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1. Abstract
a. Provide no more than a one page research abstract briefly stating the problem,
the research hypothesis, and the importance of the research.

Shoulder pain is extremely common after stroke and occurs in 30-70% of patients [1, 2].
The pain may begin as early as one week after stroke [3], although peak onset and severity
occurs around four months [4, 5], and persists into the chronic stage [6, 7]. Chronic post stroke
shoulder pain (PSSP) interferes with motor recovery, decreases quality of life, and contributes to
depression [5, 8, 9]. PSSP is thought to be caused mainly by damage to the myofascial tissues
around the shoulder joint [10-12]. Interestingly, an MRI study in patients with PSSP showed that
the degree of structural damage to the muscles did not correlate with the degree of pain [13].
Thus, the pathophysiology of myofascial dysfunction and pain in PSSP has not been
elucidated leading to missed opportunities for early diagnosis and variable success with pain
management.

The accumulation of hyaluronic acid (HA) in muscle and its fascia can cause myofascial
dysfunction [14]. HA is a glycosaminoglycan (GAG) consisting of long-chain polymers of
disaccharide units of glucuronic acid and N-acetylglucosamine and is a chief constituent of the
extracellular matrix of muscle [15]. In physiologic quantities, HA functions as a lubricant and a
viscoelastic shock absorber [16], enabling force transmission during contraction and stretch [17].
Reduced joint mobility [18] and spasticity [19] result in focal accumulation and alteration of HA
in muscle. This can lead to the development of stiff areas and taut bands, dysfunctional gliding of
deep fascia and muscle layers, reduced range of motion (ROM), and pain [20]. However, the
association of muscle HA accumulation with PSSP has not been established.

We have quantified the concentration of HA in muscle using T1rho (T1p) MRI and found
that T1p relaxation time is increased in post stroke muscle stiffness [21-23]. Since HA is highly
hydrophilic, HA-rich taut bands are hypoechogenic on grey-scale ultrasound (US) [24, 25],
making it possible to develop a clinic-friendly quantitative US tool to infer the abnormal
accumulation of HA. Furthermore, dynamic US imaging using shear strain mapping can quantify
dysfunctional gliding of muscle that may generate pain during ROM [26]. Myofascial
dysfunction can result in non-painful reduction in ROM (latent PSSP), which may become
painful due to episodic overuse injury producing greater shear dysfunction (active PSSP). Hence,
shear strain mapping may differentiate between latent versus active PSSP. Thus, quantitative
MR and US imaging may serve as useful biomarkers to elucidate the pathophysiology of
myofascial dysfunction.
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IMPACT

This proposal will develop quantitative imaging biomarkers of myofascial dysfunction in PSSP
and assess their ability to monitor response to treatment. It aligns with the NIH HEAL Initiative
to bolster research to improve treatment and enhance pain management.

2. Objectives (include all primary and secondary objectives)

AIM 1. Quantify the extent of HA accumulation in shoulder muscles using quantitative
MRI and US.

Research Hypothesis. Patients with PSSP will show increased T1p relaxation times in the
paretic compared with the non-paretic muscles, which will correlate with a distinct echo texture
pattern on US.

AIM 2. Distinguish between latent versus active PSSP using US shear strain mapping in
the paretic compared with the non-paretic muscles.

Research Hypothesis: Shear strain will be lowest in active PSSP compared with latent PSSP,
relative to the non-paretic side.

3. Background (briefly describe pre-clinical and clinical data, current experience with
procedures, drug or device, and any other relevant information to justify the research)

Contribution of Myofascial Dysfunction to PSSP. A large proportion of post-stroke pain is
musculoskeletal, with shoulder pain contributing the largest fraction [27]. The human shoulder
is a complex shallow ball-and-socket joint, and its multidirectional mobility is highly dependent
on the coordinated action of several muscles shown in Figure 1A. A key characteristic of
shoulder movement is the scapulohumeral rhythm which is the ratio of glenohumeral motion to
scapulothoracic motion during humeral elevation (Figure 1B) [28]. The scapulohumeral rhythm
is disrupted after stroke due to a combination of impaired strength, increased tone,
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Figure 1. Shoulder girdle and arm muscles (A) largely responsible for the scapulohumeral rhythm (B). Characteristic posture with increased
shoulder internal rotation during attempted arm elevation causing shoulder pain after stroke (C).
incoordination due to aberrant muscle recruitment, and fatigue [10], leading to reduced humeral
elevation and scapular upward rotation and increased scapular internal rotation during arm
elevation [29, 30], which predispose to shoulder pain [31] (Figure 1C).
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Studies have reported that 85% of patients with spastic hemiplegia experience pain compared
with 18% of those with flaccid hemiplegia [32]. Muscle shortening and decreased ROM
associated with spasticity and muscle stiffness can exert tension on the muscles and cause pain
during stretching. Reduced shoulder ER is strongly correlated with shoulder pain [33-35], which
if left untreated can result in painful contracture of the shoulder [36]. Restricted muscle ROM,
in turn, can increase the risk of muscle injury, nerve impingements and produce excessive shear
and compressive joint forces that may also contribute to shoulder pain [13, 37, 38]. Despite the
known involvement of the muscles in shoulder pain, the pathophysiology of myofascial
dysfunction is unclear, which impedes both prevention and effective treatment of PSSP.

Intramuscular HA and its Contribution to Myofascial Dysfunction. Even in the absence of
any active force generation, the non-contractile elastic elements in muscle generate passwe
forces when stretched [39]. The endomysium,
perimysium and epimysium collectively form the
extracellular matrix (ECM) of muscle and are
composed of collagens and elastic fibers
embedded in a viscoelastic gel of proteoglycans,
glycoproteins, and glycosaminoglycans (GAGs)
such as HA. When the myofibrillar proteins and
proteoglycans are removed, the honeycombed 3-D
network of the collagenous connective tissue can
be seen [40-42] (Figure 2A). When a muscle fiber
contracts or is stretched, the preferred orientation
of the collagen fibers in the endomysium changes , , (/Y
accounting for the non-linear increase in passive Figure 2. Scanning electron mlcrographs of muscle after
resistance and leads to trans-laminar shear during removal of myofibrillar proteins and proteoglycans
force transmission through the ECM [42, 43]. HA 5 1A wih Ha binding proteim adiseunt 1 the ndomysiien
is the most abundant molecule in the ECM — it is (arrows) and especially in the perimysium (* in white

