed to anyone outside the research team.

1245 **Planned procedure for protection of risks due to phlebotomy:** Phlebotomists will be well-
1246 trained and experienced in the collection and handling of biological specimens. To minimize
1247 risks due to phlebotomy phlebotomists will collect all specimens using standard sterile
1248 procedures. This may cause momentary discomfort or soreness when blood is drawn as well as
1249 minimal bruising.

1250 **Planned procedure for protection of risks due to sensitive questions:** Efforts will be made
1251 to minimize discomfort by assuring that interviewers are well trained and that they will inform
1252 participants beforehand about the nature of the questions and assure participants of privacy.
1253 The interviewer will be available after the interview to debrief the participant if s/he is in any way
1254 concerned by the nature of the questions. Routine demographic questions will be asked first,
1255 followed by more personal questions. Participants will be informed that they have the right to
1256 decline participation in the study, to refuse to answer any questions, or to withdraw at any time
1257 without adverse consequences. Since the Ministry of Health provides comprehensive AIDS
1258 education, counseling, and services, it will be possible for the interviewers to provide immediate
1259 referrals for research participants who are in emotional distress or exhibit any concerning
1260 physical signs or symptoms. As we will screen for depression, for participants who have suicidal
1261 thoughts, we will ask participants to speak with one of our study health providers who can
1262 further screen them for suicidal ideation. This may lead to some discomfort, but we hope will
1263 provide benefits for the participants if they are able to get access to appropriate mental health
1264 care.

1265 **Planned procedure for protection of risks due to loan defaults:** Participants who fail to
1266 make loan repayments will under no circumstances be asked to forfeit personal or household
1267 belongings, other than the MoneyMaker irrigation pump, in order to repay the loans.
1268 Participants will also be assured that failure to repay the loans will in no way affect their access
1269 to medical care as well as any other benefits afforded by Ministry of Health facilities.

1270 **Planned procedure for reporting of adverse events:** All serious adverse events associated
1271 with the procedures of this study will be reported within 10 days to the appropriate IRBs. Current
1272 guidance on adverse event reporting has focused on clinical trials of drugs or devices and has
1273 not provided clear guidance on behavioral prevention trials. The primary risk to subjects in this
1274 study is loss of confidentiality. If serious or unexpected adverse events occur, these will be filed
1275 with the appropriate IRBs within ten working days. We will ask study participants to return to the
1276 research field site in the case of ongoing adverse events. We will also provide participants with
1277 a palm card containing information on how to contact the local field staff to report such incidents
1278 as HIV-related disruption of families, acts of discrimination, physical harm, adverse events
1279 following phlebotomy, or personal distress. Field staff will be trained to complete descriptions of
1280 adverse events that will then be sent electronically to the study PIs.

1281 **Potential benefits of the proposed research to the subjects and others**

1282 Participants in the intervention group will receive basic training in sustainable farming
1283 techniques, including education about crop varieties that grow well in the area, pest control,
1284 fertilization and crop rotation, as well as improved market access for selling horticultural
1285 products. Participants in the intervention group will also receive a microcredit loan, a human-
1286 powered water pump, and other farming implements. This multisectoral agricultural and finance
1287 intervention has many potential benefits as evidenced in our pilot study and is likely to lead to
1288 increased agricultural output, which will in turn may contribute to increased household wealth
1289

1290 and improved food security for study participants. We also anticipate that improvements in
1291 household wealth and food security may in turn contribute to improved health benefits including
1292 improved ART adherence, mental health, nutritional status, clinical HIV treatment outcomes and
1293 decreased morbidity and mortality. Finally, the intervention may lead to improved gender
1294 empowerment for women. In addition to directly benefiting study participants, the proposed
1295 intervention has the potential to improve food security, nutrition and health outcomes of other
1296 family members. Control participants will be able to benefit from all aspects of intervention at the
1297 end of the 2-year pilot study when they will be eligible for the loan, water pump, agricultural
1298 implements and training. Ministry of Health facilities provide annual viral load and CD4 test
1299 results. Subjects and their clinicians in both the intervention and control group will be able to
1300 access an additional annual viral load result and CD4 count results in the study; thus, study
1301 participants will undergo twice per year VL and CD4 testing. The research findings have the
1302 potential to ultimately benefit other individuals in Kenya and elsewhere in sub-Saharan Africa
1303 who are struggling with the overlapping epidemics of food insecurity, poverty and HIV/AIDS. In
1304 view of the minimal risks to subjects, and the many actual and anticipated potential benefits to
1305 research subjects and others in their community, we believe that the benefits strongly outweigh
1306 the risks.

1307 The qualitative research will not provide any direct benefits to the participants, other than
1308 possible psychological benefits associated with sharing their insights and stories. All participants
1309 making clinic-based research visits during the study will receive up to 800 Kenyan Shillings
1310 (equivalent to ~\$11) and participants will receive up to 400 Kenyan Shillings (equivalent to
1311 ~\$5.5) for home-based research visits.

1312 Practitioners and policy makers need replicable models with which to tackle complex health and
1313 social challenges such as food insecurity and HIV/AIDS. Definitive trials, along with process
1314 measures, can offer conclusive lessons for what works in multisectoral development
1315 interventions.

1316
1317 **Data and Safety Monitoring Plan**

1318 Primary responsibility for data and safety monitoring will fall on the PIs (Drs. Weiser, Cohen and
1319 Bukusi). In this research, the primary risk to subjects is social harm due to loss of confidentiality
1320 – disruption of family (e.g., breakup of couples following HIV detection), discrimination (e.g., a
1321 loss of employment or status in community), physical harm (e.g., acts of physical violence
1322 directed at people who have been disclosed as HIV-infected) and embarrassment (e.g., being
1323 questioned about sexual behavior). Risks to participants will be minimized through informed
1324 consent and strict confidentiality. In the case of any serious adverse events, we will ask subjects
1325 to return to the research field site. We will also provide subjects with an informed consent
1326 translated into the local language of their choice, so that they have the opportunity to contact the
1327 local field staff or one of the study investigators at any time. Study staff will be trained to
1328 complete descriptions of adverse events that will be sent electronically to the principal
1329 investigators (Drs. Weiser, Cohen and Bukusi). Serious or unexpected AEs will be reported to
1330 the appropriate IRBs within 10 working days of awareness of the incident.

1331 **11. DATA MANAGEMENT**

1332 **a. Data Storage**

1333 These data will be subjected to a variety of quality control procedures. Data collected for this
1334 study (questionnaires, HIV viral load (VL) measurements, height, weight, MUAC) will be entered
1335 into the tablet computer operating ODK system adapted from the R34 pilot study. Data will be
1336 uploaded to a secure server.
1337

1338 **b. Data Management**

1339 **Data quality and management:**

1340 Procedures to promote data quality within these databases will include range and logical checks
1341 built into the data entry program, and running a series of additional error checks on the
1342 databases after data entry. The database will be protected by a separate password on
1343 password-protected tablets. Data from the tablets will be uploaded twice a week to a server
1344 located at UCSF. All Research Assistants will receive training on the requirements of strict
1345 confidentiality regarding patient identifying information, and security regarding tablet computers.

1346 Study record keeping and access to participant identifying information will follow strict, written
1347 standard operating procedures. All records will be kept on password protected tablet computers
1348 at KEMRI and UCSF. Primarily, participants will be identified by their study number and/or their
1349 patient ID number. All participant record forms will be kept in individual files in a secured filing
1350 cabinet in an access-limited room at the health facility. Additional records will be kept in the
1351 clinical and laboratory record books, which will be stored in the local study laboratory.
1352 Participant names and addresses will be stripped from the database prior to analysis. No
1353 individual identifying information will be used in any reports or publications resulting from the
1354 study.

1355 **Data analysis**

1356 **(Aims 1 and 2):** Analysis of baseline data: We will describe the baseline characteristics of
1357 enrolled participants using frequency tables and provide descriptive statistics (e.g. means,
1358 standard deviations, medians, inter-quartile ranges, proportions) for scales and counts
1359 measuring the primary outcomes stratified by the intervention and control arms and by gender.
1360 From our pilot study, we expect missing data to be rare. Values for missing scale items will be
1361 imputed from other scale items using regression methods. If necessary, multiple imputation will
1362 be used to address incomplete data, with the mild assumption that missing data arise from a
1363 conditionally missing-at-random process.²⁶¹ Randomization should yield equivalence between
1364 arms on covariates, but if non-equivalence is found on baseline measures or from differential
1365 attrition, we will control for it using a propensity score.²⁶² Aim 1: Hypothesis 1: The intervention
1366 will lead to improved viral load suppression (primary outcome) and other measures of morbidity
1367 (secondary outcomes) in the intervention arm compared to the control arm. Intent-to-treat
1368 analyses using *Stata* procedures will assess whether the intervention will result in improved
1369 changes in primary outcomes with mixed (i.e., fixed and random) effects, maximum likelihood
1370 models that use all of the longitudinal data and account for variability among clusters and
1371 individuals (and for pair matching of facilities if there is sufficient observed variability among
1372 pairs to warrant it).^{217,262} Aim 2: Hypothesis 2: The intervention will improve food security and
1373 household income, which in turn will contribute to improved outcomes through nutritional
1374 (improved diet quality, nutritional status), behavioral (improved ART adherence and retention in
1375 care), mental health (improved mental health/less depression) and empowerment (gender role
1376 attitudes, household decision-making) pathways¹⁸ (Figure 2). We will assess direct and indirect
1377 intervention effects using structural equation modeling to examine pathways from the
1378 intervention through baseline-to-endline changes in mediating outcomes to changes in primary
1379 health outcomes.^{263,264} Statistical mediation will be assessed in *Mplus* using the causal
1380 inference approach of Valeri and Vanderweele,²⁶⁵ which yields optimal estimates of indirect
1381 effects in the presence of non-continuous outcomes, interactions, and clustered data.

