

Study Protocol

Opioid-free analgesia after outpatient general surgery: A pilot randomized controlled trial

NCT04254679

Publication date (As supplementary material for the trial manuscript):

July 18, 2022

1 **Supplement 1. Study protocol as approved by ethics**

2

3 **Project title:** Opioid-free analgesia after outpatient general surgery: A pilot randomized

4 controlled trial

5 **RATIONALE**

6 Canada is in the midst of an epidemic of opioid use and abuse fueled by increased

7 prescriptions by physicians. Overprescription has been implicated as a driving force

8 behind the growing number of overdoses and deaths caused by opioids. Canada has

9 the second highest rate of opioid prescription per-capita in the world after the United

10 States¹. Physicians wrote on average one opioid prescription for every two Canadians

11 in 2017². In the same year, at least 4100 opioid-related deaths occurred across

12 Canada³. This death toll increased to 4460 in 2018, which represents an average of 12

13 Canadians dying from opioid overdoses every day³. The estimated economic cost of

14 opioid misuse in Canada, accounting for health, justice, lost productivity and other direct

15 costs, tops \$3.5 billion per year⁴. As a response to this grim statistic, the federal Minister

16 of Health has made combatting the 'opioid crisis' a top priority⁵.

17 Surgery often serves as the initial event for opioid-naïve patients to obtain a prescription

18 for opioids and spiral into misuse and addiction^{6,7}. Those undergoing outpatient surgery

19 (i.e., with same day discharge), which represent nearly 80% of all surgeries performed

20 in Canada and the United States⁸, are particularly vulnerable as they invariably require

21 some form of analgesia to be taken at home during the first postoperative days. In North

22 America, analgesia for these patients often includes over-the-counter non-opioid drugs

23 [e.g., acetaminophen and/or non-steroid anti-inflammatory drugs (NSAIDs)/Cox-2

24 inhibitors (COX-2)] and prescription opioid tablets to be taken 'as needed' in case of

25 breakthrough pain. With this current prescription pattern, up to 1-in-10 patients become

26 persistent opioid users postoperatively, i.e., they continue to take the drug for more than

27 three months after surgery^{6,9,10}. Those who do not become persistent users may also

28 contribute to the opioid epidemic by diverting unused tablets for nonmedical use by

29 others. A recent systematic review suggests that of all opioid tablets obtained by

30 surgical patients 42% to 71% go unused¹¹. In other words, they are prescribed

31 unnecessarily and become a readily available source for diversion. It is estimated that
32 over 50% of people who abuse opioids obtain the drug via diversion from friends or
33 relatives with unused prescriptions¹². Although the prescription of opioids after
34 outpatient surgery seems harmless to many, postoperative overprescription is an urgent
35 element of the opioid crisis given how commonly it may contribute to misuse, diversion,
36 addiction and death.

37 From the perspective of surgeons and other perioperative care clinicians, the answer to
38 the opioid crisis may be preventing opioid prescriptions whenever possible using opioid-
39 free analgesia. In European countries, postoperative discharge prescriptions commonly
40 include only non-opioid drugs while, interestingly, pain-related outcomes (i.e.,
41 satisfaction with pain treatment) are often superior to North America¹³⁻¹⁵. Moreover,
42 evidence regarding the benefits of postoperative opioids has largely relied on unimodal,
43 single-dose studies conducted for regulatory purposes under strict experimental
44 conditions¹⁶. Arguably, a more appropriate approach to guide clinical practice is to
45 examine the impact of postoperative opioids in 'real-world' conditions, where analgesia
46 strategies are often multimodal and pain treatment span several days. Data from a
47 scoping review recently completed by our research group (currently under peer-review
48 for publication) supports that the number of comparative studies in this field is limited,
49 while existing small trials often challenge the value of adding opioids to multimodal
50 analgesia regimens¹⁷⁻¹⁹. Lack of evidence in this field means that the decision to
51 prescribe opioids after outpatient surgery largely depends on healthcare culture and
52 surgeon preference. Hence, there is an urgent need for robust randomized clinical trials
53 (RCTs) to guide clinical decision-making.

54 Due to the complexity inherent to well-designed RCTs, pilot studies are critical to
55 assess acceptability, test logistical aspects, optimize design and build the capacities
56 required for a full-scale trial²⁰. Undertaking an RCT of opioid-free analgesia raises
57 important practical concerns including: surgeon and patient hesitation about pain
58 treatment without opioids, decision regarding participation under preoperative stress,
59 treatment adherence and optimal measurement strategies. Thus, the overarching
60 objective of the proposed pilot study is to investigate the feasibility of conducting a full-
61 scale, pragmatic RCT aimed to estimate the extent to which analgesia regimens

62 including opioids (opioid analgesia, OA) impact postoperative outcomes after outpatient
63 general surgery in comparison to regimens that are opioid-free (opioid-free analgesia,
64 OFA). By addressing the prevention of opioid prescription after outpatient surgery, this
65 proposal tackles the first pillar of the New Canadian Drugs and Substances Strategy
66 (CDSS), i.e., preventing problematic drug and substance use supported by a strong
67 evidence base²¹.

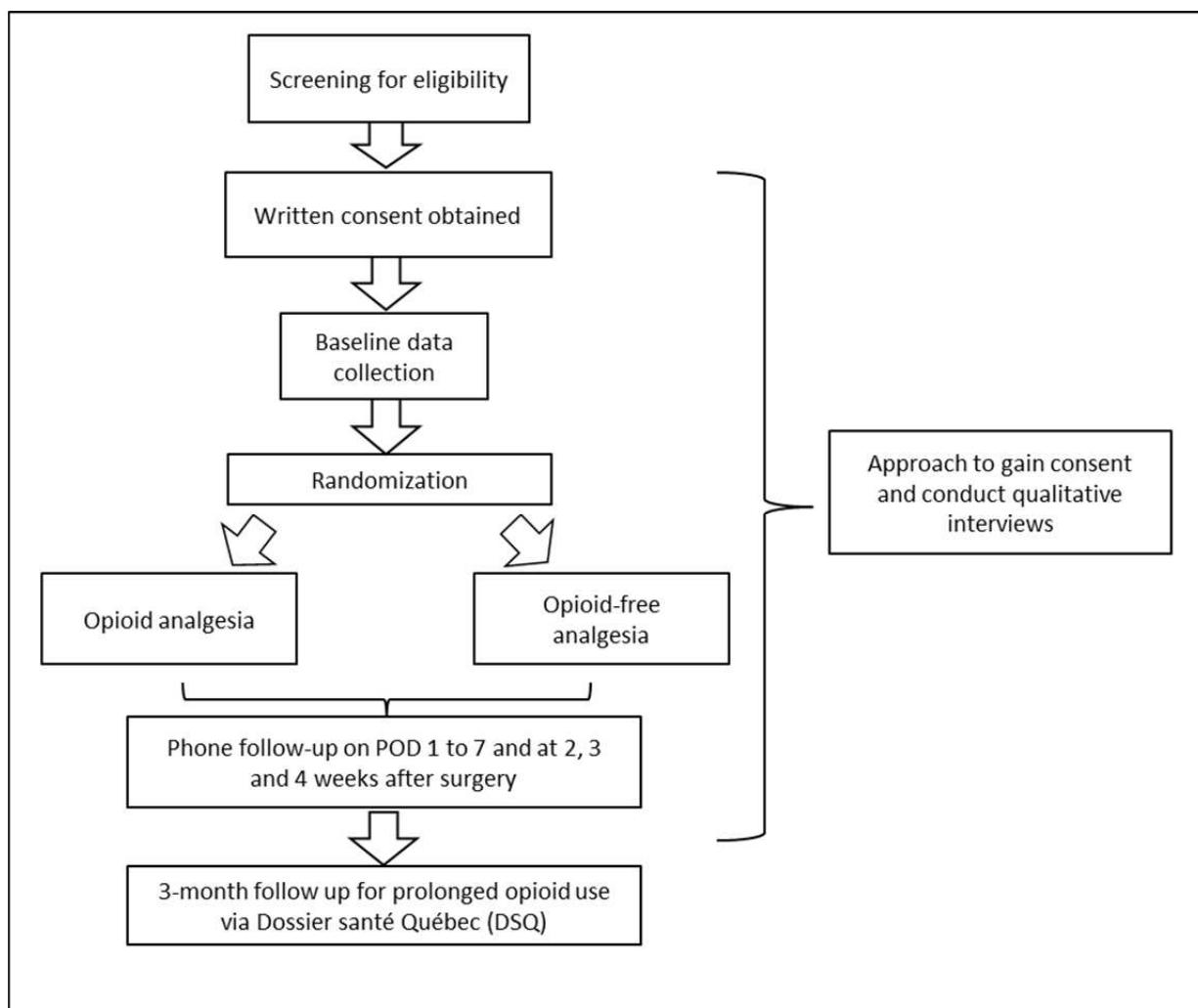
68 **SPECIFIC RESEARCH OBJECTIVES**

69 **PART 1. Main study (Pilot RCT)**

- 70 1.1. To estimate the proportion of screened patients who meet eligibility criteria.
- 71 1.2. To assess the willingness of surgeons to recruit/randomize patients undergoing
72 different surgical procedures.
- 73 1.3. To estimate the proportion of eligible patients who consent to randomization.
- 74 1.4. To estimate the proportion of patients who adhere to the interventions proposed.
- 75 1.5. To estimate follow-up completion rates.
- 76 1.6. To inform the calculation of sample size requirements for a full-scale RCT.