. e e . circles) (B).
present around the endomysium of individual
muscle fibers and in the perimysium and
epimysium of human muscle [44] (Figure 2B). The perimysium and epimysium define slip
planes between muscle fascicles and whole muscles, enabling them to slide past each other
during stretch and contraction, causing large shear displacements and shape changes in the
whole muscle [17]. The shear forces across adjacent muscle fibers, muscle bundles and whole
muscles are strongly determined by the composition and viscoelastic properties of the
proteoglycan matrix of the ECM, specifically of HA.
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A 1000000

HA has been traditionally regarded as a space-filling
ground substance [44, 45]. It is the only non-sulfated 100000
GAG composed of a repeating disaccharide of
glucuronic acid and N-acetyl glucosamine that forms
long chains or polymers assuming molecular weights
of the order of 10° to 107 Da and an extended length of
0.25-25 um [46]. The chemical structure of HA makes

it highly hydrophilic, enabling the molecule to retain L -
water and swell. However, as the concentration and i 5
molecular weight of HA increases, it entrains more
water and the viscosity of the solution increases
exponentially [47, 48] (Figure 3A); a 10 mg/ml
solution of 1.5 x 10° Da HA has a viscosity 5000x that
of water. The molecular weight and viscosity of HA
solutions affects tissue lubrication, hydration, and the
physical stiffness of the tissues [49]. HA shows non-
linear viscoelastic behavior [50-54], implying that a
muscle with higher HA concentrations, and hence
higher viscoelasticity will show greater passive
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resistance to stretch or contraction. Thus, the Figure 3. HA in physiological saline (experimental),

. . . . shows marked increase in viscosity with increasing
concentration and rheological properties of the HA in concentration — nonideal behavior (A). Muscle spindles
the ECM of muscle can contribute significantly to (MS) and the perineural areas (N) are abundant in HA

(brown stained) (B). The two sides show the same

increased passive resistance during movement [55, structures that are stained differently

56], which may produce myofascial dysfunction.

Muscle spindle receptors and nerve fibers, responsible for sensing and responding to stretch,
reside within the HA-rich perimysium, and are also abundant in HA [57] (Figure 3B). The axial
and periaxial spaces of the muscle spindles, all layers of the spindle capsule, as well as the
endoneurium in the space between individual axons are rich in HA. The presence of HA in the
periaxial fluid has been shown to be responsible for the transcapsular potential which increases
the sensitivity of the sensory endings to mechanical stimuli [58]. Alteration in the viscosity of
the HA solution in the muscle spindle and around the nerve endings can thus increase the
sensitivity of the muscle spindles and nerves to stretch [59, 60], potentially causing dysesthesia
and pain.

Imaging HA Accumulation in Stroke and Myofascial Dysfunction using MRI. We proposed
the hyaluronan hypothesis of muscle stiffness, which postulated that the deposition of HA in the
ECM of muscle contributes to the development of muscle stiffness by dramatically altering its
viscosity [19, 25]. This hypothesis was informed by a study where the ankle joint in rats was
immobilized, which resulted in increased muscle HA content and muscle shortening 4 weeks
post-immobilization compared to controls [18]. However, thickening and disorganization of
endomysial collagen fibrils only became apparent by 12 weeks post immobilization. In a proof-
of-concept study to determine if patients with post-stroke arm immobility and muscle stiffness
also show increased HA accumulation, we performed T1p MRI to quantify the T1p relaxation
time in the upper arm muscles of patients post stroke compared to healthy controls [61] (Figure
4). Note that the T1p relaxation time is non-uniformly increased in the muscle, with perhaps
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more accumulation in the perimysium, between the muscle fascicles. This may have caused an
alteration in the shape of the muscles post stroke [17], which appear to be stuck together, giving
the upper arm a triangular shape compared to controls. While the T1p MRI is not specific for
HA, HA is the most abundant GAG, and subsequent studies showed that it can be reduced with

the enzyme hyaluronidase (see Section A.5), suggesting that HA is responsible for the signal.
Slice 1 Slice 2

Interestingly, histological studies in
animal models of overuse injury also
show increased levels of HA in the
epimysium of the overused muscle - (
HA concentration increased 2.8-fold
after 2 days of overuse and remained
significantly increased at 7 days, and

Control

]

£
then decreased gradually towards g
control levels by 14 days [62]. &
Overuse injury causing myofascial (B)
pain in humans has also been Figure 4. Quantification of GAG in muscle using T1rho (T1p) MRI. Note

increased intramuscular T1p relaxation times (more red) in patients with

associated with HA accumulation [14]' post stroke muscle stiffness compared to controls.

The formation of taut bands that
constitute trigger points is attributed to increased viscosity from focal accumulation of high
molecular weight chains of HA [24]. This can result in dysfunctional gliding of deep fascia and
muscle layers, forming the basis of myofascial pain [20]. We published a recent case series of
patients with non-traumatic chronic myofascial pain in the lateral aspect of the elbow who
showed imaging evidence of abnormally elevated GAGs using T1p MRI [21] (Figure 5, PRE).
Note that this accumulation is primarily in the epimysium and in the extra-muscular fascia,
and decreased
] after fascial
\ Y L. - @' manipulation
== - - N treatment

_ (Figure 5,
@" ' " @" POST). This data
- - ) is consistent with
3 4 5 6 7 the data from

animal models of
Figure 5. Quantification of GAG using T1rho (T1p) MRI in myofascial pain. Note increased overuse iniu
T1p relaxation times (red) in the extra-muscular fascia in patients with lateral elbow pain jury
(pre, arrows) and its reduction after fascial manipulation (post, arrows). [62], and