1382 **Aim 3:**

1383 **Cost-effectiveness analysis:** Our intervention has potential to be sustainable because it relies
1384 on lending and repayment rather than cash transfers. Our cost-effectiveness assessment will
1385 have four major components: intervention cost; net cost; health effects; and the cost-

1386 effectiveness ratio. We will measure **intervention cost per participant** including recruitment,
1387 training, support, and loan administration and monitoring (pumps and other commodities will be
1388 purchased by participants, thus not a direct program cost). Loans and their repayment will be
1389 tracked. We will measure costs using program expenditure records, explained as necessary by
1390 the program manager, and focused “time and motion” studies to allocate staff time across tasks
1391 within and outside the intervention. Costs will be classified by program activity and by standard
1392 resource categories (e.g., personnel, supplies, services). Costs will also be classified as
1393 experienced by the program (e.g., recruitment and training) and by partners (e.g., finance
1394 agency) that operate without program subsidy. Donated and subsidized resources will be
1395 appraised at market value. Because program implementation is standard across health facilities
1396 and centrally managed, cost data collection will be efficient. We will next quantify **net costs** –
1397 program costs adjusted for added or averted health care costs. We will base changes in short-
1398 term health care costs on household surveys (household expenditures for health care for illness
1399 episode and hospitalizations). Longer-term health care costs will be projected using clinical
1400 simulation modeling, based on observed changes in health status (e.g. HIV morbidity),
1401 combined with estimates from the trial and published studies of the costs of managing these
1402 conditions. Projections of HIV health care costs are imprecise but essential for a full cost
1403 portrayal. Uncertainty in this measure will be explored with sensitivity analyses. **Health effects**
1404 will be quantified in two ways. First, we will inventory major health-related events (deaths,
1405 detectable viral loads, hospitalizations, and opportunistic infections). Second, and following best
1406 practices in CEA, we will integrate the health impact of averted adverse events using **disability-
1407 adjusted life years (DALYs)**, including lost years of life and the collective disability effects of all
1408 the adverse events. DALY estimates will be for the short term (during the trial) and the long term
1409 (5, 10, and 20 years) using the clinical modeling. Finally, we will calculate **cost-effectiveness
1410 ratios**: 1) net cost per death averted (if a significant difference is observed by study arm) and
1411 per major adverse health event averted and 2) net cost per DALY averted. Projected health and
1412 financial effects will be discounted at 3% per year. We will conduct extensive sensitivity
1413 analyses on these ratios. Importantly, if the intervention yields net savings (i.e., negative net
1414 costs) as well as health benefits, the intervention is classified as “dominant” and no CE ratio is
1415 calculated.

1416 **Identification of individuals most likely to benefit from the intervention:** We will undertake
1417 regression analyses to provide guidance on targeting of finance interventions to subpopulations
1418 most likely to benefit. The benefits of microfinance are realized to a greater degree by
1419 individuals with entrepreneurial ability and risk-taking preferences, compared to individuals who
1420 use microfinance loans primarily for day-to-day expenses.^{266,267} To learn which participants were
1421 most likely to benefit, we will use data collected at the time of enrollment to test for
1422 heterogeneous effects of the intervention on health outcomes, using interaction terms with
1423 individual characteristics including age, gender, baseline socio-economic status, household
1424 status, and novel measures of risk preferences²⁵⁹ and entrepreneurial ability.²⁶⁰

1425 **Analysis of process evaluation data.** Qualitative data will be translated from local languages
1426 to English and imported and managed using QSR Nvivo (QSR International Ltd, Doncaster,
1427 Australia). A start list of broad codes will be informed by Bonell’s process evaluation
1428 framework,²⁶⁸ with two researchers coding the transcripts in an effort to identify broad themes.²⁶⁹
1429 Transcripts will then be coded a second time to develop codes inductively from the data. In the
1430 tradition of grounded theory, close attention will be paid to making ‘constant comparisons’ to
1431 challenge the analysis and develop insights that will inform the subsequent trial.²⁷⁰ Our analysis
1432 will include both the ‘top-down’ structure of research questions and the ‘grounded’ voices of
1433 informants.²⁷¹ Data on intervention implementation will inform recommendations for modification
1434 and scale up.

1435
1436

12. TIME FRAME/DURATION OF THE PROJECT:

Months	Year 1		Year 2		Year 3		Year 4		Year 5	
	0-6	7-12	0-6	7-12	0-6	7-12	0-6	7-12	0-6	7-12
Operationalize study procedures										
Site Selection										
Randomize facilities										
Hire & train researchers										
Recruit & enroll participants										
Implement study										
Process data for intervention scale up										
Analyze data/Prepare manuscripts										

1437

13. EXPECTED APPLICATION OF RESULTS

1438

1439
1440 The cluster RCT ultimately has the potential to improve the ways in which development and HIV
1441 health care and prevention services are conceptualized and delivered throughout rural Africa by
1442 demonstrating the role of sustainable agricultural and economic development in improving the
1443 health of HIV-positive individuals. As the proposed intervention will contribute to a dialogue
1444 between those involved in international agricultural policy and those involved in ART roll-out in
1445 sub-Saharan Africa, this approach, if effective, can help both sectors utilize their resources more
1446 effectively. Such collaborations are well positioned to contribute towards sustainable solutions
1447 that resolve the intersecting problems of food insecurity, poverty, HIV/AIDS and morbidity and
1448 mortality in sub-Saharan Africa. This intervention may also play an important role in improving
1449 women's household bargaining power and relationship power.

1450

1451 **14. REFERENCES**

1452 1. Gillespie S, Greener R, Whiteside A, Whitworth J. Investigating the empirical evidence
1453 for understanding vulnerability and the associations between poverty, HIV infection and
1454 AIDS impact. *AIDS*. Nov 2007;21 Suppl 7:S1-4.

1455 2. Gupta GR, Parkhurst JO, Ogden JA, Aggleton P, Mahal A. Structural approaches to HIV
1456 prevention. *Lancet*. Aug 30 2008;372(9640):764-775.

1457 3. Hawkes C, Ruel M. The links between agriculture and health: an intersectoral
1458 opportunity to improve the health and livelihoods of the poor. *Bull World Health Organ*.
1459 2006;84(12):984-990.

1460 4. Holzemer WL, Marefat S. Poverty, development, and PEPFAR: a US strategy for
1461 combating the global HIV/AIDS epidemic. *Nurs Outlook*. Sep-Oct 2007;55(5):215-217.

1462 5. Hyder A, Maman S, Nyoni J, et al. The pervasive triad of food security ,gender inequity
1463 and women's health: exploratory research from sub-Saharan Africa. *African Health
1464 Sciences*. 2005;5(4):328-334.

1465 6. Masanjala W. The poverty-HIV/AIDS nexus in Africa: a livelihood approach. *Soc Sci
1466 Med*. Mar 2007;64(5):1032-1041.

1467 7. *Global report: UNAIDS report on the global AIDS epidemic 2013*: Joint United Nations
1468 Programme on HIV/AIDS.

1469 8. Normen L, Chan K, Brajtstein P, et al. Food insecurity and hunger are prevalent among
1470 HIV-positive individuals in British Columbia, Canada. *J Nutr*. Apr 2005;135(4):820-825.

1471 9. FAO, IFAD, WFP. *The State of Food Insecurity in the World 2013. The multiple
1472 dimensions of food security*. Rome: Food and Agriculture Organization of the United
1473 Nations 2013.

1474 10. de Onis M, Frongillo EA, Blossner M. Is malnutrition declining? An analysis of changes
1475 in levels of child malnutrition since 1980. *Bull World Health Organ*. 2000;78(10):1222-
1476 1233.

1477 11. The Kenya Food Security Steering Group. *The impact of rising food prices on disparate
1478 livelihoods groups in Kenya*. Nairobi, Kenya: World Food Programme (WFP);2008.

1479 12. USAID. Feed the Future Program, country profile for Kenya.
<http://www.feedthefuture.gov/country/kenya>. Accessed August 4, 2014.

1480 13. Place F, Adato M, Hebinck P. Understanding rural poverty and investment in agriculture:
1481 an assessment of integrated quantitative and qualitative research in western Kenya.
World Dev. 2007;35(2):312-325.

1482 14. Kenya National Bureau of Statistics. *Food Insecurity Assessment in Kenya*. Nairobi:
1483 Government of Kenya;2008.

1484 15. Nagata JM, Cohen CR, Young SL, et al. Descriptive characteristics and health outcomes
1485 of the food by prescription nutrition supplementation program for adults living with HIV in
1486 Nyanza Province, Kenya. *PLoS One*. 2014;9(3):e91403.

1487 16. Weiser SD, Tsai AC, Gupta R, et al. Food insecurity is associated with morbidity and
1488 patterns of healthcare utilization among HIV-infected individuals in a resource-poor
1489 setting. *AIDS*. Jan 2 2012;26(1):67-75.

1490 17. Nagata JM, Magerenge RO, Young SL, Oguta JO, Weiser SD, Cohen CR. Social
1491 determinants, lived experiences, and consequences of household food insecurity among
1492 persons living with HIV/AIDS on the shore of Lake Victoria, Kenya. *AIDS Care*.
1493 2012;24(6):728-736.

1494 18. Weiser SD, Young SL, Cohen CR, et al. Conceptual framework for understanding the
1495 bidirectional links between food insecurity and HIV/AIDS. *Am J Clin Nutr*.
1496 2011;94(suppl):1729S-1739S.

1497 19. Weiser S, Palar K, Hatcher A, S. Y, Frongillo EA, Laraia BA. Food insecurity and health:
1498 A Conceptual Framework. In: Ivers L, ed. *Food Insecurity and Public Health*. Boston,
1499 MA: CRC Press; 2014.

1500

1501

1502 20. Barnett T, Whiteside A. *AIDS in the Twenty-First Century: Disease and Globalization*.
1503 New York: Palgrave Macmillan; 2006.

1504 21. Lemke S. Nutrition security, livelihoods and HIV/AIDS: implications for research among
1505 farm worker households in South Africa. *Public Health Nutr*. Oct 2005;8(7):844-852.

1506 22. Seager J, Ganyaza-Twalo T, Tamasane T. *Development of a conceptual framework to
1507 help understand the interactions between poverty and HIV/AIDS at the household level*.
1508 Cape Town, South Africa: Human Sciences Research Council;2007.