77 **PART 2. Embedded qualitative study**

- 78 2.1. To inform, via qualitative research methods, optimal study design of a full-scale
79 RCT by assessing patient and clinician perspectives on trial conduct, participation,
80 interventions and measurement strategy.


81

82 **METHODS**

83 **PART 1. Main study (Pilot RCT)**

84 This study will be a parallel, two-group, assessor-blind, pilot randomized trial with
85 participants individually allocated on a 1:1 ratio to treatment with either OA or OFA. To
86 maximize applicability of the study to current perioperative care settings, the trial was
87 designed to be pragmatic; i.e. it will be undertaken in routine clinical practice under “real
88 world” conditions. Eligibility criteria will facilitate enrollment of diverse patients

undergoing outpatient surgery (day surgery) and interventions will be delivered with flexibility in medication selection. An embedded qualitative study will be conducted to help optimize trial design based on clinicians' and patients' perspective²². The study protocol will be reviewed by the McGill University Health Centre (MUHC) Research Ethics Board and patient recruitment will start after ethics approval. All participants will sign a written consent form and a paper copy of the form will be attached to the patient medical chart. Trial registration and protocol information will be made available at the ClinicalTrials.gov website. The planned flow of participants through the study is summarized in Figure 1. A trial management team (TMT), composed by trial leaders (Drs. Fiore, Baldini and Feldman) and trial managers (Ms Pepa Kaneva, Ms Uyen Do and Mr Charbel El Kefraoui) will meet weekly to discuss the progress of the trial and address any issues that may arise.

102 **Figure 1. Flow of participants through the study. POD = postoperative day**

103 ***Patients***

104 Adult patients (over 18 years old) undergoing elective outpatient surgery (with planned
105 discharge same day on the day of the operation) in two sites of the McGill University
106 Health Centre (MUHC) in Montreal, Canada (Montreal General Hospital and Royal
107 Victoria Hospital) will be considered for inclusion. Eligibility will span a wide range of
108 general surgery procedures that are routinely conducted with same day discharge,
109 including procedures in abdominal (i.e., cholecystectomies, hernia repairs) and breast
110 surgery (i.e., lumpectomies, partial and complete mastectomies, axillary node
111 dissections).

112 As a pragmatic trial, we will keep exclusion criteria to the minimum necessary to ensure
113 both patient safety and internal validity. Patients with intraoperative or early
114 postoperative complications (i.e., diagnosed in the Post-Anesthesia Care Unit (PACU))
115 that require postoperative hospital stay will be excluded. Other reasons for exclusion
116 are: contraindications to any of the drugs used in the trial according to Health Canada
117 Monographs (i.e. active substance use disorder, pregnancy, severe heart failure,
118 allergy, active symptomatic peptic ulcer or gastrointestinal bleeding, bleeding disorders,
119 severe renal or liver impairment)²³⁻²⁵, conditions that could interfere with outcome
120 assessment [e.g., cognitive impairment, inability to speak English or French, difficulty to
121 be reached after surgery (e.g., limited access to a telephone or a computer)].

122 ***Overview of recruitment and consent procedures***

123 (1) Eligible patients scheduled for elective outpatient general surgery will be informed
124 about the study by their primary surgeon during the preoperative surgical consultation,
125 (2) those who are interested in the study will be advised by the treating clinician that a
126 member of the study group will contact them to discuss the study in detail during their
127 subsequent standard visit to the preoperative assessment clinic or by telephone (if the
128 clinic is bypassed), (3) patients who are eligible and interested in participating will be
129 asked to sign the consent form and complete the study's preoperative questionnaires in
130 the preoperative clinic or at home. In the latter case, consent will be obtained via pre-

131 paid mail and preoperative questionnaires will be completed online or by phone. It will
132 be up to patients to choose the preferred method of completing the questionnaires.

133 Trial posters will be displayed in waiting areas of the MGH and RVH preoperative clinics
134 to raise awareness of the study for both patients and clinicians. Study promotional
135 materials are attached to this application (Figure 5-6).

136 ***Randomization and blinding***

137 Treatment allocations will be concealed until patients are deemed ready to be
138 discharged home from the PACU – i.e., when a discharge order is signed by the primary
139 surgeon, or a delegated clinician member of his/her team. Randomization will be
140 conducted via a secure web-based randomization service (www.sealedenvelope.com).
141 Research staff will have password-protected access to the randomization website by
142 means of a computer or smart phone. No personal information about participants will be
143 entered in this platform. To yield balanced yet unpredictable groups, randomization will
144 use computer-generated, permuted, balanced blocks of randomly varying size (2, 4 or
145 6). To achieve group balance for important covariates, randomization will be stratified
146 by procedure type (abdominal, breast). Participants and clinicians will be informed
147 verbally of the treatment allocation at the point of randomization. The primary surgeon,
148 or a delegated clinician member of his/her team, will be responsible for signing a pre-
149 written analgesia discharge prescription in accordance with the treatment that patients
150 have been allocated to.

151 Participants and treating clinicians (i.e., surgeons, anesthetists, and nurses) will not be
152 blinded to treatment allocation due to the complexity of the medication prescribing
153 strategies. To reduce potential risk of detection bias (systematic differences between
154 groups in how outcomes are determined), outcome assessors will be blinded to
155 treatment allocation. Patient-reported outcomes and treatment adherence data will be
156 collected via self-administered electronic questionnaires distributed using REDCap
157 (<http://project-redcap.org/>) and completed by patients via smartphone, tablet or personal
158 computer. Electronic outcome data will be transmitted directly to the REDCap database
159 and verified by a blinded assessor. Adherence data will be verified by unblinded study
160 staff. Patients who are not computer savvy, have limited access, or prefer non-

161 electronic assessment will complete the questionnaires via telephone interviews with a
162 blinded assessor; in this case, data will be recorded in paper forms and subsequently
163 transferred to the REDCap database. Prior to every telephone interview, patients will be
164 reminded not to disclose their allocation status or information about pain medications.
165 To prevent unblinding, telephone follow-ups to monitor treatment adherence will be
166 done by a team member not involved in outcome assessment.

167 Outcome data that are not patient-reported (e.g., postoperative complications,
168 unplanned healthcare utilization, chronic opioid use) will be obtained from medical
169 records by a blinded assessor. Any inadvertent unblinding will be reported.
170 Effectiveness of blinding will be estimated by asking assessors to guess patients' group
171 allocation at one month after surgery (after the last patient questionnaire is responded).
172 Statistical analysis will also be blinded with information regarding allocation protected by
173 codes that will be revealed only after all analyses are completed.

174 ***Interventions***

175 *Opioid analgesia (OA) group*

176 Patients randomized to the OA group will receive the current standard of care in the
177 participating centers, which includes the prescription of around-the-clock non-opioid
178 analgesics (acetaminophen and/or NSAIDs/COX-2) and a supply of opioids to be used
179 as a rescue in case of breakthrough pain (i.e., pain that erupts while a patient is already
180 medicated with painkillers). Prior to hospital discharge, patients will undergo a
181 medication education session with the PACU nurse and be advised to fill their
182 prescription at a pharmacy of their preference. Medication education sessions with a
183 nurse prior to discharge are part of standard care at MUHC. In light of the pragmatic
184 nature of this trial, the specific round-the-clock analgesia and rescue opioid regimens
185 will be determined by the patient's primary surgeon considering the surgical procedure,
186 comorbidities and patient's preference. Postoperative pain management strategies
187 currently used at the MUHC are set with input from pain specialists (Alan Edwards Pain
188 Management Unit) and follow Health Canada standards for safety and efficacy²⁶.
189 Examples are included in eFigure1.

190 To confirm if patients randomized to this group are treated according to current
191 standards of care, we will conduct a retrospective chart review of post-discharge
192 analgesics prescribed to patients who underwent the eligible surgeries between
193 September 01 to October 31, 2019. We estimate that, within this 2-month period, the
194 electronic medical charts of approximately 100 patients will be reviewed. Only data
195 regarding the surgical procedure conducted and analgesia regimen prescribed (pain
196 medication received, dosage, frequency of administration, treatment duration) will be
197 collected by the research team.