suggests that HA
synthesis is stimulated by muscle overuse, but it may not be a problem unless the stimulus
persists, or is followed by immobility, for example due to paresis from a stroke. Exercise in
healthy individuals has been shown to increase serum HA significantly, but the serum levels
decrease rapidly to lower than resting levels by 30 min post exercise [44], suggesting that
movement mobilizes HA from muscle into the circulation, which is cleared rapidly. Conversely,
lack of movement, for example, overnight, can lead to morning stiffness which improves as HA
is mechanically driven out into the circulation by physical activity upon awakening [63]. Taken
together, these studies demonstrate that both immobility and muscle overuse can lead to HA
accumulation in muscle and imaged using T1p MRI.
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US is more accessible than MRI for clinical imaging [64]. Healthy muscles look dark with sharp
bright lines on grey-scale US. The dark signal is hypoechoic and the bright lines represent
hyperechoic signal from collagen fibers in the endomysium and perimysium. The echogenicity
of muscle tissue can describe alterations in the structure of muscles. Trigger points, which are
stiff nodules in a taut band of muscle, present a hypoechoic signal [65, 66], which can be
explained by the fact that HA is hydrophilic, and areas of HA accumulation entrain more water
and become highly viscous [47, 48]. Increased ECM viscosity leads to “densification” or
increased stiffness of the tissue [67]. Qualitative assessment of muscle echo, however, cannot
provide an accurate measure of tissue properties [68]. Recently, quantitative US has emerged
where the envelope statistics of the radiofrequency components of the backscattered US signal
can be used to objectively differentiate tissue properties [69]. US scattering occurs primarily at
interfaces, such as connective tissues of the endomysium, perimysium, and fascia and other
components, including muscle cells, fat, and fibrous tissue; the mismatch of acoustic impedance
can be quantified to provide echo texture maps to characterize tissue properties [70, 71], and
statistical maps of muscle echo texture can be used to diagnose myofascial dysfunction [72].
Thus Aim 1 will quantify the extent of HA accumulation in paretic shoulder muscles
compared with the non-paretic side in patients with PSSP using T1p MRI, and secondarily
correlate the T1p MRI measures with US echo texture to develop a clinic-friendly tool to
infer extent of HA accumulation.

Imaging Myofascial Dysfunction and Differentiating Latent and Active Pain Using
Quantitative US. The relationship of abnormal HA accumulation in muscle to pain is likely to
be dependent on muscle use. An MRI study of 89 patients with chronic PSSP showed that 35%
of subjects exhibited a tear, and 53% of subjects exhibited tendinopathy of at least one rotator
cuff, biceps or deltoid muscle. However, the tears and tendinopathies were not related to the
severity of PSSP; instead, the degree of muscle atrophy was related to reduced severity of PSSP
[13]. Since patients with PSSP also have greater motor impairment [12], they are likely to move
it less, leading to more atrophy, and less pain. A study of the incidence and prevalence of PSSP
among different regions of the world suggests that it is more prevalent in regions that offer more
rehabilitation, suggesting that PSSP may be triggered by microtrauma during movement [73]. A
stiff, shortened muscle is more likely to resist stretch, and become injured and inflamed during
use. Shoulder pain during movement, especially during shoulder ER after stroke, predicts long
term shoulder pain [74], suggesting that active PSSP is perhaps provoked by overuse of already
dysfunctional, stiff shoulder muscles, making it distinguishable from latent PSSP.

Strain is the most commonly encountered muscle injury and characteristically occurs at the
musculotendinous junction, where maximal stress accumulates, especially during eccentric
(stretching) exercise [75]. The epimysium is continuous with the musculotendinous junction
[76], and overuse injury is associated with accumulation of HA in the epimysium [21]. Since
alteration in the viscoelastic properties of the accumulated HA can dramatically alter the shear
plane motion [17], post-stroke muscle stiffness overlaid by overuse injury may cause greater
shear dysfunction. However, the shear dysfunction and strain injury from microtrauma or
overuse injury may not be detected using routine MRI or US [77, 78]. Shear strain can be
quantified by US shear strain mapping -- a computational technique where a series of ultrasound
images are acquired in rapid succession and cross correlation methods are used to quantify the
relative mobility of layers within inter- and intramuscular fascia during motion [26]. Using this
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technique, it was found that shear strain was reduced by 20% in the thoracolumbar fascia during
passive movement in individuals with low back pain versus those without low back pain. Hence
it is possible that quantification of shear strain will be able to distinguish between latent and
active PSSP compared with the healthy state. Thus Aim 2 will distinguish between latent
versus active PSSP using US shear strain mapping during passive shoulder ER in the
paretic shoulder muscles compared with the non-paretic side.

INNOVATION
This proposal is innovative in several ways:

MR/US Imaging Innovation: T1p relaxation mapping of muscle will quantify GAG content
in muscle non-invasively. Direct methods using muscle biopsy and staining for HA are not
ethical or practical to perform before and after injections in humans. Our research team has
shown that it is feasible to use 3D-T1p to map GAG content in muscle in patients with stroke and
myofascial dysfunction non-invasively [21-23], without the use of exogenous contrast agent
injection or radiofrequency hardware modifications. In addition, we will correlate T1p relaxation
times with statistical echo texture maps obtained using quantitative US to develop a clinic-
friendly tool to infer extent of HA accumulation. These innovations will establish the
pathophysiology of myofascial dysfunction in PSSP to enable appropriate treatment and
monitoring.

Quantitative US Innovation 2: Shear strain mapping has the potential to differentiate
between latent pain and active pain in PSSP. Movement restriction reduces shear strain
measured using quantitative US in a porcine model of back pain. However, the combination of
movement restriction and local injury leads to an additive, and quantifiable reduction in US shear
strain [79], suggesting that US shear strain mapping may be able to differentiate latent PSSP (due
to movement restriction alone) from active PSSP (due to a combination of movement restriction
and local injury). Using this method in PSSP will enable the quantification of the underlying
pathophysiology that leads to latent and active PSSP. This will enhance pain management to
address the underlying pathophysiology rather than just provide symptomatic relief.

Approach Innovation: We will use the Bimanual Arm Trainer (BAT) to provide passive
shoulder ER and assess pain-free shoulder ER. Several
studies show a strong association between shoulder immobility
and non-use, stiffness in the pectoralis major muscle,
limitation in shoulder ER and PSSP [33-35] (Figure 6). We
will use the BAT — an FDA-cleared device designed
specifically to provide gentle, controlled passive ER-ROM Figure 6. Immobility and n onuse of the
(unimanual mode) at a fixed rate during shear strain mapping. paretic upper limb leads to stiffness and
For precise quantification of pain-free passive ER-ROM ﬁg?tffggﬁomég E;fg’éa,\'/if major muscle,
before and after treatment in the clinical trial, patients will use

the non-paretic limb as the actuator (bimanual mode) enabling safe movements that are patient-
controlled [80].

APPROACH

Overview: The primary objective of the R61 phase is to identify and develop quantitative
measures that can differentiate abnormal myofascial tissues in latent versus active PSSP from
relatively healthy tissues on the non-paretic side along with cross-sectional correlations with
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clinical signs and symptoms. In addition, we will build the team to plan the R33 phase clinical
trial during this first phase.