1509 23. Weiser SD, Bangsberg DR, Kegeles S, Ragland K, Kushel MB, Frongillo EA. Food
1510 insecurity among homeless and marginally housed individuals living with HIV/AIDS in
1511 San Francisco. *AIDS Behav*. Oct 2009;13(5):841-848.

1512 24. Weiser S, Tsai A, Senkungu J, et al. Food Insecurity and Morbidity among HIV-Infected
1513 Persons Accessing Antiretroviral Therapy (ART) in Rural Uganda. *XVIII International
1514 AIDS Conference*. Vienna, Austria2010.

1515 25. Weiser SD, Palar K, Frongillo EA, et al. Longitudinal assessment of associations
1516 between food insecurity, antiretroviral adherence and HIV treatment outcomes in rural
1517 Uganda. *AIDS*. Jan 2 2014;28(1):115-120.

1518 26. Kalichman SC, Cherry C, Amaral C, et al. Health and treatment implications of food
1519 insufficiency among people living with HIV/AIDS, Atlanta, Georgia. *J Urban Health*. Jul
1520 2010;87(4):631-641.

1521 27. Weiser SD, Frongillo EA, Ragland K, Hogg RS, Riley ED, Bangsberg DR. Food
1522 insecurity is associated with incomplete HIV RNA suppression among homeless and
1523 marginally housed HIV-infected individuals in San Francisco. *J Gen Intern Med*. Jan
1524 2009;24(1):14-20.

1525 28. Wang EA, McGinnis KA, Fiellin DA, et al. Food insecurity is associated with poor
1526 virologic response among HIV-infected patients receiving antiretroviral medications. *J
1527 Gen Intern Med*. Sep 2011;26(9):1012-1018.

1528 29. Kalichman SC, Cherry C, Amaral CM, et al. Adherence to antiretroviral therapy and HIV
1529 transmission risks: implications for test-and-treat approaches to HIV prevention. *AIDS
1530 Patient Care STDS*. May 2010;24(5):271-277.

1531 30. McMahon JH, Wanke CA, Elliott JH, Skinner S, Tang AM. Repeated assessments of
1532 food security predict CD4 change in the setting of antiretroviral therapy. *J Acquir
1533 Immune Defic Syndr*. Sep 1 2011;58(1):60-63.

1534 31. Weiser SD, Bangsberg DR, Kegeles S, Ragland K, Kushel MB, Frongillo EA. Food
1535 insecurity among homeless and marginally housed individuals living with HIV/AIDS in
1536 San Francisco. *AIDS Behav*. Oct 2009;13(5):841-848.

1537 32. Weiser SD, Hatcher A, Frongillo EA, et al. Food insecurity is associated with greater
1538 acute care utilization among HIV-infected homeless and marginally housed individuals in
1539 San Francisco. *J Gen Intern Med*. Jan 2013;28(1):91-98.

1540 33. Anema A, Weiser SD, Fernandes KA, et al. High prevalence of food insecurity among
1541 HIV-infected individuals receiving HAART in a resource-rich setting. *AIDS Care*. Feb
1542 2011;23(2):221-230.

1543 34. Weiser SD, Fernandes KA, Brandson EK, et al. The association between food insecurity
1544 and mortality among HIV-infected individuals on HAART. *J Acquir Immune Defic Syndr*.
1545 Nov 1 2009;52(3):342-349.

1546 35. Strauss J, Thomas D. Health, nutrition, and economic development. . *Journal of
1547 Economic Literature*. 1998;36(2):766-817.

1548 36. Burkey MD, Weiser SD, Fehmie D, et al. Socioeconomic determinants of mortality in
1549 HIV: evidence from a clinical cohort in Uganda. *J Acquir Immune Defic Syndr*. May 1
1550 2014;66(1):41-47.

1551 37. Thirumurthy H, Zivin JG, Goldstein M. The Economic Impact of AIDS Treatment: Labor
1552 Supply in Western Kenya. *J Hum Resour*. Summer 2008;43(3):511-552.

1553 38. Rose D, Oliveira V. Nutrient intakes of individuals from food-insufficient households in
1554 the United States. *American journal of public health*. Dec 1997;87(12):1956-1961.

1555 39. Lee JS, Frongillo EA, Jr. Nutritional and health consequences are associated with food
1556 insecurity among U.S. elderly persons. *J Nutr*. May 2001;131(5):1503-1509.

1557 40. Stringer JS, Zulu I, Levy J, et al. Rapid scale-up of antiretroviral therapy at primary care
1558 sites in Zambia: feasibility and early outcomes. *Jama*. Aug 16 2006;296(7):782-793.

1559 41. Zachariah R, Fitzgerald M, Massaquoi M, et al. Risk factors for high early mortality in
1560 patients on antiretroviral treatment in a rural district of Malawi. *Aids*. Nov 28
1561 2006;20(18):2355-2360.

1562 42. Johannessen A, Naman E, Ngowi BJ, et al. Predictors of mortality in HIV-infected
1563 patients starting antiretroviral therapy in a rural hospital in Tanzania. *BMC Infect Dis*.
1564 2008;8:52.

1565 43. Friis H. *Micronutrients and HIV infection: a review of current evidence*: World Health
1566 Organization;2005.

1567 44. Kotler DP, Tierney AR, Wang J, Pierson RN, Jr. Magnitude of body-cell-mass depletion
1568 and the timing of death from wasting in AIDS. *The American journal of clinical nutrition*.
1569 Sep 1989;50(3):444-447.

1570 45. van der Sande MA, van der Loeff MF, Aveika AA, et al. Body mass index at time of HIV
1571 diagnosis: a strong and independent predictor of survival. *J Acquir Immune Defic Syndr*.
1572 Oct 1 2004;37(2):1288-1294.

1573 46. Wheeler DA, Gibert CL, Launer CA, et al. Weight loss as a predictor of survival and
1574 disease progression in HIV infection. Terry Beirn Community Programs for Clinical
1575 Research on AIDS. *J Acquir Immune Defic Syndr Hum Retrovirol*. May 1 1998;18(1):80-
1576 85.

1577 47. Guenter P, Muurahainen N, Simons G, et al. Relationships among nutritional status,
1578 disease progression, and survival in HIV infection. *J Acquir Immune Defic Syndr*. Oct
1579 1993;6(10):1130-1138.

1580 48. Chlebowski RT, Grosvenor MB, Bernhard NH, Morales LS, Bulcavage LM. Nutritional
1581 status, gastrointestinal dysfunction, and survival in patients with AIDS. *Am J
1582 Gastroenterol*. Oct 1989;84(10):1288-1293.

1583 49. Chlebowski RT, Grosvenor M, Lillington L, Sayre J, Beall G. Dietary intake and
1584 counseling, weight maintenance, and the course of HIV infection. *Journal of the
1585 American Dietetic Association*. Apr 1995;95(4):428-432; quiz 433-425.

1586 50. Macallan DC, Noble C, Baldwin C, et al. Energy expenditure and wasting in human
1587 immunodeficiency virus infection. *N Engl J Med*. Jul 13 1995;333(2):83-88.

1588 51. Jones CY, Hogan JW, Snyder B, et al. Overweight and human immunodeficiency virus
1589 (HIV) progression in women: associations HIV disease progression and changes in body
1590 mass index in women in the HIV epidemiology research study cohort. *Clin Infect Dis*.
1591 2003;37 Suppl 2:S69-80.

1592 52. Tang AM, Forrester J, Spiegelman D, Knox TA, Tchetgen E, Gorbach SL. Weight loss
1593 and survival in HIV-positive patients in the era of highly active antiretroviral therapy. *J
1594 Acquir Immune Defic Syndr*. Oct 1 2002;31(2):230-236.

1595 53. Babameto G, Kotler DP. Malnutrition in HIV infection. *Gastroenterol Clin North Am*. Jun
1596 1997;26(2):393-415.

1597 54. Kotler DP, Tierney AR, Brenner SK, Couture S, Wang J, Pierson RN, Jr. Preservation of
1598 short-term energy balance in clinically stable patients with AIDS. *The American journal
1599 of clinical nutrition*. Jan 1990;51(1):7-13.

1600 55. Stack JA, Bell SJ, Burke PA, Forse RA. High-energy, high-protein, oral, liquid, nutrition
1601 supplementation in patients with HIV infection: effect on weight status in relation to
1602 incidence of secondary infection. *Journal of the American Dietetic Association*. Apr
1603 1996;96(4):337-341.

1604 56. Fields-Gardner C, Fergusson P. Position of the American Dietetic Association and
1605 Dietitians of Canada: nutrition intervention in the care of persons with human
1606 immunodeficiency virus infection. *Journal of the American Dietetic Association*. Sep
1607 2004;104(9):1425-1441.

1608 57. Gustavson L, Lam W, Bertz R, et al. Assessment of the bioequivalence and food effects
1609 for liquid and soft gelatin capsule co-formulations of ABT-378/ritonavir (ABT-378/r) in
1610 healthy subjects. Paper presented at: 40th Interscience Conference on Antimicrobial
1611 Agents and Chemotherapy2000; Toronto, Canada.

1612 58. Bardsley-Elliott A, Plosker GL. Nelfinavir: an update on its use in HIV infection. *Drugs*.
1613 Mar 2000;59(3):581-620.

1614 59. Colin A, Reggers J, Castronovo V, Ansseau M. [Lipids, depression and suicide].
1615 *Encephale*. Jan-Feb 2003;29(1):49-58.

1616 60. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely
1617 used messengers in the activation of the NF-kappa B transcription factor and HIV-1.
1618 *EMBO J*. Aug 1991;10(8):2247-2258.

1619 61. Zivin JG, Thirumurthy H, Goldstein M. AIDS Treatment and Intrahousehold Resource
1620 Allocation: Children's Nutrition and Schooling in Kenya. *J Public Econ*. Aug 1 2009;93(7-
1621 8):1008-1015.

1622 62. Ferreira F, Schady N. *Aggregate Economic Shocks, Child Schooling And Child Health*.
1623 Washington: The World Bank;2008.

