

Protocol Title

Effects of Liraglutide on Epicardial Fat Pro-Inflammatory Genes in Type 2 Diabetes and Coronary Artery Disease

INVESTIGATOR-SPONSORED STUDY PROPOSAL

NCT03260881 U1111-1190-9987

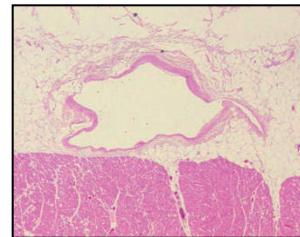
Gianluca Iacobellis MD, PhD

Professor of Medicine,

Director of University of Miami Hospital Diabetes Service,
Division of Endocrinology, Diabetes and Metabolism, Department of
Medicine, University of Miami, Miller School of Medicine,
Miami, FL, USA

Correspondence to:

Gianluca Iacobellis MD PhD
Professor of Medicine
Division of Endocrinology, Diabetes and Metabolism
University of Miami, Miller School of Medicine
1400 NW 10th Ave,
Dominion Tower suite 805-807
Miami, FL, 33136
USA
e-mail: giacobellis@med.miami.edu
FAX number: 305 243 9487


35 **Abstract**

36 Epicardial adipose tissue (EAT) is the visceral fat of the heart. EAT could locally affect
37 the coronary arteries through local secretion of pro-inflammatory cytokines. EAT plays a
38 role in the development of the coronary artery disease (CAD). EAT is a highly enriched
39 with genes involved in inflammation. Given its rapid metabolism and simple
40 measurability, as first developed by Iacobellis, EAT serves as target for medications
41 targeting the fat. Glucagon-like peptide-1 agonists (GLP-1A) are anti-diabetic medications
42 with recently suggested cardio-protective properties. Liraglutide, a GLP-1A, has recently
43 shown to reduce the cardiovascular risk. Iacobellis' group found that EAT thickness
44 decreased by an unprecedented 36% after 12 weeks of treatment with liraglutide.
45 Remarkably, Iacobellis' group found for the first time that human EAT express GLP-1
46 Receptor (GLP-1R). GLP-1A effects may be therefore visceral fat specific and target EAT.
47 Based on these preliminary data, we hypothesize that treatment with liraglutide will
48 significantly and rapidly reduce EAT inflammation. Decreased EAT inflammation can
49 reduce the burden of the coronary plaques. We will test our hypothesis in a 12-week
50 randomized, double-blind, placebo-controlled, interventional study in 40 patients with type
51 2 diabetes mellitus (T2DM), and CAD, with an acceptable glycemic control on their current
52 diabetes regimen who require elective CABG regardless of their participation in the study.
53 A minimum time frame of 3-week treatment will be considered to detect significant
54 changes in the study endpoints. Inclusion criteria for body fat markers will rule out the
55 confounding effect of different body fast distribution at baseline. Study subjects will be
56 randomized in two groups of 20 patients to receive additional liraglutide or to remain on
57 current treatment/ placebo prior to cardiac surgery. EAT samples will be collected during
58 cardiac surgery and processed for analysis of mRNA and protein expression of EAT
59 inflammatory genes such as Tumor Necrosis Factor-alpha (TNF- α) and Interleukin 6 (IL-
60 6), and GLP-1R.