Definition of latent PSSP: The latent phase includes myofascial dysfunction, including soft tissue
stiffness and non-painful reduction in ROM, which may be accompanied by focal palpable
nodules that are tender to palpation. We will define latent PSSP as a difference of more than 10
degrees of passive ER-ROM between the non-paretic and paretic shoulders, with focal
palpable nodules that may be tender on palpation with pain rating of <5/10 [81].

Definition of active PSSP: During the active phase, the patient has painful reduction in ROM,
spontaneous pain, and localized, tender
indurated nodules on palpation of muscles
that reproduces the local and/or radiating
pain. Rajaratnam et al. found that a positive
Neer test, which elicits pain on passive
forward elevation of the arm with the scapula
stabilized (Figure 7A), combined with the
hand-behind-neck (HBN) maneuver eliciting : - :

a pain rating of > 5/10 (Figure 7B), and a (HBN) tost (8) used o ciagnose actve PSSP @) |
difference of more than 10 degrees of passive

ER-ROM between the non-paretic and paretic shoulders has a 98% probability of predicting
PSSP with 96.7% sensitivity and 99.0% specificity [81]. We will define active PSSP as a
difference of more than 10 degrees of passive ER-ROM between the non-paretic and paretic
shoulders, with focal palpable nodules that are tender on palpation, reproducing the pain, and
eliciting a pain rating of 25/10 when combined with the HBN maneuver.

4. Study Procedures
a. Study design, including the sequence and timing of study procedures
(distinguish research procedures from those that are part of routine care).

All procedures will be conducted solely for study purposes. We will conduct a cross-sectional
observational study in 40 patients for the R61 phase. 20 patients will have latent PSSP with non-
painful restriction in passive shoulder ER-ROM in their paretic arm, and 20 will have active
PSSP with painful (> 5/10) restriction in passive shoulder ER-ROM as defined above. All 40
subjects will also undergo testing on their non-paretic arm which will serve as a proxy for
“healthy” control. All subjects will undergo 3 types of quantitative imaging of the pectoralis
major (key internal rotator) and infraspinatus (key external rotator) muscles of both arms: (1)
3-D T1p MRI to quantify the extent of HA accumulation (primary outcome for Aim 1), (2)
Quantitative US statistical echo texture mapping (secondary outcome for Aim 1), and (3)
Quantitative US shear strain mapping to distinguish between latent and active PSSP on the
paretic side compared with the non-paretic side (primary outcome for Aim 2).

After obtaining informed consent, subjects will be screened to ensure that they meet inclusion-
exclusion criteria. They will then undergo the following clinical and imaging assessments.

Clinical Assessments: All clinical assessments will be performed on both arms and be used to
correlate with the imaging measures.
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Passive ROM in the upper limb will be measured at the shoulder (flexion-extension, abduction-
adduction, internal and external rotation) in the standard sagittal, horizontal and coronal planes
using video and/or 3-D motion capture techniques (Motion Monitor, Innovative Sports Training,
Inc., Chicago, IL) [82]. This system uses the trackSTAR 800 sensor (Ascension Technology
Corp., VT) that has a static resolution of 0.5 mm for position and 0.1° for angular orientation
[83]. During passive ROM, we will also assess muscle stiffness with the Modified Ashworth
Scale [84] to determine the degree of resistance [85].

Shoulder pain characteristics will be measured by assessing shoulder pain onset, pain location,
pain during movements and/or at rest, pain at touch, pain intensity, pain quality and intake of
medication for the shoulder pain. The pain quality will be assessed as dull ache, stabbing/
cutting, scurrying/radiating, burning, muscle cramps or tiredness, or described by the patient.
Sensory testing for light touch will be assessed using a cotton swab in the upper arm and
forearm, hands and fingers, and recorded as normal, diminished, increased or absent.
Hypoesthesia (decreased sensitivity to tactile stimulation), Hypoalgesia (diminished pain in
response to a normally painful stimulus), Hyperesthesia (increased sensitivity to tactile
stimulation), Dysesthesia (an unpleasant abnormal sensation, whether spontaneous or evoked),
and Allodynia (pain due to a stimulus that does not normally provoke pain) will be defined as per
the taxonomy of the International Association for the Study of Pain (IASP) [86]. We will assess
for vasomotor changes such as limb edema and color, and alterations in skin temperature
between the paretic and non-paretic limbs due to local hyperactivity of the sympathetic nervous
system [89, 90]. We will also assess local stiffness, using the stiffness rating scale [24] and the
Pact sense muscle scanner which quantifies “haptic feeling” or what the muscle feels like when
probed with the hand (https://www.thepact.com/technology). The Pact sense quantifies stiffness,
measured in units of [N/m] and damping, measured in units of [Ns/m], as well as their slopes,
and the symmetry across the measurements of the two sides of the body. The measurement
process is purely mechanical and non-invasive, and includes no optical, electrical, or chemical
interactions with the skin or muscles. In addition, we will measure pressure sensitivity thresholds
using an algometer and rate the pain elicited on a pain rating scale.

Upper limb motor impairment will be measured using the upper limb Fugl-Meyer Scale (FMS)
[91], a validated, widely used, standard scale of motor impairment post-stroke. It consists of 33
tasks, each is scored on a 3-point scale (0 unable to perform, 1 partially perform, 2 faultless
performance); the maximum score for the upper extremity is 66. The FMS score reflects the
degree to which joint movements can be isolated.

Upper limb function will be measured with the Wolf motor function test (WMFT) [92], a battery
of functional tasks that are timed and scored on movement quality. We will use the streamlined
version, which has six tasks [93], and has been validated for use in the subacute stage post-stroke
[94].

Stroke-specific quality of life will be measured using the Stroke Impact Scale [95, 96], a self-
reported health status measure that assesses multidimensional stroke outcomes in eight domains:
strength, hand function, mobility, activities of daily living, emotion, memory, communication,
and social participation. Additionally we will assess depression using the PHQ-2, as pain and
depression are strongly associated [97].

HEAL core pain clinical patient reported outcomes: The following pain-related patient-reported
outcomes will be collected-- Pain, Enjoyment of life and General Activity (PEG) scale, PROMIS
Physical Function Short Form 6b, PROMIS Sleep Disturbance form 6a and sleep duration
question, Pain Catastrophizing Scale Short Form 6, Patient Health Questinnaire-2, Generalized
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Anxiety Disorder-2, Patients’ Global Impressions of Change (PGIC) scale, and the Tool’s First-
Stage Screening Component (TAPS-1).
Imaging Assessments: All imaging assessments will be performed on both arms.