1624 63. Tuller DM, Bangsberg DR, Senkungu J, Ware NC, Emenyonu N, Weiser SD.
1625 Transportation costs impede sustained adherence and access to HAART in a clinic
1626 population in southwestern Uganda: a qualitative study. *AIDS Behav*. Aug
1627 2010;14(4):778-784.

1628 64. Anema A, Vogenthaler N, Froncillo EA, Kadiyala S, Weiser SD. Food insecurity and
1629 HIV/AIDS: current knowledge, gaps, and research priorities. *Curr HIV/AIDS Rep*. Nov
1630 2009;6(4):224-231.

1631 65. Weiser SD, Tuller DM, Froncillo EA, Senkungu J, Mukabi N, Bangsberg DR. Food
1632 insecurity as a barrier to sustained antiretroviral therapy adherence in Uganda. *PLoS
1633 One*. 2010;5(4):e10340.

1634 66. Weiser S, Fernandes K, Anema A, et al. Food insecurity as a barrier to antiretroviral
1635 therapy (ART) adherence among HIV-infected individuals in British Columbia. *5th IAS
1636 Conference on HIV Pathogenesis, Treatment and Prevention*. Cape Town, South
1637 Africa2009.

1638 67. Physicians for Human Rights. *Epidemic of Inequality: Women's Rights and HIV/AIDS in
1639 Botswana & Swaziland: An Evidence-Based Report on the Effects of Gender Inequity,
1640 Stigma and Discrimination*. Cambridge, MA2007.

1641 68. Kalichman SC, Cherry C, Amaral C, et al. Health and treatment implications of food
1642 insufficiency among people living with HIV/AIDS, Atlanta, Georgia. *J Urban Health*. Jul
1643 2010;87(4):631-641.

1644 69. Kalichman SC, Hernandez D, Cherry C, Kalichman MO, Washington C, Grebler T. Food
1645 Insecurity and Other Poverty Indicators Among People Living with HIV/AIDS: Effects on
1646 Treatment and Health Outcomes. *J Community Health*. Apr 5 2014.

1647 70. Young S, Wheeler AC, McCoy SI, Weiser SD. A Review of the Role of Food Insecurity in
1648 Adherence to Care and Treatment Among Adult and Pediatric Populations Living with
1649 HIV and AIDS. *AIDS Behav*. Jul 11 2013.

1650 71. Musumari PM, Feldman MD, Techasrivichien T, Wouters E, Ono-Kihara M, Kihara M. "If
1651 I have nothing to eat, I get angry and push the pills bottle away from me": A qualitative
1652 study of patient determinants of adherence to antiretroviral therapy in the Democratic
1653 Republic of Congo. *AIDS Care*. 2013;25(10):1271-1277.

1654 72. Musumari PM, Wouters E, Kayembe PK, et al. Food insecurity is associated with
1655 increased risk of non-adherence to antiretroviral therapy among HIV-infected adults in
1656 the Democratic Republic of Congo: a cross-sectional study. *PLoS One*. 2014;9(1).

1657 73. Parienti JJ, Massari V, Descamps D, et al. Predictors of virologic failure and resistance
1658 in HIV-infected patients treated with nevirapine- or efavirenz-based antiretroviral therapy.
1659 *Clin Infect Dis*. May 1 2004;38(9):1311-1316.

1660 74. Parienti JJ, Das-Douglas M, Massari V, et al. Not all missed doses are the same:
1661 sustained NNRTI treatment interruptions predict HIV rebound at low-to-moderate
1662 adherence levels. *PLoS One*. 2008;3(7):e2783.

1663 75. Oyugi JH, Byakika-Tusiime J, Ragland K, et al. Treatment interruptions predict
1664 resistance in HIV-positive individuals purchasing fixed-dose combination antiretroviral
1665 therapy in Kampala, Uganda. *Aids*. May 11 2007;21(8):965-971.

1666 76. Paterson DL, Swindells S, Mohr J, et al. Adherence to protease inhibitor therapy and
1667 outcomes in patients with HIV infection. *Ann Intern Med*. Jul 4 2000;133(1):21-30.

1668 77. Liu H, Miller LG, Hays RD, et al. Repeated measures longitudinal analyses of HIV
1669 virologic response as a function of percent adherence, dose timing, genotypic sensitivity,
1670 and other factors. *J Acquir Immune Defic Syndr*. Mar 2006;41(3):315-322.

1671 78. Bangsberg DR, Perry S, Charlebois ED, et al. Non-adherence to highly active
1672 antiretroviral therapy predicts progression to AIDS. *AIDS*. Jun 15 2001;15(9):1181-1183.

1673 79. Peltzer K, Pengpid S. Socioeconomic factors in adherence to HIV therapy in low- and
1674 middle-income countries. *J Health Popul Nutr*. Jun 2013;31(2):150-170.

1675 80. Mani A, Mullanathan S, Shafir E, Zhao J. Poverty impedes cognitive function. *Science*.
1676 Aug 30 2013;341(6149):976-980.

1677 81. Cunningham WE, Andersen RM, Katz MH, et al. The impact of competing subsistence
1678 needs and barriers on access to medical care for persons with human immunodeficiency
1679 virus receiving care in the United States. *Med Care*. Dec 1999;37(12):1270-1281.

1680 82. Emenyonu N, I., Muyindike W, Habyarimana J, et al. Cash Transfers to Cover Clinic
1681 Transportation Costs Improve Adherence and Retention in Care in a HIV Treatment
1682 Program in Rural Uganda. Paper presented at: 17th Conference on Retroviruses and
1683 Opportunistic Infections 2010; San Francisco, CA.

1684 83. Weiser S, Wolfe W, Bangsberg D, et al. Barriers to antiretroviral adherence for patients
1685 living with HIV infection and AIDS in Botswana. *J Acquir Immune Defic Syndr*. Nov 1
1686 2003;34(3):281-288.

1687 84. Laurent C, Ngom Gueye NF, Ndour CT, et al. Long-term benefits of highly active
1688 antiretroviral therapy in Senegalese HIV-1-infected adults. *J Acquir Immune Defic Syndr*.
1689 Jan 1 2005;38(1):14-17.

1690 85. Mills EJ, Nacheega JB, Buchan I, et al. Adherence to antiretroviral therapy in sub-
1691 Saharan Africa and North America: a meta-analysis. *Jama*. Aug 9 2006;296(6):679-690.

1692 86. Alaimo K, Olson CM, Frongillo EA. Family food insufficiency, but not low family income,
1693 is positively associated with dysthymia and suicide symptoms in adolescents. *J Nutr*.
1694 2002;132(4):719-725.

1695 87. Cole SM, Tembo G. The effect of food insecurity on mental health: panel evidence from
1696 rural Zambia. *Soc Sci Med*. 2011;73(7):1071-1079.

1697 88. Hadley C, Tegegn A, Tessema F, Cowan J, Asefa M, Galea S. Food insecurity, stressful
1698 life events and symptoms of anxiety and depression in east Africa: evidence from the
1699 Gilgel Gibe growth and development study. *Journal of epidemiology and community
1700 health*. 2008;62(11):980-986.

1701 89. Belle Doucet D. Poverty, inequality, and discrimination as sources of depression among
1702 US women. *Psychology of Women Quarterly*. 2003;27(2):101-113.

1703 90. Tsai AC, Bangsberg DR, Frongillo EA, et al. Food insecurity, depression and the
1704 modifying role of social support among people living with HIV/AIDS in rural Uganda. *Soc
1705 Sci Med.* Jun 2012;74(12):2012-2019.

1706 91. Burgess R, Campbell C. Contextualising women's mental distress and coping strategies
1707 in the time of AIDS: A rural South African case study. *Transcult Psychiatry.* Mar 26 2014.

1708 92. Boyes ME, Cluver LD. Relationships Between Familial HIV/AIDS and Symptoms of
1709 Anxiety and Depression: The Mediating Effect of Bullying Victimization in a Prospective
1710 Sample of South African Children and Adolescents. *J Youth Adolesc.* Jul 5 2014.

1711 93. Cluver L, Gardner F, Operario D. Poverty and psychological health among AIDS-
1712 orphaned children in Cape Town, South Africa. *AIDS Care.* Jun 2009;21(6):732-741.

1713 94. Ickovics JR, Hamburger ME, Vlahov D, et al. Mortality, CD4 cell count decline, and
1714 depressive symptoms among HIV-seropositive women: longitudinal analysis from the
1715 HIV Epidemiology Research Study. *Jama.* Mar 21 2001;285(11):1466-1474.

1716 95. Tucker JS, Burnam MA, Sherbourne CD, Kung FY, Gifford AL. Substance use and
1717 mental health correlates of nonadherence to antiretroviral medications in a sample of
1718 patients with human immunodeficiency virus infection. *The American journal of
1719 medicine.* May 2003;114(7):573-580.

1720 96. Evans DL, Ten Have TR, Douglas SD, et al. Association of depression with viral load,
1721 CD8 T lymphocytes, and natural killer cells in women with HIV infection. *Am J
1722 Psychiatry.* Oct 2002;159(10):1752-1759.

1723 97. Weiser SD, Wolfe WR, Bangsberg DR. The HIV epidemic among individuals with mental
1724 illness in the United States. *Curr HIV/AIDS Rep.* Dec 2004;1(4):186-192.

1725 98. Anastos K, Schneider MF, Gange SJ, et al. The association of race, sociodemographic,
1726 and behavioral characteristics with response to highly active antiretroviral therapy in
1727 women. *J Acquir Immune Defic Syndr.* Aug 15 2005;39(5):537-544.

1728 99. Tsai AC, Weiser SD, Petersen ML, Ragland K, Kushel MB, Bangsberg DR. A marginal
1729 structural model to estimate the causal effect of antidepressant medication treatment on
1730 viral suppression among homeless and marginally housed persons with HIV. *Archives of
1731 general psychiatry.* 2010;67(12):1282.

1732 100. Miller CL, Bangsberg DR, Tuller DM, et al. Food insecurity and sexual risk in an HIV
1733 endemic community in Uganda. *AIDS Behav.* Oct 2011;15(7):1512-1519.