198 *Opioid-free (OFA) analgesia group*

199 Patients randomized to the OFA group will receive a prescription of around-the-clock
200 non-opioid analgesics (Acetaminophen alone or combined with NSAIDs/COX-2). In
201 case of breakthrough pain, rescue analgesia may be provided by (1) increasing doses
202 of non-opioid analgesics, (2) adding non-opioid drugs that were not included in the initial
203 regimen or (3) switching drugs according to single-dose efficacy evidence^{27,28} targeting
204 individual variances in analgesia response²⁹. As per standard care, prior to hospital
205 discharge, patients will undergo a medication education session with the PACU nurse
206 and be advised to fill their prescription at a pharmacy of their preference. Considering
207 the pragmatic nature of this trial, the specific non-opioid analgesia regimens will be
208 determined by the patient's primary surgeon considering the surgical procedure,
209 comorbidities and patient's preference. The pain specialists involved in this trial [Dr.
210 Gabriele Baldini (Anesthesia), Dr. Avinash Sinha (Anesthesia), Dr. Suzanne Morin
211 (Internal Medicine), and Ms Krista Brecht (Alan Edwards Pain Management Unit)] have
212 set potential analgesia strategies for the OFA group, according to Health Canada
213 standards for safety and efficacy²⁶ (eFigure 2).

214 *Management of persistent pain*

215 As opioid-free analgesia is new to our setting, specific strategies will be implemented to
216 ensure that patients are receiving adequate pain management during the pilot trial. A
217 'hotline' (dedicated mobile phone that will be kept with study staff in shifts) will be
218 available 24/7 in case patients experience persistent pain despite the use of rescue
219 analgesia. When this line is called, study staff will inform patients about the

220 management options available according to their treatment allocation. An information
221 sheet containing the 'hotline' contact details will be provided to patients prior to PACU
222 discharge (see **Discharge Information Sheet – Opioid-free Group**).

223 Patients in the opioid-free group will have a back-up prescription of opioids (regimen
224 decided by the primary surgeon) faxed to the 24h pharmacy closest to their residence.
225 This prescription will be faxed upon patient discharge from the hospital, with a brief
226 letter informing the study and ethics approval (see **Information Sheet for Pharmacy**).
227 When a patient calls the study staff reporting persistent pain, they will be informed about
228 the availability of the prescription and the pharmacy address. To prevent patients to fill
229 their opioid prescription 'just in case', they will not be informed about the availability of
230 the prescription unless they report persistent pain. When the prescription is filled,
231 education about the use of opioids will be given by the pharmacist as per routine
232 pharmacy services. If pain persists despite the use of opioids, patients will be advised to
233 proceed according to the management of persistent pain in the opioid group, as
234 described below.

235 As per the institutions' current practice, patients in the opioid group who experience
236 persistent pain will be advised to call their primary surgeon's office/clinic during working
237 hours (weekdays, 8AM to 4PM) or visit a hospital emergency room (ER) for further
238 evaluation (after-hours and weekends). If an ER visit is required, patients will be asked
239 to give preference to visiting the ER of the hospital where his/her surgery had been
240 performed. An information sheet containing specific instruction will be provided to
241 patients prior to PACU discharge (see **Discharge Information Sheet – Opioid Group**).
242 Changes of initial prescription will be entirely up to the patients' surgical team and/or ER
243 physician.

244 *Adherence and study discontinuation*

245 Treatment adherence (i.e., patients in each group taking their pain medications as
246 prescribed) will be monitored via self-administered electronic questionnaires distributed
247 using REDCap (<http://project-redcap.org/>) and completed by patients via smartphone,
248 tablet or personal computer from postoperative day (POD) 1 to POD 7 and at 2, 3 and 4
249 weeks after surgery. Electronic adherence data will be transmitted directly to the

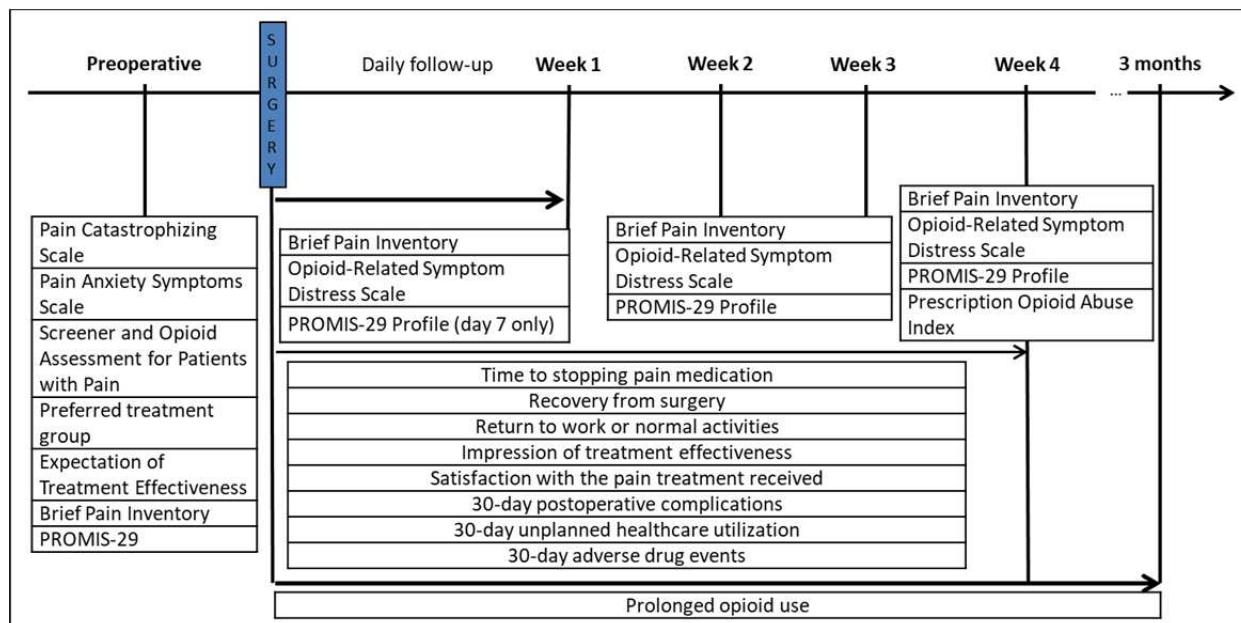
250 REDCap database and verified by unblinded study staff. Patients will also be offered the
251 option to respond to adherence questionnaires via telephone; in this case, data will be
252 recorded in paper forms by unblinded staff and subsequently transferred to the REDCap
253 database. Patients will be instructed to take medications for postoperative pain only in
254 accordance with the initial discharge prescription or based on prescriptions given by
255 healthcare providers after hospital discharge. If patients desire discontinuation of any of
256 the study medications, they will be advised to discuss other medication options with the
257 surgical team and/or their outpatient care provider. Surgeons may change pain
258 medications or put an end to a patient participation in the trial at any time if he/she
259 considers this to be in the best interest of the patient.

260 ***Other aspects of perioperative care***

261 Surgical techniques, anesthesia procedures, or preoperative/intraoperative analgesia
262 protocols will be left to the discretion of the attending surgeon and anesthesiologist to
263 best reflect routine clinical practice. However, technical details about the surgery,
264 anesthesia and perioperative analgesia interventions (including preoperative use of
265 analgesics in preparation for surgery, e.g., gabapentin, and intraoperative use of local
266 anesthetics infiltration or blocks) will be obtained from electronic medical records and
267 recorded for study purpose. Any nonpharmacological therapies for pain recommended
268 by the surgical team or outpatient healthcare providers (e.g., heat or ice compress,
269 acupuncture, massage therapy) will be permitted and recorded during follow-up
270 assessments. Considering the pragmatic nature of this trial, medication education
271 provided by nurses and all other aspects of perioperative care will be according to the
272 institutions' routine practice, which include detailed care pathways for selected surgical
273 procedures (<http://www.muhcpatienteducation.ca/surgery-guides.html>).

274 ***Measurement Strategy***

275 As a pilot RCT, this study will primarily focus on feasibility outcomes. Clinical outcomes
276 will be assessed secondarily to inform the measurement strategy and sample size
277 requirements for a future full-scale RCT.


278 ***Assessment of feasibility outcomes (primary)***

- 279 A full-scale RCT be deemed feasible if, during the pilot study period (4 months):
- 280 • At least 70% of patient undergoing the outpatient general surgery procedures of
281 interest are eligible to be randomized.
- 282 • At least 90% of the surgeons who agreed to have their patients randomized will
283 comply with the agreement, i.e., not change their minds (see section 'pilot study
284 sample size and feasibility' below).
- 285 • At least 50% of eligible patients agree to participate in the study and are
286 randomized.
- 287 • At least 80% of the randomized patients comply with their allocated treatment (i.e.
288 will take their pain medications as prescribed).
- 289 • At least 80% of the patients randomized complete outcome assessment at 30-days
290 after surgery.
- 291 • Among patients who complete outcome assessments, the proportion of missing
292 data is less than 10% (i.e., non-response to questionnaires or specific questionnaire
293 items).
- 294 To determine recruitment rates, study staff will keep a screening log of patients
295 approached, patients who fulfill eligibility criteria and those who do not fulfill eligibility
296 criteria. Reasons for ineligibility will be recorded. This log will also record information
297 about eligible patients who were successfully recruited, and those who were not
298 recruited despite being eligible. In the event of surgeons opting for not recruiting
299 patients despite eligibility, rates and reasons will be recorded. Adherence to treatment
300 will be assessed by comparing patients' analgesia prescription at discharge to self-
301 reported analgesic intake at each time-point of assessment. Follow-up completion rates
302 and missing outcome data will be computed based on REDCap entries (date- and time-
303 stamped). Patients will be considered to have withdrawn from the trial if they miss three
304 consecutive assessments and then permanently stop responding the questionnaires.
305 Reasons for patients not consenting participation, not completing follow-ups or
306 withdrawing from the trial will be recorded whenever possible.
- 307 *Assessment of clinical outcomes (secondary)*