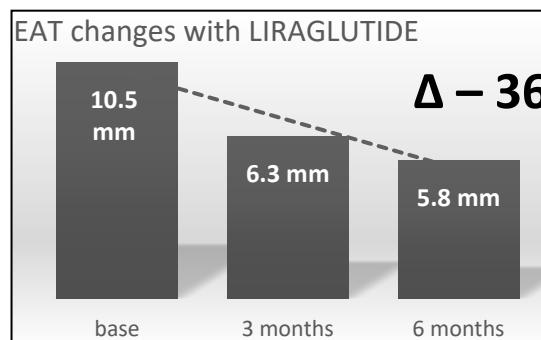
62 Table of Contents

63 Background

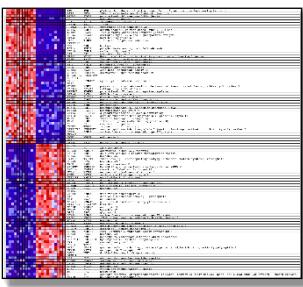
64 **EAT Anatomy and Physiology:** EAT is the visceral fat depot of the heart.¹⁻³ EAT and
 65 intra-abdominal fat have the same embryogenesis and both evolve
 66 from brown fat (BAT). EAT is supplied by branches of the
 67 coronary arteries and no muscle fascia separates the fat depot and
 68 the myocardium (*as depicted in the microscopic figure of human*
 69 *EAT*). Hence, as the two tissues share the same microcirculation,
 70 a direct cross-talk between the EAT and the myocardium has been
 71 highly suggested. Under physiological conditions EAT could serve as a buffer, absorbing
 72 fatty acids and protecting the heart against high fatty acids levels, as a lipid storage and
 73 local energy source channelling fatty acids to the myocardium and as BAT to defend the
 74 myocardium against hypothermia. Under pathological conditions EAT releases factors that
 75 promote harmful coronary artery and myocardial changes. EAT is an extremely active
 76 organ that produces both pro-inflammatory, such as TNF- α , IL-6, and anti-inflammatory
 77 adipokines.¹⁻³ Given its anatomical proximity to the heart, EAT may interact locally and
 78 modulate the myocardium and coronary arteries through paracrine or vasocrine secretion
 79 of bioactive molecules. EAT transcriptome is also unique when compared to subcutaneous
 80 fat. EAT is a highly inflammatory tissue enriched with genes involved in inflammation,
 81 endothelial function, coagulation, immune signalling and apoptosis.⁴

82 **EAT and Coronary Artery Disease:** EAT plays a significant role in the development and
 83 progression of CAD.⁵⁻⁶ EAT could alter the coronary arteries via multiple pathways
 84 including macrophage activation, inflammatory response, oxidative stress and plaque
 85 destabilization. Epicardial adipocytes display an intrinsic pro inflammatory and
 86 atherogenic profile. A dense inflammatory infiltrate, mainly represented by macrophages,
 87 is commonly detected in EAT of subjects with CAD. Regardless of the pathway,
 88 inflammatory cells secreted by the EAT surrounding the adventitia may stimulate the
 89 proliferation of vasa vasorum and ultimately cause intramural changes. EAT has been
 90 largely associated with the severity of CAD and its association with CAD was confirmed
 91 in several large population studies. The relationship of EAT thickness and coronary artery
 92 disease is driven by local mechanisms and partially independent of coronary calcification.

93 **EAT as therapeutic target:** EAT thickness can be visualized and measured with standard
 94 echocardiography, as first developed and validated by Iacobellis.⁷⁻⁸ (*echo-free space*
 95 *within the red dot from the parasternal view*). In addition to
 96 the easy accessibility and excellent reproducibility, as
 97 reported by the majority of the studies using this technique,
 98 echocardiographic EAT independently reflects the intra-
 99 abdominal visceral fat, measured with Magnetic resonance
 100 imaging (MRI) and the intra-myocardial lipid content,
 101 calculated with MR-spectroscopy.⁹ Given its rapid

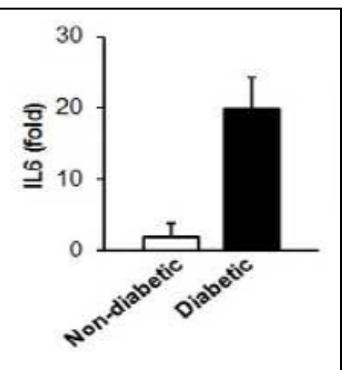

102 metabolism, organ fat specificity and simple objective measurability, EAT can serve as
 103 target for medications targeting the adipose tissue.¹⁰⁻¹⁵