Aim 1: Quantify the extent of HA accumulation in shoulder muscles using quantitative
MRI and US.

(a) T1p MRI: All images will be acquired using a 3T Prisma whole-body MRI scanner (Siemens
Healthcare, Erlangen, Germany) in the Nelson/Harvey building, employing a body coil (Tx)/ flex
wrap receive array coil with 8 coil-elements over the pectoralis major and infraspinatus muscles.
Anatomical muscle MR images (proton density, T1-w and T2-W) will be acquired using 2D-FSE
sequences. A 3D-turbo-FLASH (fast, low angle shot) MRI sequence with a customized T1p
preparation module will be used to enable varying spin lock durations (TSL). A paired self-
compensated spin-lock pulse will be used to minimize B0 and B1 variations [98]. The sequence
parameters will include FOV = 130 mm, matrix size = 256 x 64 x 64, TR = 1500 ms, resolution
= 0.5 x 2 x 2 mm2, spin-lock frequency = 500 Hz, 10 TSL durations =2, 4, 6, 8, 10, 15, 25, 35,
45, 55 ms. acquisition duration = ~18 minutes for each arm. The MRI body coil will be used for
transmission, and vendor supplied flexible receive array coils (8 coil elements each) will be used
to image the non-paretic and paretic sides in all subjects. To investigate the extent to which fatty
infiltration in skeletal muscle plays a role, Dixon based methods will be used to separate fat and
water distribution using the iterative decomposition of water and fat with echo asymmetry and
least-squares estimation (IDEAL) technique [99, 100]. The Dixon water/fat imaging parameters
will include TR = 9.3 ms, TE = (2.26, 3.08, 3.90) ms, FOV = 180 mm, matrix size = 128 x 128,
resolution = 1.4 x 1.4 mm?2, total acquisition time ~ 4.5 min for each arm. Total scan time for
both arms will not exceed 90 min.

MRI Data Processing: Manual ROIs will be drawn for the pectoralis major and infraspinatus
muscles. The mono-exponential T1p mapping will be performed by fitting the signal intensity at
different spin-lock durations for each pixel using a three-parameter non-linear mono-exponential
model (Equation 1) where S is the signal intensity, A is the amplitude, TSL is the spin lock
duration, T1p is the mono-exponential relaxation time in the rotating frame, and AO is the
average noise level [22, 23]. For the Dixon water-fat imaging,
IDEAL post-processing will be used to separate the water and fat
images from the 3-echo images. Water-fractions and fat-fractions 8§ = A - e “MTe + A
will be calculated from the water and fat images. The fat-fraction

maps will be used to quantify fat infiltration in the muscles.

Equation 1

MRI Data Analysis: The mean values and standard deviations of T1p relaxation times (ms) will
be obtained from the defined regions of interest in the pectoralis major and infraspinatus muscles
and will be compared on the paretic and non-paretic sides using mixed model analysis wherein
the two sides are nested within one person, and healthy (non-paretic) versus latent PSSP versus
active PSSP are examined as fixed effects. Prior to final analysis we will perform model
diagnostics to assure that model assumptions regarding the fixed and random effects are met.
The mean water and fat fractions of the muscles will also be obtained in percentages to quantify
fat infiltration in the muscles, which will be used as predictors in the analysis. We will use
Pearson’s correlations to correlate the clinical and imaging measures.

Expected results, potential pitfalls & solutions: We expect an increase in T1p relaxation times in
the paretic pectoralis major and infraspinatus muscles compared with the non-paretic side. We
may also see a difference in location of the signal and/or relaxation times between latent and
active PSSP. For example, subjects with active PSSP may show higher relaxation times in the
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epimysial regions as seen with overuse injury, whereas subjects with latent PSSP may show
higher relaxation times in the perimysial region. A two-compartment model of T1p mapping (bi-
exponential model) can separate out the signal from the GAG content and the free water content
of the ECM, and delineate a clearer picture of the extracellular environment of the muscle [23].
We can also analyze the data collected using this model, which may differentiate latent form
active PSSP.

All the MRI data will be collected and analyzed in collaboration with co-I Dr. Laura Fayad at
Johns Hopkins in conjunction with Dr. Rajiv Menon at NYU Langone.

(b) US Echo Texture Mapping: Ultrasound imaging will be performed with an Alpinion E-
CUBEI2R US system (Seoul, South Korea) equipped with an L8-17 transducer with a frequency
range of 8 to 17 MHz and a 20-mm width or the Clarius C3 Scanner HD (Vancouver, Canada) in
the Motor Recovery Research Lab. The participant will be seated comfortably with the arm
supported on an arm rest. The skin surface over the pectoralis major muscle will be marked with
the muscle relaxed. All images were acquired with the same US system settings. The
musculoskeletal imaging preset will be used with a 10-MHz center frequency, 3-cm depth, and
76-dB dynamic range. The pectoralis major muscle will be visualized in cross section at the
location of the skin mark, and images will be acquired with the muscle relaxed, with the US
transducer held steadily at the same anatomic location, in a direction perpendicular to the skin
surface. Raw RF US data will be saved at a sampling frequency of 40 mega-samples/s.

US Data Processing: The intensity of the raw RF US data will be calculated using the Hilbert
transform. For each participant, a single B-mode image frame at rest will be selected. Two
different types of analyses will be performed. First, we will create spatial parameter maps by
estimating the statistical model parameters from the histogram of echo intensities within a
moving rectangular window. The window size will be varied from 3 times the acoustic
wavelength to 7 times the wavelength. Second, we will select the entire muscle as the ROI for
estimating the model parameters. For this analysis, the muscle will be identified manually in the
corresponding B-mode images, and the muscle boundary will be manually marked by identifying
the hyperechoic fascia boundaries. The entire muscle will be considered the ROI for analysis,

including all fascia interfaces inside the 40, A2) Hooltiy vobipioo 15 ol e

muscle boundaries. The backscattered = e o
intensities within this muscle ROI will ! poa Lo

be normalized by the maximum value . 10

within the ROI and analyzed as per the 525: s

theoretical models described in [69]. z= g

US Data Analysis: The model ?‘f" § 5

parameters (signal to noise ratio (SNR), 0|

shape and rate of the single gamma s W

distribution, and shape, rate, and o IR 0

mixture probability of the gamma R e e L W
distributions (fOI‘ example, Figure 8) Figure 8. Histogram of backscattered US intensities in a healthy volunteer and

will be estimated from the muscle in a patient with cerebral palsy.

images at rest in the non-paretic and paretic pectoralis major and infraspinatus muscles. We will
use the SNR parameters to investigate the deviation from purely diffuse scattering. We will then
investigate whether the gamma distributions are a good fit to the underlying data using
descriptive statistics and the Chi-square goodness-of-fit statistic. The estimated parameters will
be compared between the non-paretic and paretic sides. Log transformations will be applied to
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the rate parameters to approximate normality. Pearson’s r will also be used to assess the
correlation between the T1p relaxation times, and the shape and rate parameters of the gamma
distributions with sufficiently high signal to noise ratio (SNR) obtained from the statistical echo
texture maps US.