308 Our clinical outcome measurement strategy was informed by the World Health
309 Organization (WHO)'s International Classification of Functioning and Disability (ICF)
310 and will cover constructs in the domains of impairment, activity limitation and
311 participation restriction³⁰. A range of outcome measures were identified as being
312 potentially useful for a full-scale trial on OA versus OFA. One of the main goals for this
313 pilot study is to determine their appropriateness and usability. Due to the subjective
314 nature of pain and response to analgesia, we placed special focus on PROMs, i.e.,
315 reports of health status coming directly from the patient. Preference was given to
316 measures that (1) have validity evidence supporting their use in surgical
317 populations^{31,32}, (2) have been recommended by surgery, anesthesia and pain
318 societies³²⁻³⁴, (3) use scoring systems based on modern psychometric methods (Item-
319 Response Theory, Rasch analysis)³⁵, (4) have been used in previous literature on
320 postoperative/opioid analgesia, (5) have short recall periods (preferably 24 hours, no
321 more than 7 days) and (6) have low response burden (i.e. are brief). Author-generated
322 questions will be used to assess constructs that have not been addressed by existing
323 measures or that have been addressed in a context that is not applicable to the current
324 study. The outcome measures addressed in this study include: the Brief Pain Inventory
325 Short-Form³⁶⁻³⁸, time to stopping pain medication³⁷, Patient-Reported Outcomes
326 Measurement Information System 29 Profile (PROMIS-29); domains: physical function,
327 anxiety, depression, fatigue, sleep disturbance, social roles and activities, pain intensity
328 and pain interference)^{33,38,39}, Perioperative Opioid-Related Symptom Distress Scale⁴⁰,
329 Prescription Opioid Misuse Index⁴¹, recovery from surgery (author-generated question),
330 return to work or normal activities (author-generated question), impression of treatment
331 effectiveness (author-generated question), satisfaction with the pain treatment received
332 (author-generated question), 30-day postoperative complications^{42,43}, 30-day unplanned
333 healthcare utilization, 30-day adverse drug events⁴⁴⁻⁴⁶, and prolonged opioid use (3-
334 month follow-up). See eTable 3 for a complete description of these measures.

335 Patient-reported outcome data will be obtained via (1) electronic questionnaires or (2)
336 telephone interviews, according to the patient's preference. Electronic questionnaires
337 will be completed remotely (via smartphone, tablet or personal computer) using our
338 REDCap platform. A link to the daily questionnaires will be distributed to patients via

339 text message or email (according to the patient's preference) in the morning, with up to
340 3 reminders sent in case of no response. Participants will be asked to, preferably,
341 complete the questionnaires in the morning to prevent bias associated to
342 chronobiological variations in pain⁴⁷. Patients who opt for non-electronic assessment will
343 complete the questionnaires via telephone interviews, preferably conducted before
344 12PM. Information regarding postoperative complications and unplanned healthcare
345 utilization will be obtained via patient self-report (week 4) and verified using electronic
346 medical records. Information regarding opioid prescription dispensing will be obtained
347 using Dossier Santé Québec (DSQ), accessed by a physician-collaborator (Dr. Mohsen
348 Alhashemi, Minimally Invasive Surgery Fellow) upon patient authorization via study
349 consent form. Details of our follow-up schedule are summarized in Figure 4.

Figure 2. Patient follow-up schedule. POD = Postoperative day

352 *Preoperative screening measures*

353 These measures focus on potential prognostic factors for difficult pain control, need for
354 opioid analgesia and opioid seeking behavior after surgery. In a future full-scale RCT,
355 they may help refining inclusion and exclusion criteria, as well as setting stratification
356 strategies to balance important covariates between treatment groups. Screening
357 measures addressed in this pilot study include: demographic and operative information
358 (data also used to characterize the patient population), the Pain Catastrophizing

359 Scale^{48,49}, the Pain Anxiety Symptoms Scale (short version)^{19,50}, the Screener and
360 Opioid Assessment for Patients with Pain (SOAPP)⁵¹, preferred treatment group (author
361 generated question) and expectations for treatment effectiveness (author generated
362 question). See eTable 2 for a complete description of these screening measures.

363 ***Data management plan and analysis***

364 Data collection and storage will be according to the MUHC's Regulatory Framework in
365 Health Research, which is in line with provincial and federal legislations. All data will be
366 entered and stored in a password-protected system of electronic data capture
367 (REDCap, <http://project-redcap.org/>) and quality will be ensured via in-built validation
368 checks (i.e., missing data, out-of-range values and invalid responses). Data analysis will
369 be conducted using Stata version 14 software (StataCorp). Analysis and trial reporting
370 will be according to the Consolidated Standards of Reporting Trials (CONSORT)
371 Guidelines extension for Pilot and Feasibility Trials⁵².

372 Data generated from the pilot study will help inform a full-scale RCT by testing the study
373 procedures; therefore, no inferential statistical analyses will be performed to compare
374 groups. Continuous variables will be summarised using means, standard deviations
375 (SDs), medians, lower and upper quartiles, minimum, maximum and number of
376 observations. Categorical variables will be summarised using frequencies and
377 percentages. To address feasibility, descriptive statistics of patients approached,
378 screened, eligible, consented and randomised, treatment adherence and follow-up
379 completion rates will be computed. Completeness of follow-up will be compared
380 between trial arms. Reasons for non-consent, exclusion and trial withdraw will be
381 recorded and reported. Baseline data will be summarized descriptively to assess
382 comparability between treatment arms and to highlight any differences between patients
383 who were randomized, who withheld consent and who did not meet eligibility criteria.
384 Analyses of postoperative outcomes will be exploratory, descriptive and follow the
385 intention-to-treat principle, with all patients analyzed in their assigned treatment group.

386 The primary outcome measure to be addressed in the full-scale RCT will be informed by
387 data from this pilot trial. Decision will be based on acceptability and relevance to
388 patients and clinicians (qualitative study described below), completion rates, evidence of

389 measurement properties according to previous literature, effect sizes and sample size
390 requirements. There are no planned interim data analyses; however, if the TMT
391 identifies that recruitment, randomization and data collection are below target, strategies
392 will be implemented to improve progress. Any changes to methods after trial
393 commencement will be documented and reported. Any future revisions to protocol and
394 consent forms will be implemented only after IRB approval.

395 ***Pilot study sample size and feasibility***

396 This pilot trial is not confirmatory; therefore, a formal sample size calculation was not
397 conducted. In accordance to previous recommendation that at least 70 measured
398 participants are required for estimating SDs of continuous measures⁵³, we aim to recruit
399 and obtain outcome data from 80 patients (40 per group), allowing for a ~15% attrition
400 rate. This sample size is also in line with recommendations regarding the minimal
401 number of participants required to identify feasibility issues⁵⁴.

402 This pilot study will be conducted in two high volume centres where approximately 1000
403 eligible outpatient abdominal and breast surgeries are performed every year. In May
404 2019, we circulated our study protocol (draft) and conducted an electronic survey of
405 surgeons across the two institution; 10 surgeons (7 General, 3 Breast) agreed to have
406 their patients recruited for this pilot trial. Based on previous trial experience,
407 approximately 60% of the patients approached during the trial period will be eligible and
408 agree to participate. Therefore, we estimate that 80 participants could be feasibly
409 enrolled in 4 months. With additional 3 months required to finalize patient follow-up and
410 the time required for data analyses and report/manuscript preparation, we anticipate
411 that the time required to complete this study is approximately one year. Specific details
412 about our timeline are presented in.

413 **PART II. Embedded qualitative study**

414 A qualitative study involving patients and clinicians will be integrated within this pilot trial
415 to provide further fundamental insights into the design of a future full-scale RCT.

416 ***Study objective:***

417 The objective of this study is to inform, via qualitative research methods, optimal study
418 design of a full-scale RCT by assessing patient and clinician perspectives on trial
419 conduct, participation, interventions and measurement strategy.

420 ***Research questions:***

- 421 1. What are participants and non-participants' perspectives on the pilot trial conduct,
422 participation (or non-participation), interventions, and measurement strategy?
- 423 2. What are clinicians' perspectives on the acceptability of the pilot trial, experience
424 operationalizing the study in practice, treatment effectiveness, challenges that may
425 impact on the feasibility of a full-scale RCT, and areas for improvement in the future
426 trial design?

427 Interviews will be conducted until thematic saturation is reached (i.e., the point in data
428 collection after which no new themes emerge), accounting for a minimal targeted
429 sample of five patients and five clinicians. Our methodological approach will follow
430 Braun and Clarke's guideline for the use of thematic analysis in qualitative studies⁵⁵. As
431 demonstrated by O'Cathain et al. (2013), qualitative analysis is a valuable tool to
432 optimize interventions in comparative-effectiveness research. Reporting of this
433 qualitative study will be in line with the Consolidated Criteria for Reporting Qualitative
434 Studies (COREQ) guidelines⁵⁶.