1734 101. Weiser SD, Leiter K, Bangsberg DR, et al. Food insufficiency is associated with high-risk
1735 sexual behavior among women in Botswana and Swaziland. *PLoS Med.* Oct
1736 2007;4(10):1589-1597; discussion 1598.

1737 102. Aad G, Abajyan T, Abbott B, et al. Search for quantum black hole production in high-
1738 invariant-mass lepton+jet final states using pp collisions at $\sqrt{s}=8$ TeV and the
1739 ATLAS detector. *Physical review letters.* Mar 7 2014;112(9):091804.

1740 103. Siedner MJ, Tsai AC, Dworkin S, et al. Sexual relationship power and malnutrition
1741 among HIV-positive women in rural Uganda. *AIDS Behav.* Aug 2012;16(6):1542-1548.

1742 104. Filson J, Ulloa E, Runfola C, Hokoda A. Does powerlessness explain the relationship
1743 between intimate partner violence and depression? *J Interpers Violence.* Mar
1744 2010;25(3):400-415.

1745 105. Volpe EM, Hardie TL, Cerulli C. Associations among depressive symptoms, dating
1746 violence, and relationship power in urban, adolescent girls. *J Obstet Gynecol Neonatal
1747 Nurs.* Jul-Aug 2012;41(4):506-518.

1748 106. Weiser SD, Tsai A, Senkungu J, et al. Effect of Low Sexual-Relationship Power on Viral
1749 Load Suppression among Women Receiving ART in Mbarara, Uganda. *17th Conference
1750 on Retroviruses and Opportunistic Infections.* San Francisco, CA2010.

1751 107. Hatcher AM, Tsai AC, Kumbakumba E, et al. Sexual relationship power and depression
1752 among HIV-infected women in Rural Uganda. *PLoS One.* 2012;7(12):e49821.

1753 108. Negin J. Assessing the impact of HIV/AIDS on economic growth and rural agriculture in
1754 Africa. *J Int Affairs*. 2005;58(2):267-281.

1755 109. de Waal A, Whiteside A. New variant famine: AIDS and food crisis in southern Africa. *Lancet*. Oct 11 2003;362(9391):1234-1237.

1756 110. Parker DC, Jacobsen KH, Komwa MK. A qualitative study of the impact of HIV/AIDS on
1757 agricultural households in southeastern Uganda. *Int J Environ Res Public Health*.
1758 2009;6(8):2113-2138.

1759 111. Baylies C. The impact of AIDS on rural households in Africa: a shock like any other? *Development and Change*. 2002;33(4):611-632.

1760 112. Rugalema G. Coping or struggling? A journal into the impact of HIV/AIDS in southern
1761 Africa. *Rev Afr Pol Econ*. 2000;27(86):537-545.

1762 113. Nabyonga-Orem J, Bazeyo W, Okema A, Karamagi H, Walker O. Effect of HIV/AIDS on
1763 household welfare in Uganda rural communities: a review. *East Afr Med J*. Apr
1764 2008;85(4):187-196.

1765 114. Gregson S, Mushati P, Nyamukapa C. Adult mortality and erosion of household viability
1766 in AIDS-afflicted towns, estates, and villages in eastern Zimbabwe. *J Acquir Immune
1767 Defic Syndr*. Feb 1 2007;44(2):188-195.

1768 115. Brown LR, Webb P, Haddad L. The role of labour in household food security:
1769 implications of AIDS in Africa. *Food Policy*. 1994;19(6):568-573.

1770 116. Chapoto A, Jayne TS. *Impact of HIV/AIDS-related deaths on rural farm households' welfare in Zambia: implications for poverty reduction strategies*. Lusaka: Food Security
1771 Research Project;2005.

1772 117. Chapoto A, Jayne TS. Impact of AIDS-related mortality on farm household welfare in
1773 Zambia. *Econ Dev Cultural Change*. 2008;56(2):327-374.

1774 118. Beegle K, de Weerdt J, Dercon S. Adult mortality and consumption growth in the age of
1775 HIV/AIDS. *Econ Dev Cultural Change*. 2008;56(2):299-326.

1776 119. Donovan C, Massingue J. Illness, death, and macronutrients: adequacy of rural
1777 Mozambican household production of macronutrients in the face of HIV/AIDS. *Food and
1778 nutrition bulletin*. Jun 2007;28(2 Suppl):S331-338.

1779 120. Yamano T, Jayne TS. Measuring the impact of working-age adult mortality on small-
1780 scale farm households in Kenya. *World Dev*. 2004;32(1):91-119.

1781 121. Yamano T, Jayne TS. Working-age adult mortality and primary school attendance in
1782 rural Kenya. *Econ Dev Cultural Change*. 2005;53(3):619-654.

1783 122. Evans DK, Miguel E. Orphans and schooling in Africa: a longitudinal analysis. *Demography*. 2007;44(1):35-57.

1784 123. Bell C, Bruhns R, Gersbach H. *Economics growth, education, and AIDS in Kenya: a
1785 long-run analysis*. Washington, D.C.: The World Bank;2006.

1786 124. Fafchamps M, Lund S. Risk-sharing networks in rural Philippines. *J Dev Econ*.
1787 2003;71(2):261-287.

1788 125. de Weerdt J, Dercon S. Risk-sharing networks and insurance against illness. *J Dev
1789 Econ*. 2006;81(2):337-356.

1790 126. Fafchamps M. Solidarity networks in preindustrial societies: rational peasants with a
1791 moral economy. *Econ Dev Cultural Change*. 1992;41(1):147-174.

1792 127. la Ferrara E. Kin groups and reciprocity: a model of credit transactions in Ghana. *Am
1793 Econ Rev*. 2003;93(5):1730-1751.

1794 128. Danziger R. The social impact of HIV/AIDS in developing countries. *Soc Sci Med*. Oct
1795 1994;39(7):905-917.

1796 129. Ndirangu M, Wariero JO, Sachs SE, Masibo P, Deckelbaum RJ. Nutritional status of
1797 under-five children in HIV-affected households in western Kenya. *Food Nutr Bull*. Jun
1798 2011;32(2):159-167.

1799
1800
1801
1802

1803 130. Tsai AC, Bangsberg DR, Weiser SD. Harnessing poverty alleviation to reduce the stigma
1804 of HIV in Sub-Saharan Africa. *PLoS Med.* Nov 2013;10(11):e1001557.

1805 131. Mamlin J, Kimaiyo S, Lewis S, et al. Integrating nutrition support for food-insecure
1806 patients and their dependents into an HIV care and treatment program in Western
1807 Kenya. *American journal of public health.* Feb 2009;99(2):215-221.

1808 132. Seume-Fosso E, Rajabiun S, Cogill B, Elder L, Castleman T, Scheckler A. Food and
1809 Nutrition Technical Assistance. HIV/AIDS: A Guide For Nutritional Care and Support.
1810 2004; <http://www.fantaproject.org/publications/HIVguide.shtml>. Accessed September 23,
1811 2008.

1812 133. *Nutrition and HIV/AIDS. Statement by the Administrative Committee on Coordination,*
1813 *Sub-Committee on Nutrition at its 28th Session.* Nairobi, Kenya: United Nations
1814 Administrative Committee on Coordination, Sub-Committee on Nutrition;2001.

1815 134. Blumberg SJ, Dickey WC. Prevalence of HIV risk behaviors, risk perceptions, and
1816 testing among US adults with mental disorders. *J Acquir Immune Defic Syndr.* Jan 1
1817 2003;32(1):77-79.

1818 135. Programming in the Era of AIDS: WPF's Response to HIV/AIDS. 2003;
1819 [http://reliefweb.int/rw/lib.nsf/db900sid/PANA-7DSFKW/\\$file/wfp_jan2003.pdf?openelement](http://reliefweb.int/rw/lib.nsf/db900sid/PANA-7DSFKW/$file/wfp_jan2003.pdf?openelement). Accessed September 23, 2008.

1820 136. World Food Program, World Health Organization, UNAIDS. HIV, food security, and
1821 nutrition. *Policy Brief* 2008;
1822 http://data.unaids.org/pub/Manual/2008/jc1515a_policybrief_nutrition_en.pdf. Accessed
1823 January 18, 2010.

1825 137. Leeper SC, Reddi A. United States global health policy: HIV/AIDS, maternal and child
1826 health, and The President's Emergency Plan for AIDS Relief (PEPFAR). *AIDS.* Sep 10
1827 2010;24(14):2145-2149.

1828 138. Bristol N. Slow going for the global health initiative. *Health Aff (Millwood).* Jun
1829 2011;30(6):1007-1009.

1830 139. Moszynski P. Global Fund suspends new projects until 2014 because of lack of funding. *BMJ.* 2011;343:d7755.

1832 140. Weigers E. The role of the agricultural sector in mitigating the impact of HIV/AIDS in sub-
1833 Saharan Africa. *NJAS Wageningen Journal of Life Sciences.* 2008;56(3):155-166.

1834 141. Economic Commission for Africa. *Mitigating the impact of HIV/AIDS on smallholder*
1835 *agriculture, food security and rural livelihoods in Southern Africa: Challenges and Action*
1836 *Plan.* Addis Ababa: Economic Commission for Africa;2006.

1837 142. UNAIDS. *Report on the global AIDS epidemic.* Geneva: Joint United Nations
1838 Programme on HIV/AIDS;2008.

1839 143. Cantrell RA, Sinkala M, Megazinni K, et al. A pilot study of food supplementation to
1840 improve adherence to antiretroviral therapy among food-insecure adults in Lusaka,
1841 Zambia. *J Acquir Immune Defic Syndr.* Oct 1 2008;49(2):190-195.

1842 144. Partners in Health. Agricultural initiatives for health in Haiti, Rwanda, and Lesotho. 2009;
1843 <http://model.pihi.org/food/agriculture>. Accessed January 13, 2010.

1844 145. Ochai R. HIV, livelihoods, nutrition and health research. Paper presented at: Global
1845 Ministerial Forum on Research for Health2008; Bamako, Mali.