104 **Cardiovascular effects of Liraglutide:** liraglutide, an analogue of glucagon-like peptide-
 105 1 (GLP-1), is indicated for the treatment of type 2 diabetes mellitus. In addition to its well
 106 established glucose-lowering effect, liraglutide causes a modest weight loss. Liraglutide
 107 has also been shown to provide cardio-protective effects beyond the glycemic control,
 108 although the mechanisms are still unclear. Very recently, the Liraglutide Effect and Action
 109 in Diabetes: Evaluation of Cardiovascular Outcome Results (LEADER) trial showed that
 110 patients treated with liraglutide had a lower risk of first occurrence of cardiovascular death,
 111 nonfatal myocardial infarction, nonfatal stroke and lower risks of death from
 112 cardiovascular causes in comparison to placebo.¹⁶

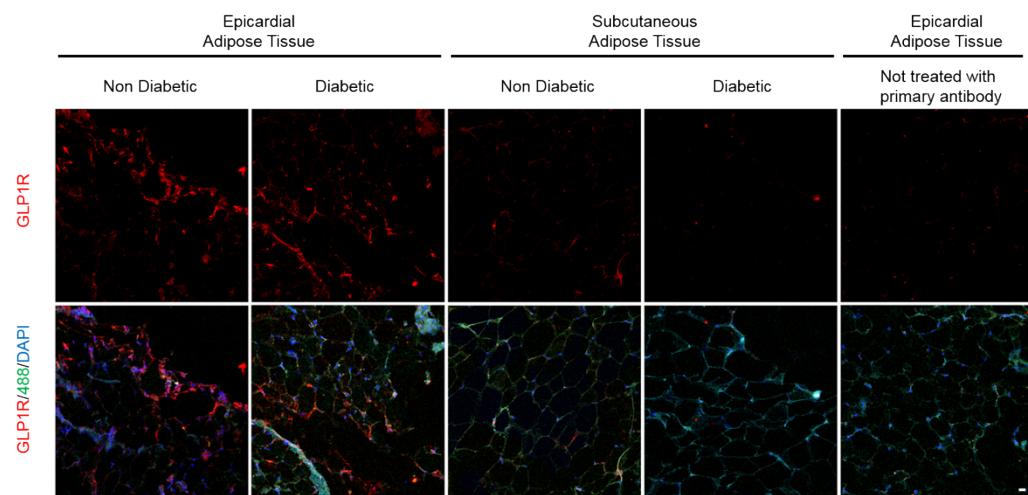
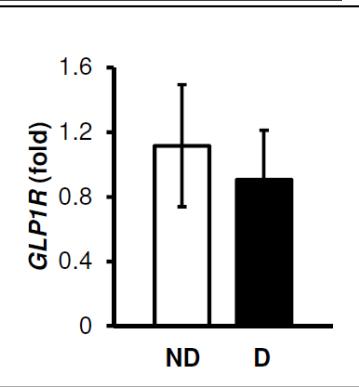

113

114 Preliminary Data

115 **Liraglutide targeting EAT:** GLP-1
 116 activation targeting EAT has been recently
 117 evaluated.¹¹⁻¹³ Our group recently evaluated
 118 the effect of liraglutide on EAT in a 24-week
 119 interventional case-controlled study in
 120 overweight/obese subjects with T2DM on
 121 metformin monotherapy.¹¹ Individuals were
 122 randomized in two groups to receive
 123 additional liraglutide up to 1.8 mg sc once
 124 daily or to remain on Metformin. Our results showed that ultrasound measured EAT
 125 thickness decreased from 10.2 ± 2 to 6.9 ± 1.9 and 5.8 ± 1.9 mm ($p < 0.001$) after 12 and 24
 126 weeks, respectively, accounting for approximately 40% of reduction at 12 and 24 weeks
 127 (*graphic on the right*), whereas there was no significant EAT reduction in the Metformin
 128 group. EAT shrunk independently of overall weight loss and improved glucose control. A
 129 milder, as compared to our results, yet noticeable (-13%), reduction of EAT thickness was
 130 recently observed after 12 weeks of treatment either with liraglutide or exenatide in a
 131 smaller group of patients with type 2 diabetes.¹² However, EAT results in this study were
 132 pooled together making difficult to discriminate differences between the two agents.