435 ***Interviews with patients***

436 A sub-sample of patients who participated in the recruitment process for the pilot trial
437 will be invited to participate in one-on-one qualitative interviews. Patients who do not
438 consent to randomization in the trial will also be invited to participate in the interviews as
439 they may provide relevant insights regarding the consent process and study
440 acceptability. In order to capture the heterogeneity of outpatient general surgery
441 procedures and improve sample representativeness, we will use a quota sampling
442 method⁵⁷ targeting patients representing a broad spectrum of demographic, clinical and
443 surgical characteristics (Table 1). Patients will be offered the opportunity to be
444 interviewed face-to-face or by telephone. Patients will be informed about the qualitative
445 interviews during preoperative recruitment and those who are interested will be

446 contacted after their involvement with the trial. A consent form specific to the qualitative
447 study will be signed prior to the interviews. To ensure accurate recall, patients will be
448 interviewed no later than 6 weeks after their surgery. Interviews will focus on (1)
449 acceptability of the study, (2) personal experience with the process of recruitment and
450 randomization, (3) reasons for not accepting randomization (where appropriate), (4)
451 perceived value and experiences with the intervention, (5) perceived value and
452 experienced with the outcome assessments, (6) reasons for not completing outcome
453 assessment (where appropriate), and (7) areas for improvement in trial design.

454 **Table 1. Qualitative study interviews: Target sampling quotas for patients**

Characteristic	Targeted quota
Age	
≤ 30 years	≥20%
≥ 65 years	≥20%
Gender	
Male	≥40%
Female	≥40%
Surgery	
Abdominal	≥20%
Breast	≥20%
Education	
Low (less than high school)	≥20%
High (university degree or above)	≥20%
Employment status	
Working/studying	≥30%
Retired	≥30%
Postoperative complications after hospital	
Yes	≥10%
No	≥60%
Consented randomization	
Yes	≥70%
No	≥20%

455

456 *Patient recruitment process*

457 Subsequent contact for participation in the qualitative study will be made upon patient
458 authorization. Patients will be approached as follows, depending on whether they
459 agreed or not to participate in the pilot RCT:

460 (1) Patients who agreed to participate in the pilot RCT and signed the informed consent
461 form: In the consent form for the Pilot RCT (see " **Informed consent form - Pilot RCT**
462 "), we will ask whether we have permission to contact the patient to inquire about
463 participation in the qualitative part of this project (check "YES" or "NO"). Those who
464 checked "YES" will be contacted after their participation in the Pilot RCT. A separate
465 informed consent form (See "**Informed consent form - Interview with patients**") will
466 be signed prior to the qualitative interview.

467 (2) Patients who refused to participate in the Pilot RCT: Those who refused to
468 participate in the Pilot RCT will be informed about the qualitative study and be offered to
469 sign a "**Permission to contact form**" if they agree to be contacted regarding
470 participation in the qualitative study. Patient who agree to participate will sign separate
471 informed consent form prior to the qualitative interview (See "**Informed consent form -**
472 **Interview with patients**").

473 ***Interviews with clinicians***

474 A sample of clinicians (surgeons, nurses, anesthesiologists) involved in the
475 perioperative care (i.e., prescription, education about postoperative analgesia) of
476 patients undergoing the surgeries of interest in this trial will be invited to participate in
477 one-on-one qualitative interviews. Interviews will be conducted face-to-face or by
478 telephone after informed consent is obtained. In order to improve sample
479 representativeness, we will use a quota sampling method ⁵⁷ targeting clinicians
480 representing a broad spectrum of demographic and professional characteristics (Table
481 2). Interviews will be conducted within the period of patient recruitment to ensure
482 accurate recall. Interviews with clinicians will focus on (1) acceptability of the study, (2)
483 experience operationalizing the study in practice (i.e., recruiting patients and providing
484 interventions), (3) reasons for not recruiting patients (where appropriate), (4)
485 perspectives on treatment effectiveness, (5) local issues that may impact on the
486 feasibility of a full-scale RCT and (6) areas for improvement in trial design.

487 **Table 2. Qualitative study interviews: Target sampling quotas for clinicians**

Characteristic	Targeted quota
Years of clinical experience (after residency)	
≤ 5 years	<u>>20%</u>
≥ 15 years	<u>≥20%</u>
Practice location	
Montreal General Hospital	<u>≥40%</u>
Royal Victoria Hospital	<u>≥40%</u>
Training background	
Surgery	<u>≥60%</u>
Anesthesia	<u>≥20%</u>
Nursing	<u>≥20%</u>
Received formal research training (Masters, PhD)	
Yes	<u>≥40%</u>
No	<u>≥20%</u>
(For surgeons) Specialty	
General (abdominal)	<u>≥20%</u>
Breast Surgery	<u>≥20%</u>
(For surgeons) Had patients involved in the trial	
Yes	<u>≥40%</u>
No (or low randomization rate, <3 patients)	<u>≥20%</u>

488

489 *Clinician recruitment process*

490 All clinicians (surgeons, nurses, anesthesiologists) who care for patients undergoing the
 491 surgeries eligible for this study will be informed about the qualitative study by their
 492 respective Division Chiefs (see team of collaborators in "Expertise and Resources
 493 Available"). Clinicians who meet eligibility criteria will be contacted via email by a
 494 member of the study team. Their contact information will be obtained via the McGill
 495 and/or MUHC website. Those who agree to participate will sign a consent form (See
 496 **"Informed consent form – Interview with Clinicians"**) prior to the qualitative interview.

497 *Interview procedures, data management and analysis*

498 Interviews will follow semi-structured guides designed with open-ended questions to
 499 elicit patients' and clinicians' personal perspectives about the trial. Initial guides will be

500 drafted by the trial steering committee and pilot tested for terminology, flow and
501 redundancy. All interviews will be digitally recorded using high quality audio equipment
502 and transcribed verbatim by a third-party ISO certified transcription company. Analysis
503 of interview data will be conducted via inductive thematic analysis informed by Braun
504 and Clarke (2006)⁵⁵. Thematic analysis is a method used to identify, analyze, and report
505 themes and subthemes within the interviews to provide a rich description of the
506 qualitative data. The inductive approach to thematic analysis is data-driven, where the
507 themes will be derived from within the data themselves and no pre-existing coding
508 framework will be applied during analysis. Based on data obtained from the first
509 interviews, two independent researchers (coders) will code each interview transcription
510 and search for recurring themes. The coding process will be conducted using the
511 software MAXQDA 12 (VERBI GmbH, Berlin, Germany). For every two transcripts
512 coded, coders will meet to (1) compare the codes assigned, (2) revise the codes
513 iteratively as new information emerges, (3) cluster the codes (via thematic mapping) into
514 initial themes and sub-themes to inform the subsequent development and refinement of
515 themes, and 4) generate a clear definition and name for each of the theme. Assessment
516 of saturation will be conducted iteratively (after every 2 interviews) using a saturation
517 grid⁵⁸.

518 The findings from this qualitative study will be regularly fed back to the trial steering
519 committee so that aspects of the pilot study conduct can be reviewed iteratively where
520 appropriate. Themes for which saturation is reached will be classified as meaningful
521 issues to inform the optimal design of the full-scale RCT.

522 **Summary of sample size estimates**

PART I. Main study (Pilot RCT)

80 participants (40 per group).

PART II. Embedded qualitative study

20 participants (estimate) - A minimal of 10 participants (5 patients, 5 clinicians) will be
recruited but the total sample may vary according to data saturation.

Total sample size

100 participants (estimate).

523

524 EXPERTISE AND RESOURCES AVAILABLE

525 This project builds on the expertise of scientists and clinicians with extensive experience
526 and knowledge in the fields of surgery and postoperative analgesia. Dr. Julio Fiore Jr
527 (Outcomes Researcher) is the principal investigator and primarily responsible for writing
528 the study protocol. He will be in charge of the overall coordination and supervision of all
529 aspects of this pilot RCT, including recruitment, randomization and data management.
530 He has substantial experience with the design and conduct of pilot and full-scale RCTs.
531 Dr. Gabriele Baldini (Anesthetist) and Dr. Liane Feldman (Surgeon) are co-investigators
532 and knowledge users (i.e. prescribers of postoperative pain medications). They will be
533 responsible for supervising all clinical aspects of the study (i.e. analgesia interventions)
534 and for liaising with clinicians across both study sites. Our team of collaborators bring in
535 a wide range of clinical and research expertise to this project: RCTs (Dr. Kaberi
536 Dasgupta, Physician/Epidemiologist), acute pain assessment and management (Dr.
537 Suzanne Morin, Physician/Epidemiologist), postoperative analgesia (Dr. Avinash Sinha,
538 Anesthetist; Ms Krista Brecht, Pain Nurse), surgery (Dr. Sarkis Meterissian, Breast
539 Clinic Director; Dr. Mohsen Alhashemi, Minimally Invasive Surgery Fellow), opioid
540 misuse (Dr. Marc Martel, Psychologist) and qualitative research (Dr. Fatemeh
541 Rajabiyazdi, Postdoctoral Fellow/Qualitative Researcher). Statistical support from the
542 RI-MUHC Biostatistics Support Unit has been sought and incorporated in this pilot trial
543 in preparation for a full-scale RCT.