Expected results, potential pitfalls & solutions: We expect that at least one of the shape and/ or
rate parameters for a mixture of two gamma distributions from the backscattered echo intensity
of the muscles will correlate strongly with the T1p relaxation times. If so, this will provide a
quantitative clinic-friendly tool to infer the GAG/HA accumulation in the muscle, which will
enable treatment monitoring. A limitation of using a mixture of gamma distributions is that the
quantitative US model parameters cannot directly be linked to some tissue characteristics such as
the effective scatterer size or coherent scatterer power, which may be possible with the use of
more sophisticated model fits such as the homodyne K distribution. However, the parameters of
the gamma distribution do relate to tissue characteristics that affect coherent and diffuse
scattering, and changes in the parameters are directly related to changes in the tissue composition
and microarchitecture. One advantage of using the mixture of gamma distributions is that the
parameter estimation can be performed robustly by using well-established approaches.

Aim 2: Distinguish between latent versus active PSSP using US shear strain mapping in the
paretic compared with the non-paretic muscles.

(c) US Shear Strain Mapping: We will use the Bimanual Arm Trainer to passively move the
shoulder repeatedly into ER at a steady rate set by a metronome (Figure 9, unimanual mode).

This has the A c
C ter t

advantage Of Grasping handles - \ca‘;l:rr)g Sroﬁﬂl
. = and display
Creatlng a feedback

reproducible rate
and amplitude of Frictionless

. . arm troughs Adjustable
mput motion height table
which is difficult

to achieve

otherwise. The
movement can be
performed by
moving the trough
for one arm which
is transduced to

Figure 9. The Bimanual Arm Trainer is an FDA-cleared device that facilitates rate controlled
the other arm. The passive shoulder ER-ROM on the paretic side for shear strain mapping, as well as for precise
subject will be assessment of pain-free shoulder ER-ROM before and after treatment for Aim 3.

positioned in a seated position as shown in Figure 9B so that the infraspinatus muscle is
accessible from the back, and the pectoralis major muscle will be accessible from the front. The
skin over the muscles will be marked and the transducer will be stabilized so that the tissues are
not compressed at any time. Shoulder ER will be performed repeatedly at 0.5 Hz starting from a
position of internal rotation with a range of 30° excursion for each cycle. This is ~1/3™ of the full
range of motion and will bring the forearm into neutral position. During this motion, we will
collect an ultrasound cine-loop, sampled at 1 Hz over a 30 second period also using the scanner
system used in Aim 1.
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US Data Processing: US data acquired from the non-paretic and paretic sides will be processed
with a custom program written in Matlab (Natick, MA). Tissue displacements between
successive US frames will be estimated from the “raw” US radio frequency (RF) data using
cross-correlation techniques [101, 102] with a 1 mm window incremented with a 90% overlap.
The term “US frame™ refers to the RF data acquired at each time point in the cine-loop. Tissue
lateral displacement will be computed for each successive pair of US frames ina 1 x 1.5 cm ROI
centered laterally on the midpoint of the image. To visually document the presence of a shear
plane within the muscle, we will generate successive displacement maps as a spatial
representation of the displacement within the ROI for each pair of US frames. Corresponding
cumulative lateral displacement maps will be obtained by summing tissue displacements over
time. To calculate the magnitude of shear deformation at a standardized location across subjects,
we will use a reference echolucent plane that is relatively stable during the movement and define
sub-ROIs each 2 mm x 10 mm for analysis. The maximum shear strain in the sub-ROIs will be
averaged and used for statistical analysis.

US Data Analysis: The mean values and standard deviations of the maximum shear strain will be
obtained from the defined regions of interest in the pectoralis major and infraspinatus muscles
and will be compared for latent and active PSSP on the paretic and non-paretic sides using mixed
model analysis, as described above for Aim 1. We will use Pearson’s correlations to correlate the
clinical and imaging measures.

Expected results, potential pitfalls & solutions: We expect that the mean maximum shear strain
will be statistically significant between the healthy (non-paretic) and paretic latent and active
PSSP groups to proceed to the R33 phase. We will have twice as much data for the non-paretic
arm than for the latent and active PSSP groups. Since some subjects with stroke may not have
perfectly healthy non-paretic sides, we will use the data from the healthiest subjects based on
their clinical testing, which may provide a greater separation between these groups. The
quantitative US data will be collected and analyzed in collaboration with Co-1 Dr. Muyinatu
Bell at Johns Hopkins with Co-I Dr. Siddhartha Sikdar at George Mason University.

b. Study duration and number of study visits required of research participants.
This study is cross-sectional and will take place over two-years. Each participant will come to
the lab for three sessions (for clinical assessment, ultrasound and MRI), each of which will take
around 3-4 hours.

c. Definition of treatment failure or participant removal criteria.
Patients will be advised verbally and in the written ICF that they have the right to withdraw from
the study at any time without prejudice or loss of benefits to which they are otherwise entitled.
The investigator may discontinue a patient from the study in the event of an intercurrent illness,
adverse event, and other reasons concerning the health or well-being of the patient, or in the case
of lack of cooperation, non-compliance, protocol violation, or other administrative reasons. If a
patient does not return for a scheduled visit, every effort will be made to contact the
patient/caregiver. Regardless of the circumstance, every effort will be made to document patient
outcome. The investigator / study team will inquire about the reason for withdrawal, and follow-
up with the patient/ regarding any unresolved adverse events. If the patient withdraws from the
study, no further evaluations will be performed and no additional data will be collected, but vital
status will be documented at the end of the study period.