1846 146. Njenga M, Karanja N, Gathuru K, Mbugua S, Fedha N, Ngoda B. The role of women-led
1847 micro-farming activities in combating HIV/AIDS in Nakuru, Kenya. In: Hovorka A, de
1848 Zeeuw H, Njenga M, eds. *Women feeding cities: mainstreaming gender in urban*
1849 *agriculture and food security.* Warwickshire, UK: Practical Action Publishing; 2009.

1850 147. Byron E, Gillespie S, Nangami M. Integrating nutrition security with treatment of people
1851 living with HIV: lessons from Kenya. *Food and nutrition bulletin.* 2008;29(2):87-97.

1852 148. Koethe J, Chi B, Megazzini K, Heimburger D, Stringer J. Macronutrient supplementation
1853 for malnourished HIV-infected adults: a review of the evidence in resource-adequate and
1854 resource-constrained settings. *Clinical infectious diseases*. Sep 2009;49(5):787-798.

1855 149. Ivers LC, Chang Y, Gregory Jerome J, Freedberg KA. Food assistance is associated
1856 with improved body mass index, food security and attendance at clinic in an HIV
1857 program in central Haiti: a prospective observational cohort study. *AIDS Res Ther*.
1858 2010;7:33.

1859 150. de Pee S, Grede N, Mehra D, Bloem MW. The Enabling Effect of Food Assistance in
1860 Improving Adherence and/or Treatment Completion for Antiretroviral Therapy and
1861 Tuberculosis Treatment: A Literature Review. *AIDS Behav*. Mar 12 2014.

1862 151. Mahlungulu S, Grobler LA, Visser ME, Volmink J. Nutritional interventions for reducing
1863 morbidity and mortality in people with HIV. *Cochrane Database Syst Rev*.
1864 2007(3):CD004536.

1865 152. Sztam KA, Fawzi WW, Duggan C. Macronutrient supplementation and food prices in HIV
1866 treatment. *J Nutr*. Jan 2010;140(1):213S-223S.

1867 153. Ashburn K, Kerrigan D, Sweat M. Micro-credit, women's groups, control of own money:
1868 HIV-Related negotiation among partnered Dominican women. *AIDS Behav*. May
1869 2008;12(3):396-403.

1870 154. Kim J, Pronyk P, Barnett T, Watts C. Exploring the role of economic empowerment in
1871 HIV prevention. *Aids*. Dec 2008;22:S57-S71.

1872 155. Schuler SR, Hashemi SM. CREDIT PROGRAMS, WOMENS EMPOWERMENT, AND
1873 CONTRACEPTIVE USE IN RURAL BANGLADESH. *Studies in Family Planning*. Mar-
1874 Apr 1994;25(2):65-76.

1875 156. Dworkin SL, Blankenship K. Microfinance and HIV/AIDS prevention: assessing its
1876 promise and limitations. *AIDS Behav*. Jun 2009;13(3):462-469.

1877 157. Weinhardt LS, Galvao LW, Stevens PE, Masanjala WH, Bryant C, Ng'ombe T.
1878 Broadening research on microfinance and related strategies for HIV prevention:
1879 commentary on Dworkin and Blankenship (2009). *AIDS Behav*. Jun 2009;13(3):470-473.

1880 158. Diagne A. *Impact of Access to Credit on Income and Food Security in Malawi*.
1881 Washington: IFPRI;1998.

1882 159. Doocy S, Teferra S, Norell D, Burnham G. Credit program outcomes: coping capacity
1883 and nutritional status in the food insecure context of Ethiopia. *Soc Sci Med*. May
1884 2005;60(10):2371-2382.

1885 160. Gomez B, Lister A, Wiese M. Micro-credit: giving life through work to PLWHA. Paper
1886 presented at: International AIDS Conference2004; Bangkok, Thailand.

1887 161. Pandit JA, Sirotin N, Tittle R, Onjolo E, Bukusi EA, Cohen CR. Shamba Maisha: a pilot
1888 study assessing impacts of a micro-irrigation intervention on the health and economic
1889 wellbeing of HIV patients. *BMC Pub Health*. 2010;10:245.

1890 162. Grossman D, Onono M, Newmann SJ, et al. Integration of family planning services into
1891 HIV care and treatment in Kenya: a cluster-randomized trial. *AIDS*. Oct 2013;27 Suppl
1892 1:S77-85.

1893 163. Celum C, Wald A, Lingappa JR, et al. Acyclovir and transmission of HIV-1 from persons
1894 infected with HIV-1 and HSV-2. *N Engl J Med*. Feb 4 2010;362(5):427-439.

1895 164. Baeten JM, Donnell D, Ndase P, et al. Antiretroviral prophylaxis for HIV prevention in
1896 heterosexual men and women. *N Engl J Med*. Aug 2 2012;367(5):399-410.

1897 165. Weiser SD, Yuan C, Guzman D, et al. Food insecurity and HIV clinical outcomes in a
1898 longitudinal study of urban homeless and marginally housed HIV-infected individuals.
1899 *AIDS*. Nov 28 2013;27(18):2953-2958.

1900 166. Anema A, Chan K, Chen Y, Weiser S, Montaner JS, Hogg RS. Relationship between
1901 food insecurity and mortality among HIV-positive injection drug users receiving
1902 antiretroviral therapy in British Columbia, Canada. *PLoS One*. 2013;8(5):e61277.

1903 167. Young S, Cohen C, Kushel M, et al. Conceptual framework for understanding the
1904 bidirectional links between food insecurity and HIV/AIDS. *In press, American Journal of*
1905 *Clinical Nutrition*. July 2011.

1906 168. Frongillo EA, Nanama S. Development and validation of an experience-based measure
1907 of household food insecurity within and across seasons in northern Burkina Faso. *J Nutr*.
1908 May 2006;136(5):1409S-1419S.

1909 169. Frith AL, Naved RT, Ekstrom EC, Rasmussen KM, Frongillo EA. Micronutrient
1910 supplementation affects maternal-infant feeding interactions and maternal distress in
1911 Bangladesh. *Am J Clin Nutr*. Jul 2009;90(1):141-148.

1912 170. Frith AL, Naved RT, Persson LA, Rasmussen KM, Frongillo EA. Early participation in a
1913 prenatal food supplementation program ameliorates the negative association of food
1914 insecurity with quality of maternal-infant interaction. *J Nutr*. Jun 2012;142(6):1095-1101.

1915 171. Persson LA, Arifeen S, Ekstrom EC, Rasmussen KM, Frongillo EA, Yunus M. Effects of
1916 prenatal micronutrient and early food supplementation on maternal hemoglobin, birth
1917 weight, and infant mortality among children in Bangladesh: the MINIMat randomized
1918 trial. *Jama*. May 16 2012;307(19):2050-2059.

1919 172. Frith AL, Naved RT, Persson LA, Frongillo EA. Early prenatal food supplementation
1920 ameliorates the negative association of maternal stress with birth size in a randomised
1921 trial. *Matern Child Nutr*. Apr 5 2013.

1922 173. Frongillo EA, Jyoti DF, Jones SJ. Food Stamp Program participation is associated with
1923 better academic learning among school children. *J Nutr*. 2006;136(4):1077-1080.

1924 174. Khan AI, Kabir I, Ekstrom EC, et al. Effects of prenatal food and micronutrient
1925 supplementation on child growth from birth to 54 months of age: a randomized trial in
1926 Bangladesh. *Nutr J*. 2011;10:134.

1927 175. Handa S, Halpern CT, Pettifor A, Thirumurthy H. The government of Kenya's cash
1928 transfer program reduces the risk of sexual debut among young people age 15-25. *PLoS*
1929 *One*. 2014;9(1):e85473.

1930 176. Weiser SD, Leiter K, Bangsberg DR, et al. Food insufficiency is associated with high-risk
1931 sexual behavior among women in Botswana and Swaziland. *PLoS Med*. Oct
1932 2007;4(10):1589-1597; discussion 1598.

1933 177. Siedner MJ, Tsai AC, Dworkin S, et al. Sexual Relationship Power and Malnutrition
1934 Among HIV-Positive Women in Rural Uganda. *AIDS and behavior*. Mar 2 2012.

1935 178. Blankenship KM, Friedman SR, Dworkin S, Mantell JE. Structural interventions:
1936 concepts, challenges and opportunities for research. *J Urban Health*. Jan 2006;83(1):59-
1937 72.

1938 179. Dworkin SL, Kambou SD, Sutherland C, Moalla K, Kapoor A. Gendered empowerment
1939 and HIV prevention: policy and programmatic pathways to success in the MENA region.
1940 *J Acquir Immune Defic Syndr*. Jul 1 2009;51 Suppl 3:S111-118.

1941 180. Brody C, Hoop Td, Voitkova M, Dunbar M, Mrthy P, Dworkin S. The effects of economic
1942 group programs on women's empowerment: A systematic review. *Journal of*
1943 *Development Effectiveness*. 2015, In Press.

1944 181. Venkataramani AS, Thirumurthy H, Haberer JE, et al. CD4+ cell count at antiretroviral
1945 therapy initiation and economic restoration in rural Uganda. *AIDS*. Jan 8 2014.

1946 182. Thirumurthy H, Galarraga O, Larson B, Rosen S. HIV treatment produces economic
1947 returns through increased work and education, and warrants continued US support.
1948 *Health Aff (Millwood)*. Jul 2012;31(7):1470-1477.

1949 183. Thirumurthy H, Jafri A, Srinivas G, et al. Two-year impacts on employment and income
1950 among adults receiving antiretroviral therapy in Tamil Nadu, India: a cohort study. *AIDS*.
1951 Jan 14 2011;25(2):239-246.

1952 184. Cui RR, Lee R, Thirumurthy H, Muessig KE, Tucker JD. Microenterprise development interventions for sexual risk reduction: a systematic review. *AIDS Behav.* Nov 2013;17(9):2864-2877.

1953 185. d'Adda G, Goldstein M, Zivin JG, Nangami M, Thirumurthy H. ARV Treatment and Time Allocation to Household Tasks: Evidence from Kenya. *Afr Dev Rev.* Apr 1 2009;21(1):180-208.