544 The project will be coordinated by the Steinberg-Bernstein Centre for Minimally Invasive
545 Surgery, based at the Montreal General Hospital. The centre offers dedicated office
546 space (100m²) with computer facilities for data collection and warehousing and employs
547 a full-time research coordinator (Ms. Pepa Keneva, MSc). Two master's students (Ms
548 Uyen Do and Mr Charbel El Kefraoui) will coordinate the day-to-day management of the
549 project at the two sites under the supervision of Drs. Fiore, Baldini and Feldman. Our

550 experienced multidisciplinary team has all the necessary elements (i.e. infrastructure,
551 methodological and context expertise) to successfully conclude this project.

552 **ANTICIPATED CHALLENGES AND MITIGATION STRATEGIES**

553 Prescription of opioids to treat breakthrough pain after surgery is imbedded in Canada's
554 healthcare culture. For this reason, we cannot exclude that (1) certain clinicians may be
555 wary of discharging patients without an opioid prescription and (2) ethical issues may be
556 raised anticipating a negative impact on pain outcomes. However, considering the
557 current opioid crisis, changes have been observed in the paradigm of 'mandatory opioid
558 prescription' as some surgeons across the MUHC began managing pain after outpatient
559 general surgery using only non-opioid drugs. According to their personal experience,
560 this practice did not increase unplanned healthcare visits due to uncontrolled pain and,
561 importantly, satisfaction with pain control reported during scheduled postoperative visits
562 seems unchanged in comparison to when opioids were regularly prescribed. Besides
563 this anecdotal data, preliminary results from our scoping review suggest that previous
564 comparative studies do not support the value of prescribing opioids after outpatient
565 surgery¹⁷⁻¹⁹ – these results, however, must be confirmed in a formal systematic
566 review/meta-analysis. In other patient populations such as chronic musculoskeletal pain
567 and acute extremity pain, the role of opioid analgesia has also recently been questioned
568 in large RCTs showing non-superiority^{38,59} and increased adverse events³⁸. In light of
569 this evidence and considering the ongoing paradigm change at a local level, this pilot
570 trial gained support from key stakeholders in our surgical departments and divisions
571 who are committed to encouraging recruitment across both study sites.

572 As certain surgeons may heavily rely on opioids to treat postoperative pain, we
573 anticipate that some may refuse to recruit selected patients or refuse to recruit patients
574 altogether. Similarly, some patients may be doubtful about the efficacy of pain treatment
575 without opioids and refuse randomization. This issue will be addressed by comparing
576 demographic and surgical data of randomized patients versus non-randomized patients.
577 Differences may suggest that our results are not generalizable to certain surgical
578 populations, indicating venues to improve our patient selection criteria and/or
579 recruitment process. Our integrated qualitative study including interviews with patients

580 who refused randomization and surgeons with low recruitment rates will provide
581 fundamental insights into the strategies to mitigate these potential issues. The
582 qualitative study will also provide relevant information to optimize our measurement
583 strategy, which currently includes daily follow-up in the first 7 days after surgery. The
584 use of daily outpatient follow-up assessment has been successful in a recent RCT on
585 postoperative analgesia³⁷ but, if proven unfeasible in our setting, strategies will be
586 implemented to reduce patient burden (e.g., reducing follow-up frequency).

587 Finally, surgeons from different specialities may give preference to different non-opioid
588 drugs, e.g. NSAIDs/COX-2 may be avoided by some surgeons due to potential risk of
589 bleeding⁶⁰, while others may be concerned about risk of liver failure when using
590 acetaminophen⁶¹. In line with the pragmatic nature of this trial, surgeons will have the
591 freedom to, within the analgesia principles of each intervention group, choose the
592 regimen that they find most appropriate according to surgical procedure, comorbidities
593 and individual preference. To ensure safety, analgesia prescriptions will follow Health
594 Canada monographs for maximum dosages and length of treatment²⁶. Potential
595 treatment adverse events will be identified and reported according to internationally
596 accepted standards supported by Health Canada^{44-46,62}.

597 **DATA COLLECTION AND CONFIDENTIALITY**

598 *Retrospective chart review:* All the information collected during our preliminary chart
599 review will remain confidential to the extent required and provided by law. A study ID
600 number will be assigned to each patient's chart. No code linking patient identifiers to
601 patient data will be kept and it will not be possible to identify patients.

602 *Pilot Trial:* All data collected in our pilot trial will be entered and stored in a password-
603 protected system of electronic data capture (REDCap; Research Electronic Data
604 Capture, hosted at Research Institute of MUHC), and subsequently transferred to the
605 statistical program for analysis. A study ID number will be assigned to each participant.
606 Information collected in paper-based forms will be kept in locked cabinets within a
607 locked office (R2-111). Participants will be identified by a code to protect their identity. A
608 document linking the codes to the participants' identity will be kept separately in a
609 password protected file, which can only be accessed by the study staff.

610 All data will be kept under safe storage for 7 years and then deleted, shredded or
611 incinerated. Only investigators will have access to the data. Furthermore, the results
612 and the project may be published, but patients' identity will not be revealed.

613 **KNOWLEDGE TRANSLATION (KT) PLAN**

614 Results from this pilot trial will inform the planning and commissioning of a future full-
615 scale RCT on opioid-free analgesia after outpatient general surgery. If proven feasible,
616 this full-scale RCT will inform guidelines targeting sustainable changes in surgical care
617 to mitigate the negative downstream effects of postoperative opioid overprescription.
618 Our findings will be disseminated according to CIHR's Guide to Knowledge Translation
619 (KT) Planning⁶³ and target a broad audience of surgeons, anesthetists, nurses,
620 pharmacists, surgical outcomes scientists and research funders. Our KT strategies
621 include, but are not limited to, conference presentations (local, national and
622 international), publication of a peer-reviewed paper, and diffusion of findings in
623 websites, newsletters and social media platforms. As opioids are part of standard
624 postoperative care in North America, we believe that our study will contribute feasibility
625 data to support and encourage further opioid-free analgesia research beyond our
626 immediate research setting in Canada and internationally (i.e., the United States).

627 **SIGNIFICANCE**

628 The overprescription of opioids to surgical patients is recognized as one of the driving
629 forces behind the current opioid crisis. Patients undergoing outpatient general surgery
630 are frequently prescribed opioids to be taken at home postoperatively, but this practice
631 is not supported by evidence. Alternatives to opioids are often overlooked by Canadian
632 surgeons, while they should be incorporated as the foundation of postoperative
633 analgesia whenever possible. If proven effective in a future full-scale RCT, the use of
634 opioid-free analgesia after outpatient surgery may ultimately contribute to preventing
635 opioid-related harms. Hence, the pilot study described in this protocol is an essential
636 first step for building a strong body of evidence to mitigate the negative downstream
637 effects of postoperative opioid overprescription in Canada.

AMENDMENTS TO THE PROTOCOL AFTER INITIAL ETHICS APPROVAL

Change	Reason
October 2019. Prior to patient recruitment <i>Retrospective chart review</i>	<ul style="list-style-type: none"> To confirm that patients randomized to OA group are treated according to current standards of care, a retrospective chart review was conducted to collect data on post-discharge analgesics prescribed to patients who underwent the eligible surgeries in 2019 [period of January 01 to December 31, 2019]. This data (not reported in the manuscript) supported that patients in the OA group were treated according to standard care.
October 2019. Prior to patient recruitment <i>Randomization strategy</i>	<ul style="list-style-type: none"> After discussion with surgeons, the team realized that the randomization of patients in the PACU (with discharge prescriptions written right before hospital discharge) would be impractical as surgeons often write their prescriptions in the OR after skin closure. For this reason, randomizations were conducted in the OR.
September 2020. After patient recruitment <i>Knowledge translation plan</i>	<ul style="list-style-type: none"> After discussion, the team decided that the two components of this pilot study (quantitative and qualitative) would be reported in separate manuscripts.
June 2021. After patient recruitment <i>Outcome measure/data analysis</i> Data on overall impression of treatment effectiveness at each postoperative timepoint.	<ul style="list-style-type: none"> We noticed that this author-generated question was accidentally excluded from the final version of the Redcap questionnaire distributed to patients. Therefore, these data were not analyzed or reported in the manuscript. Impressions about treatment effectiveness were detected via other patient-reported questionnaires.
June 2021. After patient recruitment and data analysis <i>Outcome measure/data analysis</i> Data regarding satisfaction with pain management at postoperative week 4	<ul style="list-style-type: none"> After data analyses, the team realized that findings regarding satisfaction with pain management at postoperative week 4 were redundant (did not add relevant information in comparison to the data reported by patients on week 1). For this reason, this information was

	not reported in the manuscript. This data would not be useful as it is subject to recall bias given that most patients do not use pain medications beyond week 1.
--	---