JHMIRB eFormA 01
Version 4 Dated: 01/2021
Page 13 of 23



Date: August 28, 2023
Principal Investigator: Preeti Raghavan
Application Number: IRB00354876

d. Description of what happens to participants receiving therapy when study ends
or if a participant’s participation in the study ends prematurely.
The unique identifier key will be retained and will be destroyed two years after the study ends.

e. If biological materials are involved, please describe all the experimental
procedures and analyses in which they will be used.

Not Applicable
5. Inclusion/Exclusion Criteria
Inclusion Criteria
° 18 years or older
° Hemiparesis from Ischemic or Hemorrhagic Stroke
° 4- 180 months post-stroke with Hemiparesis since the incidence and intensity of PSSP
° Show a difference of more than 10 degrees of passive ER-ROM between non-paretic and

paretic shoulders with or without pain
° Able to provide informed consent and comply with testing protocols

Exclusion Criteria

° Received treatment for spasticity with Botulinum Toxin or Intrathecal Baclofen within
the past three months
° Have another neurologic condition that may affect motor response (e.g. Parkinson’s
disease, ALS, MS)
° Have a contraindication to MRI (claustrophobia, magnetic pacemakers and clips)
° Have non-musculoskeletal PSSP such as only central pain or chronic regional pain
syndrome (CRPS)
° Have a complicated medical condition, or significant injury to either upper limb.
6. Drugs/ Substances/ Devices
a. The rationale for choosing the drug and dose or for choosing the device to be
used.

b. Justification and safety information if FDA approved drugs will be administered
for non-FDA approved indications or if doses or routes of administration or
participant populations are changed.

c. Justification and safety information if non-FDA approved drugs without an IND
will be administered.

There is no drug or device intervention in this observational study.

7. Study Statistics
a. Primary outcome variable.
This study has two primary outcomes. The first, which is the primary outcome for AIM 1, is to
quantify the extent of HA accumulation using 3-D T1p MRI in both arms. The second, which is
the primary outcome for AIM 2, is to use Quantitative Shear Stain Mapping to distinguish
between latent and active PSSP on the paretic side compared with the non-paretic side.

b. Secondary outcome variables.
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For AIM 1, the secondary outcome is the imaging that results from the Quantitative US
Statistical Texture Mapping.

c. Statistical plan including sample size justification and interim data analysis.

We determined our sample size for the R61 Phase based on the more stringent sample
size requirement for Aim 2, which will compare two independent groups, i.e., patients with latent
PSSP vs. patients with active PSSP in the paretic arm. Because Aims 1 and 2 have different
measurements, we present our power analysis in terms of standardized effect sizes (Cohen’s d),
which would be applicable to either measurement (26).

Langevin et al’s data on shear strain mapping in patients with and without low back pain
(LBP), showed that the shear strain was reduced in the LBP group (56.4% = 3.1%) compared
with the No-LBP group (70.2% + 3.6%), i.e., an extremely large effect size of 3.8, suggesting

that large effect sizes are biologically plausible. [ N=40 subjects poststroke |
. . . N |
The faffect sizes in Bishop et al’s follow up [Nonparctca] [rareticamn]
porcine study (83), showed equally large effect o~
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versus animals with restricted movement (similar I I
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. . . . . Quantify extent of : ing durin Define thresholdsto

restricted movement plus injury (similar to HA accumulation n u- strain mapping cluring. |-

. . . paretic versus non- WIS (vt shou‘\der (non-paretic), and
active PSSP in our study). We conservatively S o tecure Jf extenal otationat - NN

s 1 1 rotator muscles fane = active PSSP

assume a Cohen’s d of 1, which though large is
not as large as the cited numbers. To detect a Figure 10. Overview of study design for the R61 Phase.

difference between latent PSSP versus active

PSSP, a sample size of 17 per group is adequate for statistical significance at the 0.05 level with
80% power. For comparisons between paretic versus non-paretic shoulders, we expect greater
power for within-person paired comparisons. However, conservatively assuming no advantage
due to within-person correlations, we will also have 80% power to detect differences between
latent PSSP versus healthy (non-paretic) shoulders and active PSSP versus healthy shoulders
(non-paretic). Since we will be making multiple MRI and US measurements in a population that
is disabled and in pain, it is possible that there will be some attrition. Hence accounting for 15%
attrition, we will enroll 20 patients per latent PSSP and active PSSP group.

d. Early stopping rules.
Not expected since this is an observational study.

8. Risks
a. Medical risks, listing all procedures, their major and minor risks and expected
frequency.

Expected risks to the subject are as follows:

Risks from the clinical assessments: The clinical assessments pose minimal risk. However,
stroke patients may fatigue easily. Subjects may experience discomfort when markers are placed
on the skin using adhesives. For range of motion assessment, the subjects may develop erythema
and skin irritation. These reactions are temporary and will subside in a few hours.
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During shear plane motion assessments, the Bimanual Arm Trainer (BAT) will move the arm
passively repeatedly through a small range of motion which may feel awkward or uncomfortable
for individuals with abnormal muscle tone. Fatigue can also be a factor from sitting at the BAT
during the assessments.

Risks from the ultrasound assessments: The placement of the transducer on the skin requires
the use of ultrasound gel which may cause minimal discomfort due to the mild cold sensation on
the skin. The ultrasound system uses low frequency ultrasound and subjects cannot feel any
sensation from the ultrasound transducer.

Risks from the muscle MRI scan: There are no known harmful effects due to exposure to the
magnetic field used. Some people may feel confined and experience anxiety in the scanner. The
scanner produces tapping sounds during operation, which may reach very loud levels. In
extremely rare cases, a magnet can lose its magnetism, in which case cooling fluids may be
released noisily through escape valves and may collect in gas form in the scan room. The gas is
not harmful in itself as long as fresh air is available. Some individuals may experience muscle
twitches or tingling sensations and/or a slight increase in body temperature during some types of
scan activity. These are very unlikely under current MRI guidelines.

Incidental findings: The MRI scans are for research purposes only and not directed toward, nor
designed for, clinical diagnosis. However, individuals may be concerned about unexpected
findings on their scans. The discovery of these abnormalities may lead to feeling anxious and
additional tests with costs and risks not covered by this research. There is a risk of injury during
MRI if there are metal objects in the body.