1954 186. Thirumurthy H, Chamie G, Jain V, et al. Improved employment and education outcomes in households of HIV-infected adults with high CD4 cell counts: evidence from a community health campaign in Uganda. *AIDS.* Feb 20 2013;27(4):627-634.

1955 187. Marseille E, Kahn JG, Saba J. Cost-effectiveness of antiviral drug therapy to reduce mother-to-child HIV transmission in sub-Saharan Africa. *AIDS.* May 28 1998;12(8):939-948.

1956 188. Marseille E, Kahn JG, Pitter C, et al. The cost effectiveness of home-based provision of antiretroviral therapy in rural Uganda. *Appl Health Econ Health Policy.* 2009;7(4):229-243.

1957 189. Kahn JG, Marseille EA, Bennett R, Williams BG, Granich R. Cost-effectiveness of antiretroviral therapy for prevention. *Curr HIV Res.* Sep 2011;9(6):405-415.

1958 190. Shrestha RK, Marseille E, Kahn JG, et al. Cost-effectiveness of home-based chlorination and safe water storage in reducing diarrhea among HIV-affected households in rural Uganda. *Am J Trop Med Hyg.* May 2006;74(5):884-890.

1959 191. Marseille E, Giganti MJ, Mwango A, et al. Taking ART to scale: determinants of the cost and cost-effectiveness of antiretroviral therapy in 45 clinical sites in Zambia. *PLoS One.* 2012;7(12):20.

1960 192. Marseille E, Jiwani A, Raut A, Verguet S, Walson J, Kahn JG. Scaling up integrated prevention campaigns for global health: costs and cost-effectiveness in 70 countries. *BMJ Open.* 2014;4(6):e003987.

1961 193. Kulzer JK, Penner JA, Marima R, et al. Family model of HIV care and treatment: a retrospective study in Kenya. *Journal of the International AIDS Society.* 2012;15(8).

1962 194. Kennedy E, Peters P. Household food security and child nutrition: the interaction of income and gender of household head. *World Dev.* 1992;20(8):1077-1085.

1963 195. Quisumbing AR, de la Briere B. *Women's assets and intrahousehold allocation in rural Bangladesh: testing measures of bargaining power.* Washington, D.C.: International Food Policy Research Institute;2000.

1964 196. Thomas D. Intra-household resource allocation: an inferential approach. *J Hum Resources.* 1990;25(4):635-664.

1965 197. Thomas D. The distribution of income and expenditure within the household. *Ann d'Econ Stat.* 1993;29(1):109-135.

1966 198. Buvinic M, Gupta GR. Female-headed households and female-maintained families: are they worth targeting to reduce poverty in developing countries. *Econ Dev Cultural Change.* 1997;45(2):259-280.

1967 199. Smith LC, Ramakrishnan U, Ndiaye A, Haddad L, Martorell R. *The importance of women's status for child nutrition in developing countries.* Washington, D.C.: International Food Policy Research Institute;2003.

1968 200. Quisumbing AR, ed *Household decisions, gender, and development: a synthesis of recent research.* Washington, D.C.: International Food Policy Research Institute; 2004.

1969 201. Duflo E, Udry C. *Intrahousehold resource allocation in Cote d'Ivoire: social norms, separate accounts and consumption choices.* Cambridge: National Bureau of Economic Research;2004. NBER Working Paper No. 10498.

1970 202. KickStart. KickStart Impact. <http://www.kickstart.org/what-we-do/impact/>. Accessed July 11, 2014.

2002 203. Brandsma T. Waterworks: Kenyan Farmers Are Getting A Big Boost From A Simple
2003 Piece Of Equipment. *Newsweek*2003.

2004 204. Kihia JK, Kamau RN. *Super-Money Maker pressure pedal pump impact assessment in
2005 utilisation, job creation and income generation*. Nairobi: ApproTEC, Inc.;1999.

2006 205. Stevens JE. Martin makes a middle class: Stanford grad Martin Fisher has gone low-
2007 tech in search of solutions for Kenyan farmers. *SF Chronicle Magazine*2002;CM: 18.

2008 206. Bank W. *Yes, Africa can: success stories from a dynamic continent*. Washington, D.C.:
2009 The World Bank; 2010.

2010 207. Shah T, Keller K. Micro-irrigation and the poor: A marketing challenge in smallholder
2011 irrigation development. In: Sally HA, C.L., ed. *Private Irrigation in Sub-Saharan Africa: regional Seminar on Private Sector Participation and Irrigation Expansion in Sub-2012 Saharan Africa*. Columbo: ACP-EU Technical Centre for Agricultural and Rural
2013 Cooperation; 2002:165-183.

2015 208. *National AIDS and STI Control Programme, Ministry of Health, Kenya. September 2013.*
2016 *Kenya AIDS Indicator Survey 2012: Preliminary Report. Nairobi, Kenya.*

2017 209. Lay J, Mahmoud TO, M'Mukaria GM. Few opportunities, much desperation: the
2018 dichotomy of non-agricultural activities and inequality in western Kenya. *World Dev.*
2019 2008;36(12):2713-2732.

2020 210. Government of Kenya. *District Development Plan: Migori*. Migori, Kenya: District
2021 Commissioner's Office, GoK;2008.

2022 211. van der Laan MJ, Balzer LB, Petersen ML. ADAPTIVE MATCHING IN RANDOMIZED
2023 TRIALS AND OBSERVATIONAL STUDIES. *J Stat Res*. Dec 1 2012;46(2):113-156.

2024 212. Imai K, King G, Nall C. The Essential Role of Pair Matching in Cluster-Randomized
2025 Experiments, with Application to the Mexican Universal Health Insurance Evaluation.
2026 *Statistical Science*. 2009;24(1):29-53.

2027 213. Greevy R, Lu B, Silber JH, Rosenbaum P. Optimal multivariate matching before
2028 randomization. *Biostatistics*. Apr 2004;5(2):263-275.

2029 214. Lu B, Greevy R, Xu X, Beck C. Optimal Nonbipartite Matching and Its Statistical
2030 Applications. *Am Stat*. 2011;65(1):21-30.

2031 215. Greevy RA, Jr., Grijalva CG, Roumie CL, et al. Reweighted Mahalanobis distance
2032 matching for cluster-randomized trials with missing data. *Pharmacoepidemiol Drug Saf.*
2033 May 2012;21 Suppl 2:148-154.

2034 216. King G, Gakidou E, Ravishankar N, et al. A "politically robust" experimental design for
2035 public policy evaluation, with application to the Mexican universal health insurance
2036 program. *J Policy Anal Manage*. Summer 2007;26(3):479-506.

2037 217. Hayes RJ, Moulton LH. *Cluster Randomized Trials*. Boca Raton: Chapman & Hall/CRC
2038 Press; 2009.

2039 218. *Physical Status: The Use and Interpretation of Anthropometry. Report of a WHO Expert
2040 Committee*. WHO Technical Report Series 854. Geneva, Switzerland: World Health
2041 Organization;1995.

2042 219. Collins C, Duffield A, Myatt M. *Adults Assessment of Nutritional Status in Emergency-
2043 Affected Populations* Geneva, Switzerland: United Nations, Administrative Committee on
2044 Coordination, Sub-committee on Nutrition;2000.

2045 220. James WP, Ferro-Luzzi A, Waterlow JC. Definition of chronic energy deficiency in
2046 adults. Report of a working party of the International Dietary Energy Consultative Group.
2047 *Eur J Clin Nutr*. Dec 1988;42(12):969-981.

2048 221. Ferro-Luzzi A, Sette S, Franklin M, James WP. A simplified approach of assessing adult
2049 chronic energy deficiency. *Eur J Clin Nutr*. Mar 1992;46(3):173-186.

2050 222. Doocy S, Teferra S, Norell D, Burnham G. Credit program outcomes: coping capacity
2051 and nutritional status in the food insecure context of Ethiopia. *Soc Sci Med*. May
2052 2005;60(10):2371-2382.

2053 223. Hoddinott J, Yohannes Y. *Dietary diversity as a household food security indicator*.
2054 Washington, D.C.: Food and Nutrition Technical Assistance Project, Academy for
2055 Educational Development.; May 2002.

2056 224. Farley J, Hines S, Musk A, Ferrus S, Tepper V. Assessment of adherence to antiviral
2057 therapy in HIV-infected children using the Medication Event Monitoring System,
2058 pharmacy refill, provider assessment, caregiver self-report, and appointment keeping. *J*
2059 *Acquir Immune Defic Syndr*. Jun 1 2003;33(2):211-218.

2060 225. Lyimo RA, van den Boogaard J, Msoka E, et al. Measuring adherence to antiretroviral
2061 therapy in northern Tanzania: feasibility and acceptability of the Medication Event
2062 Monitoring System. *BMC Public Health*. 2011;11:92.

2063 226. Thirumurthy H, Siripong N, Freeman RC, et al. Differences between self-reported and
2064 electronically monitored adherence among patients receiving antiretroviral therapy in a
2065 resource-limited setting. *AIDS*. Nov 28 2012;26(18):2399-2403.

2066 227. Oyugi J, Byakika-Tusiime J, Charlebois E, et al. Multiple validated measures of
2067 adherence indicate high levels of adherence to generic HIV antiretroviral therapy in a
2068 resource-limited setting. *J Acquir Immune Defic Syndr*. Aug 15 2004;36(5):1100-1102.

2069 228. Giordano TP, Guzman D, Clark R, Charlebois ED, Bangsberg DR. Measuring adherence
2070 to antiretroviral therapy in a diverse population using a visual analogue scale. *HIV Clin*
2071 *Trials*. Mar-Apr 2004;5(2):74-79.

2072 229. Kelly JD, Hubenthal EA, Lurton G, et al. Multiple self-report measures of antiretroviral
2073 adherence correlated in Sierra Leone, but did they agree? *Int J STD AIDS*. Dec
2074 2013;24(12):931-937.

2075 230. Evans D, Menezes C, Mahomed K, et al. Treatment outcomes of HIV-infected
2076 adolescents attending public-sector HIV clinics across Gauteng and Mpumalanga, South
2077 Africa. *AIDS Res Hum Retroviruses*. Jun 2013;29(6):892-900.