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663 **REFERENCES**

- 664 1. International Narcotics Control Board. *Report 2019*. 2019. Accessed March 1, 2021.
665 https://www.incb.org/documents/Publications/AnnualReports/AR2019/Annual_Report_C
666 hapters/English_ebook_AR2019.pdf
- 667 2. Canadian Institute of Health Information. Pan-Canadian trends in the prescribing of
668 opioids and benzodiazepines, 2012 to 2017.
669 <https://www.cihi.ca/sites/default/files/document/opioid-prescribing-june2018-en-web.pdf>.
- 670 3. Canadian Institute of Health Information. National report: Apparent opioid-related
671 deaths in Canada (January 2016 to December 2018). Accessed July 31, 2019.
- 672 4. Canadian Centre on Substance Use and Addiction. *Canadian Substance Use Costs*
673 and Harms. 2020. Accessed March 1, 2021.
674 <https://www.ccsa.ca/sites/default/files/2020-06/CSUCH-Canadian-Substance-Use->
675 Costs-Harms-Report-2020-en.pdf
- 676 5. Government of Canada. Federal actions on opioids to date. Accessed March 1, 2021.
677 <https://www.canada.ca/en/health-canada/services/substance-use/problematic->
678 prescription-drug-use/opioids/federal-actions/overview.html
- 679 6. Alam A, Gomes T, Zheng H, Mamdani MM, Juurlink DN, Bell CM. Long-term
680 analgesic use after low-risk surgery: a retrospective cohort study. *Arch Intern Med*.
681 2012;172(5):425-30. doi:10.1001/archinternmed.2011.1827
- 682 7. Sun EC, Darnall BD, Baker LC, Mackey S. Incidence of and Risk Factors for Chronic
683 Opioid Use Among Opioid-Naive Patients in the Postoperative Period. *JAMA Intern*
684 *Med*. 2016;176(9):1286-93. doi:10.1001/jamainternmed.2016.3298
- 685 8. Castoro C, Berlinato L, Baccaglini U, Drace CA, McKee M. *Day surgery : making it*
686 *happen*. 2007. Accessed March 1, 2021. <http://www.who.int/iris/handle/10665/107831>
- 687 9. United States for Non-Dependence. *An analysis of the impact of opioid*
688 *overprescribing in America*. 2017. Accessed March 1, 2021.
689 [https://www.planagainstpain.com/wp-](https://www.planagainstpain.com/wp-content/uploads/2017/09/PlanAgainstPain_USND.pdf)
690 [content/uploads/2017/09/PlanAgainstPain_USND.pdf](https://www.planagainstpain.com/wp-content/uploads/2017/09/PlanAgainstPain_USND.pdf)
- 691 10. Jiang X, Orton M, Feng R, et al. Chronic Opioid Usage in Surgical Patients in a
692 Large Academic Center. *Ann Surg*. 2017;265(4):722-727.
693 doi:10.1097/SLA.0000000000001780
- 694 11. Bicket MC, Long JJ, Pronovost PJ, Alexander GC, Wu CL. Prescription Opioid
695 Analgesics Commonly Unused After Surgery: A Systematic Review. *JAMA Surg*.
696 2017;152(11):1066-1071. doi:10.1001/jamasurg.2017.0831
- 697 12. Hughes AWM, Lipari RN, Bose J, Copello EAP, Kroutil LA. Prescription Drug Use
698 and Misuse in the United States:
699 Results from the 2015 National Survey on Drug Use and Health 2016;
- 700 13. Lindenhovius AL, Helmerhorst GT, Schnellen AC, Vrahas M, Ring D, Kloen P.
701 Differences in prescription of narcotic pain medication after operative treatment of hip
702 and ankle fractures in the United States and The Netherlands. *J Trauma*.
703 2009;67(1):160-4. doi:10.1097/TA.0b013e31818c12ee

- 704 14. Chapman CR, Stevens DA, Lipman AG. Quality of postoperative pain management
705 in American versus European institutions. *J Pain Palliat Care Pharmacother.*
706 2013;27(4):350-8. doi:10.3109/15360288.2013.846955
- 707 15. Helmerhorst GT, Lindenholvius AL, Vrahas M, Ring D, Kloen P. Satisfaction with
708 pain relief after operative treatment of an ankle fracture. *Injury.* 2012;43(11):1958-61.
709 doi:10.1016/j.injury.2012.08.018
- 710 16. Moore RA, Derry S, McQuay HJ, Wiffen PJ. Single dose oral analgesics for acute
711 postoperative pain in adults. *Cochrane Database Syst Rev.* 2011;(9):Cd008659.
712 doi:10.1002/14651858.CD008659.pub2
- 713 17. Mitchell A, McCrea P, Inglis K, Porter G. A randomized, controlled trial comparing
714 acetaminophen plus ibuprofen versus acetaminophen plus codeine plus caffeine
715 (Tylenol 3) after outpatient breast surgery. *Ann Surg Oncol.* 2012;19(12):3792-800.
716 doi:10.1245/s10434-012-2447-7
- 717 18. Mitchell A, van Zanten SV, Inglis K, Porter G. A randomized controlled trial
718 comparing acetaminophen plus ibuprofen versus acetaminophen plus codeine plus
719 caffeine after outpatient general surgery. *J Am Coll Surg.* 2008;206(3):472-9.
720 doi:10.1016/j.jamcollsurg.2007.09.006
- 721 19. Helmerhorst GT, Zwiers R, Ring D, Kloen P. Pain Relief After Operative Treatment
722 of an Extremity Fracture: A Noninferiority Randomized Controlled Trial. *J Bone Joint*
723 *Surg Am.* 2017;99(22):1908-1915. doi:10.2106/jbjs.17.00149
- 724 20. Kistin C, Silverstein M. Pilot Studies: A Critical but Potentially Misused Component
725 of Interventional Research. *Jama.* 2015;314(15):1561-2. doi:10.1001/jama.2015.10962
- 726 21. Government of Canada. The new Canadian drugs and substances strategy.
727 Accessed March 1, 2021. <https://www.canada.ca/en/health-canada/news/2016/12/new-canadian-drugs-substances-strategy.html>
- 728 22. O'Cathain A, Thomas KJ, Drabble SJ, Rudolph A, Hewison J. What can qualitative
729 research do for randomised controlled trials? A systematic mapping review. *BMJ Open.*
730 2013;3(6)doi:10.1136/bmjopen-2013-002889
- 731 23. Health Canada. Basic product monograph information for Nonsteroidal Anti-
732 Inflammatory Drugs (NSAIDs). Accessed March 1, 2021.
733 <https://www.canada.ca/en/health-canada/services/drugs-health-products/drug-products/applications-submissions/guidance-documents/nonsteroidal-anti-inflammatory-drugs-nsaids/guidance-document-basic-product-monograph-information-nonsteroidal-anti-inflammatory-drugs-nsaids.html>
- 734 24. Health Canada. Revised guidance document: Acetaminophen labelling standard.
735 Accessed March 1, 2021. <https://www.canada.ca/en/health-canada/services/drugs-health-products/drug-products/applications-submissions/guidance-documents/revised-guidance-document-acetaminophen-labelling-standard.html>
- 736 25. Health Canada. Scientific advisory panel on opioid use and contraindications (SAP-
737 OUC). Accessed March 1, 2021. <https://www.canada.ca/en/health-canada/services/drugs-health-products/drug-products/scientific-expert-advisory-panels/opioid-use-contraindications/record-proceedings-2017-03-24.html>
- 738
- 739
- 740
- 741
- 742
- 743
- 744
- 745