Risk from questionnaires: Subjects will be asked to provide information about their self-
reported physical and mental well-being. These questions have a small likelihood of low
psychological risk if participants are upset by the questions. Their range-of-motion will also be
recorded using video. Since patients will be providing information about their medical history
and health status, and their movements will be recorded, there is the potential risk of loss of
confidentiality.

Risks related to data privacy: Private, identifiable information will be collected. While every
reasonable effort will be made to ensure confidentiality of protected and sensitive personal
medical information, there is a risk that this confidentiality is compromised, although the study
doctors do not expect this to occur.

b. Steps taken to minimize the risks.

Risks from the clinical assessments: During clinical assessments, we will ensure that subjects
are given adequate rest breaks to prevent them from becoming fatigued. Each testing session will
not last longer than four hours. Discomfort from markers and adhesives will be mitigated by
ensuring comfort and using hypoallergenic adhesives that are less likely to cause a skin irritation.
If they develop irritation or discomfort from the electrodes or adhesives, they will be offered ice
packs for relief of symptoms. Mechanical stops are in place to avoid any abnormal or excessive
range of motion of the joints of the arm when moving with the BAT. If the arm position were to
ever become uncomfortable the subject can unstrap the paretic arm using the non-paretic arm.
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Risks from the ultrasound assessments: No adverse effects have been associated with
ultrasound measurements.

Risks from the muscle MRI scan: Standard screening procedures and restricted access
minimize the risk associated with MRI. All subjects will be required to fill out a questionnaire
indicating if they have any metallic implants prior to entering the scanner for an MRI. All
participants will be checked to ensure that no metallic objects remain on their body before
entering the magnet room. These include any loose metal snaps, watches, keys, hair pins,
electrodes, and hearing aids. Participants with pacemakers or clips will be excluded from the
study. During the MRI, the participant will be monitored through a voice box and visually
observed using multiple CCD cameras. The greatest risk of the magnetic field is that a metal
object could be pulled into the scanner. To reduce this remote risk, everyone near the magnet
will remove all metal from their clothing or pockets when in the scanning environment and the
door to the scan room will remain closed during the exam. Some people may feel confined and
experience anxiety in the scanner. If any problems arise, the scan will be terminated
immediately.

Incidental findings: If any incidental abnormalities are found, we will notify subjects and/or their
primary physician.

Risk from questionnaires: These questions have a small likelihood of low psychological risk if
participants are upset by the questions. The participant does not have to answer any question that
they do not wish to.

Risks related to data privacy: All subject information will be coded.
c. Plan for reporting unanticipated problems or study deviations.

Reportable events defined by the JHM IRB will be reported to the IRB using the: “Protocol
Event Report” submission or as a written report of the event (including a description of the event
with information regarding its fulfillment of the above criteria, follow-up/resolution and need for
revision to consent form and/or other study documentation). Copies of each report and
documentation of IRB notification and receipt will be kept in the Clinical Investigator’s study
file.

d. Legal risks such as the risks that would be associated with breach of

confidentiality.

We expect minimal risk to confidentiality. Data are coded, and no identifying information will be
used in any analyses or publication. The master list containing the link between the data and the
identity will be password-protected and kept on computers that are also password protected. All
printed health information and study data gathered during performance of the study are kept in
locked files, accessible only to study personnel. Electronic data is coded to protect subject
identity and stored on password-protected computer workstations. We adhere to all HIPAA
privacy rules that affect research protocols.

e. Financial risks to the participants.
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There are minimal financial risks to the participant. The risks include lost time from school or
work and travel expenses.

9. Benefits
a. Description of the probable benefits for the participant and for society.
The subjects may or may not derive personal benefits from this study. The detailed evaluation
procedures will provide insight into mechanisms to further understand myofascial pain in
patients post-stroke, and may be applicable to patients with myofascial pain in general.

10. Payment and Remuneration

Transportation to and from the lab will be paid for by the grant, through Uber/Lyft rides or
parking passes. Participants will be paid $100 at the completion of the procedures at the end of
the study.

11.  Costs
This study will be of no cost to the subject or their insurance provider.

12. Transfer of Materials

Transfer of biospecimens from Johns Hopkins to another organization for research
purposes and receipt of biospecimens from an outside organization for your research
must adhere to JHU policies for material transfer (https://ventures.jhu.edu/faculty-
inventors/forms-policies/ ) and biospecimen transfer
(https://hpo.johnshopkins.edu/enterprise/policies/176/39187/policy _39187.pdf? =0.622
324232879).

There will be no transfer of biospecimens.

Please complete this section if your research involves transfer or receipt of biospecimens.

a. Will you receive biospecimens from an external entity for this research? [Yes/No].
If “Yes”, please confirm you will secure an MTA/research agreement from the
appropriate office (JHTV/ORA) prior to transfer.
See: https://ventures.jhu.edu/technology-transfer/material-transfer-agreements/ .

b. Will you transfer biospecimens to an external entity as part of this research? [Yes/No]

If “Yes”, please address each of the following:

1) Describe the nature of the research collaboration with the external entity and the
rationale for the transfer. (Include an explanation of your intellectual contribution to
the design of the research study, resulting data and sharing, and participation in the
planned publications.)

2) Please confirm you will secure an MTA through the appropriate office (JHTV or
ORA) prior to transfer.
(See: https://ventures.jhu.edu/technology-transfer/material-transfer-agreements/.)

3) If the biospecimens you intend to transfer were obtained through clinical or research
procedures at Johns Hopkins and “Other” is selected in Item 4, Section 23, please
submit the following items in that Section:
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a. A pdfversion of a completed JHTV Online “Material Transfer Agreement
Request Form for Outbound Material” https://ventures.jhu.edu/technology-
transfer/material-transfer-agreements/ OR a copy of the COEUS PD (Proposal
Development Summary).

b. A completed Biospecimen Transfer Information Sheet
https://www.hopkinsmedicine.org/institutional _review_board/forms/.

c. A signed and dated “De-identified Human Subject Certification”
https://www.hopkinsmedicine.org/institutional_review_board/forms/
Approval documents from recipient site, if applicable.

e. Copies of the consent forms associated with the IRB protocols under which
the biospecimens were collected, with language appropriate to this transfer
highlighted.

f. The name of the specialist you are working with in ORA to complete a
contract/MTA.

Please see the following website for more information about transferring human
biospecimens to outside entities:
https://www.hopkinsmedicine.org/institutional_review_board/news/announcement_transf
er_human_biospecimens_outside_entities.html/ .
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