2078 231. Hassan AS, Fielding KL, Thuo NM, Nabwera HM, Sanders EJ, Berkley JA. Early loss to
2079 follow-up of recently diagnosed HIV-infected adults from routine pre-ART care in a rural
2080 district hospital in Kenya: a cohort study. *Trop Med Int Health*. Jan 2012;17(1):82-93.

2081 232. Gelberg L, Andersen RM, Leake BD. The Behavioral Model for Vulnerable Populations:
2082 application to medical care use and outcomes for homeless people. *Health Serv Res*.
2083 Feb 2000;34(6):1273-1302.

2084 233. Gelberg L, Gallagher TC, Andersen RM, Koegel P. Competing priorities as a barrier to
2085 medical care among homeless adults in Los Angeles. *Am J Public Health*. Feb
2086 1997;87(2):217-220.

2087 234. Wu AW, Rubin HR, Mathews WC, et al. A health status questionnaire using 30 items
2088 from the Medical Outcomes Study. Preliminary validation in persons with early HIV
2089 infection. *Med Care*. Aug 1991;29(8):786-798.

2090 235. Chatterton ML, Scott-Lennox J, Wu AW, Scott J. Quality of life and treatment satisfaction
2091 after the addition of lamivudine or lamivudine plus loviride to zidovudine-containing
2092 regimens in treatment-experienced patients with HIV infection. *Pharmacoeconomics*.
2093 1999;15 Suppl 1:67-74.

2094 236. Mast TC, Kigozi G, Wabwire-Mangen F, et al. Measuring quality of life among HIV-
2095 infected women using a culturally adapted questionnaire in Rakai district, Uganda. *AIDS*
2096 Care. Jan 2004;16(1):81-94.

2097 237. Derogatis LR, Lipman RS, Rickels K, Uhlenhuth EH, Covi L. The Hopkins Symptom
2098 Checklist (HSCL). A measure of primary symptom dimensions. *Mod Probl*
2099 *Pharmacopsychiatry*. 1974;7(0):79-110.

2100 238. Bolton P, Wilk CM, Ndogoni L. Assessment of depression prevalence in rural Uganda
2101 using symptom and function criteria. *Soc Psychiatry Psychiatr Epidemiol*. Jun
2102 2004;39(6):442-447.

2103 239. Bradley KA, DeBenedetti AF, Volk RJ, Williams EC, Frank D, Kivlahan DR. AUDIT-C as
2104 a brief screen for alcohol misuse in primary care. *Alcohol Clin Exp Res*.
2105 2007;31(7):1208-1217.

2106 240. Wolfe WR, Weiser SD, Leiter K, et al. The impact of universal access to antiretroviral
2107 therapy on HIV stigma in Botswana. *Am J Public Health*. Oct 2008;98(10):1865-1871.

2108 241. Tsai A, Bangsberg D, Kegeles S, et al. Internalized stigma, disease progression, and
2109 serostatus disclosure among people living with HIV/AIDS in rural Uganda. *Annals of
2110 Behavioral Medicine*. May 21, 2013 [Epub ahead of print].

2111 242. Pronyk PM, Hargreaves JR, Kim JC, et al. Effect of a structural intervention for the
2112 prevention of intimate-partner violence and HIV in rural South Africa: a cluster
2113 randomised trial. *Lancet*. Dec 2 2006;368(9551):1973-1983.

2114 243. Pulerwitz J, Gortmaker SL, DeJong W. Measuring sexual relationship power in HIV/STD
2115 research. *Sex Roles*. 2000;42(7-8):637-660.

2116 244. Dunkle KL, Jewkes RK, Brown HC, Gray GE, McIntryre JA, Harlow SD. Gender-based
2117 violence, relationship power, and risk of HIV infection in women attending antenatal
2118 clinics in South Africa. *Lancet*. May 1 2004;363(9419):1415-1421.

2119 245. Jewkes RK, Dunkle K, Nduna M, Shai N. Intimate partner violence, relationship power
2120 inequity, and incidence of HIV infection in young women in South Africa: a cohort study.
2121 *Lancet*. Jul 3 2010;376(9734):41-48.

2122 246. Weiser S, Tsai A, Senkungu J, et al. The impact of low sexual relationship power on viral
2123 load suppression among women receiving antiretroviral therapy in Mbarara, Uganda.
2124 *17th Conference on Retroviruses and Opportunistic Infections*. San Francisco2010.

2125 247. Coates J, Swindale A, Bilinsky P. *Household Food Insecurity Access Scale (HFIAS) for
2126 Measurement of Food Access: Indicator Guide*. Washington, D.C.: Food and Nutrition
2127 Technical Assistance. Academy for Educational Development.; January 2006.

2128 248. Swindale A, Bilinsky P. Development of a universally applicable household food
2129 insecurity measurement tool: process, current status, and outstanding issues. *J Nutr*.
2130 May 2006;136(5):1449S-1452S.

2131 249. Coates J, Frongillo EA, Rogers BL, Webb P, Wilde PE, Houser R. Commonalities in the
2132 experience of household food insecurity across cultures: what are measures missing? *J
2133 Nutr*. May 2006;136(5):1438S-1448S.

2134 250. Miller CL, Bangsberg DR, Tuller DM, et al. Food insecurity and sexual risk in an HIV
2135 endemic community in Uganda. *AIDS Behav*. April 20 2010.

2136 251. Tsai A, Bangsberg D, Frongillo E, et al. Gendered Effects of Food Insecurity on
2137 Depression among HIV-Infected Persons Accessing Antiretroviral Therapy (ART) in
2138 Rural Uganda. *17th Conference on Retroviruses and Opportunistic Infections*. San
2139 Francisco2010.

2140 252. Tsai AC, Bangsberg DR, Senkungu J, et al. Food insecurity, competing demands, and
2141 health care utilization among HIV-infected persons accessing antiretroviral therapy
2142 (ART) in rural Uganda. Paper presented at: 17th Conference on Retroviruses and
2143 Opportunistic Infections; Feb 16-19, 2010, 2010; San Francisco, California.

2144 253. Tsai AC, Bangsberg DR, Frongillo EA, et al. HIV-related stigma and food insecurity
2145 among men and women accessing ART in rural Uganda. *XVIII International AIDS
2146 Conference*. Vienna, Austria2010.

2147 254. Tsai A, Gupta R, Frongillo E, et al. Food insecurity is associated with morbidity and
2148 patterns of healthcare utilization among HIV-infected individuals in rural Uganda. *Aids*.
2149 September 2011;In press.

2150 255. Grosh M, Glewwe P. Data Watch: the World Bank's Living Standard Measurement Study
2151 household surveys. *Journal of Economic Perspectives*. 1998;12(1):187-196.

2152 256. World Health Organization. Verbal autopsy standards: ascertaining and attributing
2153 causes of death. 2012;

2154 http://www.who.int/healthinfo/statistics/WHO_VA_2012_RC1_Instrument.pdf?ua=1
2155 Accessed July 21, 2014.

2156 257. Antelman G, Smith Fawzi MC, Kaaya S, et al. Predictors of HIV-1 serostatus disclosure:
2157 a prospective study among HIV-infected pregnant women in Dar es Salaam, Tanzania.
2158 *AIDS*. Sep 28 2001;15(14):1865-1874.

2159 258. Broadhead WE, Gehlbach SH, de Gruy FV, Kaplan BH. The Duke-UNC Functional
2160 Social Support Questionnaire. Measurement of social support in family medicine
2161 patients. *Med Care*. Jul 1988;26(7):709-723.

2162 259. Eckel CC, Grossman PJ. Forecasting risk attitudes: An experimental study using actual
2163 and forecast gamble choices. *Journal of Economic Behavior & Organization*. 2008;68:1-
2164 17.

2165 260. de Mel S, McKenzie D, Woodruff C. Returns to Capital in Microenterprises: Evidence
2166 from a Field Experiment. . *Quarterly Journal of Economics*. 2008;123(4):1329-1372.

2167 261. Little RJA, Rubin DB. *Statistical Analysis with Missing Data*. New York: John Wiley and
2168 Sons; 2002.

2169 262. Paul J. Gertler, Sebastian Martinez, Patrick Premand, Laura B. Rawlings, Vermeersch.
2170 CMJ. Impact Evaluation in Practice. Washington DC: The International Bank for
2171 Reconstruction and Development / The World Bank; 2011. Accessed June 6, 2014.

2172 263. Bollen KA. *Structural Equations with Latent Variables*: John Wiley & Sons, Inc; 1989.

2173 264. Petersen ML, Sinisi SE, van der Laan MJ. Estimation of direct causal effects.
2174 *Epidemiology*. May 2006;17(3):276-284.

2175 265. Valeri L, Vanderweele TJ. Mediation analysis allowing for exposure-mediator
2176 interactions and causal interpretation: theoretical assumptions and implementation with
2177 SAS and SPSS macros. *Psychol Methods*. Jun 2013;18(2):137-150.

2178 266. Morduch J. The microfinance promise. *Journal of Economic Literature*.
2179 1999;37(4):1569 - 1614.

2180 267. Morduch J, Karlan D. "Access to finance" In Dani Rodrik and Mark Rosenzweig, eds
2181 Handbook of Development Economics. Vol Volume 5. Amsterdam: Elsevier; 2009.

2182 268. Bonell C, Oakley A, Hargreaves J, Strange V, Rees R. Assessment of generalisability in
2183 trials of health interventions: suggested framework and systematic review. *British
2184 Medical Journal*. Aug 12 2006;333(7563):346-349.

2185 269. Miles M, Huberman A. *Qualitative Data Analysis: An expanded sourcebook*. Thousand
2186 Oaks, California: Sage; 1994.

2187 270. Glaser B, Strauss A. *The discovery of grounded theory: strategies for qualitative
2188 research*. Chicago: Aldine; 1967.

2189 271. Lofland J, Lofland L. *Analyzing social settings: a guide to qualitative observation and
2190 analysis*. 3rd ed. Belmont, California: Wadsworth; 1995.

2191

2192