- 746 26. Health Canada. Drug products. Accessed March 1, 2021.
747 <https://www.canada.ca/en/health-canada/services/drugs-health-products/drug-products/drug-product-database.html>
- 749 27. Moore RA, Derry S, Aldington D, Wiffen PJ. Single dose oral analgesics for acute
750 postoperative pain in adults - an overview of Cochrane reviews. *Cochrane Database
751 Syst Rev*. 2015;2015(9):Cd008659. doi:10.1002/14651858.CD008659.pub3
- 752 28. Gaskell H, Derry S, Wiffen PJ, Moore RA. Single dose oral ketoprofen or
753 dexketoprofen for acute postoperative pain in adults. *Cochrane Database Syst Rev*.
754 2017;5(5):Cd007355. doi:10.1002/14651858.CD007355.pub3
- 755 29. Moore A, Derry S, Eccleston C, Kalso E. Expect analgesic failure; pursue analgesic
756 success. *Bmj*. 2013;346:f2690. doi:10.1136/bmj.f2690
- 757 30. World Health Organization. *International classification of functioning, disability and
758 health: ICF*. 2001. Accessed March 1, 2021.
- 759 31. Fiore JF, Jr., Figueiredo S, Balvardi S, et al. How Do We Value Postoperative
760 Recovery?: A Systematic Review of the Measurement Properties of Patient-reported
761 Outcomes After Abdominal Surgery. *Ann Surg*. 2018;267(4):656-669.
762 doi:10.1097/sla.0000000000002415
- 763 32. Chou R, Gordon DB, de Leon-Casasola OA, et al. Management of Postoperative
764 Pain: A Clinical Practice Guideline From the American Pain Society, the American
765 Society of Regional Anesthesia and Pain Medicine, and the American Society of
766 Anesthesiologists' Committee on Regional Anesthesia, Executive Committee, and
767 Administrative Council. *J Pain*. 2016;17(2):131-57. doi:10.1016/j.jpain.2015.12.008
- 768 33. Abola RE, Bennett-Guerrero E, Kent ML, et al. American Society for Enhanced
769 Recovery and Perioperative Quality Initiative Joint Consensus Statement on Patient-
770 Reported Outcomes in an Enhanced Recovery Pathway. *Anesth Analg*.
771 2018;126(6):1874-1882. doi:10.1213/ane.0000000000002758
- 772 34. Jammer I, Wickboldt N, Sander M, et al. Standards for definitions and use of
773 outcome measures for clinical effectiveness research in perioperative medicine:
774 European Perioperative Clinical Outcome (EPCO) definitions: a statement from the
775 ESA-ESICM joint taskforce on perioperative outcome measures. *Eur J Anaesthesiol*.
776 2015;32(2):88-105. doi:10.1097/eja.0000000000000118
- 777 35. Hobart JC, Cano SJ, Zajicek JP, Thompson AJ. Rating scales as outcome
778 measures for clinical trials in neurology: problems, solutions, and recommendations.
779 *Lancet Neurol*. 2007;6(12):1094-105. doi:10.1016/s1474-4422(07)70290-9
- 780 36. Keller S, Bann CM, Dodd SL, Schein J, Mendoza TR, Cleeland CS. Validity of the
781 brief pain inventory for use in documenting the outcomes of patients with noncancer
782 pain. *Clin J Pain*. 2004;20(5):309-18. doi:10.1097/00002508-200409000-00005
- 783 37. Hah J, Mackey SC, Schmidt P, et al. Effect of Perioperative Gabapentin on
784 Postoperative Pain Resolution and Opioid Cessation in a Mixed Surgical Cohort: A
785 Randomized Clinical Trial. *JAMA Surg*. 2018;153(4):303-311.
786 doi:10.1001/jamasurg.2017.4915

- 787 38. Krebs EE, Gravely A, Nugent S, et al. Effect of Opioid vs Nonopioid Medications on
788 Pain-Related Function in Patients With Chronic Back Pain or Hip or Knee Osteoarthritis
789 Pain: The SPACE Randomized Clinical Trial. *Jama*. 2018;319(9):872-882.
790 doi:10.1001/jama.2018.0899
- 791 39. van der Meij E, Anema JR, Huirne JAF, Terwee CB. Using PROMIS for measuring
792 recovery after abdominal surgery: a pilot study. *BMC Health Serv Res*. 2018;18(1):128.
793 doi:10.1186/s12913-018-2929-9
- 794 40. Chan KS, Chen WH, Gan TJ, et al. Development and validation of a composite
795 score based on clinically meaningful events for the opioid-related symptom distress
796 scale. *Qual Life Res*. 2009;18(10):1331-40. doi:10.1007/s11136-009-9547-2
- 797 41. Knisely JS, Wunsch MJ, Cropsey KL, Campbell ED. Prescription Opioid Misuse
798 Index: a brief questionnaire to assess misuse. *J Subst Abuse Treat*. 2008;35(4):380-6.
799 doi:10.1016/j.jsat.2008.02.001
- 800 42. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new
801 proposal with evaluation in a cohort of 6336 patients and results of a survey. *Ann Surg*.
802 2004;240(2):205-13. doi:10.1097/01.sla.0000133083.54934.ae
- 803 43. Slankamenac K, Graf R, Barkun J, Puhan MA, Clavien PA. The comprehensive
804 complication index: a novel continuous scale to measure surgical morbidity. *Ann Surg*.
805 2013;258(1):1-7. doi:10.1097/SLA.0b013e318296c732
- 806 44. MedDRA. Medical Dictionary for Regulatory Activities. Accessed March 1, 2021.
807 <https://www.meddra.org/>
- 808 45. Colevas AD, Setser A. The NCI Common Terminology Criteria for Adverse Events
809 (CTCAE) v 3.0 is the new standard for oncology clinical trials. *J Clin Oncol*.
810 2004;22(14):6098-6098.
- 811 46. World Health Organization. The use of the WHO-UMC system for standardised case
812 causality assessment. Accessed March 1, 2021.
813 http://www.who.int/medicines/areas/quality_safety/safety_efficacy/WHOcausality_assessment.pdf
- 815 47. Boscariol R, Gilron I, Orr E. Chronobiological characteristics of postoperative pain:
816 diurnal variation of both static and dynamic pain and effects of analgesic therapy. *Can J
817 Anaesth*. 2007;54(9):696-704. doi:10.1007/bf03026866
- 818 48. Suffreda A, Meissner W, Rosendahl J, Guntinas-Lichius O. Influence of depression,
819 catastrophizing, anxiety, and resilience on postoperative pain at the first day after
820 otolaryngological surgery: A prospective single center cohort observational study.
821 *Medicine (Baltimore)*. 2016;95(28):e4256. doi:10.1097/md.0000000000004256
- 822 49. Sullivan MJL, Bishop SR, Pivik J. The pain catastrophizing scale: development and
823 validation. *Psychol Assess*. 1995;7(4):524-532.
- 824 50. McCracken LM, Dhingra L. A short version of the Pain Anxiety Symptoms Scale
825 (PASS-20): preliminary development and validity. *Pain Res Manag*. 2002;7(1):45-50.
826 doi:10.1155/2002/517163

- 827 51. Akbik H, Butler SF, Budman SH, Fernandez K, Katz NP, Jamison RN. Validation
828 and clinical application of the Screener and Opioid Assessment for Patients with Pain
829 (SOAPP). *J Pain Symptom Manage.* 2006;32(3):287-93.
830 doi:10.1016/j.jpainsympman.2006.03.010
- 831 52. Eldridge SM, Chan CL, Campbell MJ, et al. CONSORT 2010 statement: extension
832 to randomised pilot and feasibility trials. *Bmj.* 2016;355:i5239. doi:10.1136/bmj.i5239
- 833 53. Teare MD, Dimairo M, Shephard N, Hayman A, Whitehead A, Walters SJ. Sample
834 size requirements to estimate key design parameters from external pilot randomised
835 controlled trials: a simulation study. *Trials.* 2014;15:264. doi:10.1186/1745-6215-15-264
- 836 54. Viechtbauer W, Smits L, Kotz D, et al. A simple formula for the calculation of sample
837 size in pilot studies. *J Clin Epidemiol.* 2015;68(11):1375-9.
838 doi:10.1016/j.jclinepi.2015.04.014
- 839 55. Braun V, Clarke V. Using thematic analysis in psychology. *Qualitative Research in
840 Psychology.* 2006;3(2):77-101.
- 841 56. Tong A, Sainsbury P, Craig J. Consolidated criteria for reporting qualitative research
842 (COREQ): a 32-item checklist for interviews and focus groups. *Int J Qual Health Care.*
843 2007;19(6):349-57. doi:10.1093/intqhc/mzm042
- 844 57. Luborsky MR, Rubinstein RL. Sampling in Qualitative Research: Rationale, Issues,
845 and Methods. *Res Aging.* 1995;17(1):89-113. doi:10.1177/0164027595171005
- 846 58. Kerr C, Nixon A, Wild D. Assessing and demonstrating data saturation in qualitative
847 inquiry supporting patient-reported outcomes research. *Expert Rev Pharmacoecon
848 Outcomes Res.* 2010;10(3):269-81. doi:10.1586/erp.10.30
- 849 59. Chang AK, Bijur PE, Esses D, Barnaby DP, Baer J. Effect of a Single Dose of Oral
850 Opioid and Nonopioid Analgesics on Acute Extremity Pain in the Emergency
851 Department: A Randomized Clinical Trial. *Jama.* 2017;318(17):1661-1667.
852 doi:10.1001/jama.2017.16190
- 853 60. Marquez-Lara A, Hutchinson ID, Nuñez F, Jr., Smith TL, Miller AN. Nonsteroidal
854 Anti-Inflammatory Drugs and Bone-Healing: A Systematic Review of Research Quality.
855 *JBJS Rev.* 2016;4(3)doi:10.2106/jbjs.Rvw.O.00055
- 856 61. Kelley BP, Bennett KG, Chung KC, Kozlow JH. Ibuprofen May Not Increase
857 Bleeding Risk in Plastic Surgery: A Systematic Review and Meta-Analysis. *Plast
858 Reconstr Surg.* 2016;137(4):1309-1316. doi:10.1097/prs.0000000000002027
- 859 62. Tanne J. Paracetamol causes most liver failure in UK and US. *BMJ.*
860 2006;332(7542):628-628.
- 861 63. Health Canada. About the medical dictionary for regulatory activities. Accessed
862 March 1, 2021. <https://www.canada.ca/en/health-canada/services/drugs-health-products/medeffect-canada/adverse-reaction-database/about-medical-dictionary-regulatory-activities-canada-vigilance-adverse-reaction-online-database.html>