133



134 **EAT as pro-inflammatory organ:** EAT of CAD subjects is
 135 enriched with pro-inflammatory genes, as our recent microarray
 136 analysis (*microarray table on the left*) showed.⁴ Pro-
 137 inflammatory cytokines are secreted and transported from EAT
 138 into the coronary lumen through vasocrine and paracrine
 139 pathways.¹⁻³

140 We recently showed that diabetic EAT was mainly enriched in
 141 inflammatory genes, such Interleukin-6 (IL-6) (*graphic on the right*)
 142 and Tumor Necrosis Factor-alpha (TNF- α).¹⁷ Our study suggests a
 143 unique and novel atherogenic pathway in diabetes mediated by EAT
 144 inflammatory profile.

145
146 EAT expresses GLP-1 receptor (GLP-1R)

147 Whether EAT expressed GLP-1 receptor (GLP-1R) was unknown.
 148 We recently performed a RNA-sequencing (RNA-seq analysis) and
 149 Quantitative real-time RT-PCR (qRT-PCR) to evaluate the presence
 150 of GLP-1R in EAT obtained from 8 subjects with coronary artery
 151 disease and type 2 diabetes mellitus undergoing elective cardiac
 152 surgery. Immunofluorescence was also performed on EAT and SAT
 153 samples using Mab 3f52 against GLP-1R. RNA-seq analysis showed
 154 that EAT expresses *GLP-1R* gene. qRT-PCR analysis confirmed
 155 GLP-1R expression by using two different sets of intron-spanning
 156 primers (*graphic on the right*). Immunofluorescence showed that
 157 GLP-1R is present and more abundant in EAT than SAT
 158 (*immunofluorescence images*).¹⁸

177 In the upper quadrants (A), the immunofluorescence images (starting from the left) show definite higher signal in GLP-1R antibody-
 178 treated EAT, irrespective of diabetes, when compared to GLP-1R antibody-treated SAT and to not treated with primary antibody EAT
 179 (last image on the right). Lower quadrants (B) images show the amplification of the GLP-1R signal using biotinylated anti mouse IgG,
 180 horseradish peroxidase-streptavidin and alexa fluor 647 tyramide. DAPI was used to label the nucleus and autofluorescence of the tissue
 181 was collected at 488nm excitation.

182

183 So, for the first time, we found that human EAT express GLP-1R. GLP-1A effects may be
 184 therefore visceral fat specific and target EAT. However, the mechanisms mediating the
 185 actions of GLP-1 analogues on adipose tissue are still unclear. Liraglutide may improve
 186 EAT insulin sensitivity and microcirculation, stimulate EAT thermogenesis and adipocyte
 187 browning.¹⁹⁻²²

188 **Short term effects of Liraglutide on inflammation**

189 The experimental study by Shiraki et al showed a rapid effects of liraglutide in reducing
190 TNF- α -induced oxidative stress and inflammation in endothelial cells (25). A rapid anti-
191 inflammatory effects of liraglutide on endothelial cells was also reported by Krasner et al
192 Liraglutide reduced the inflammatory responses to TNF α and LPS stimulation, with a
193 significant reduction of protein expression of the adhesion molecules VCAM-1 and E-
194 Selectin, and THP-1 monocyte adhesion in cultured human aortic endothelial cells (26).
195 Additionally, we provided evidence that epicardial fat expresses the GLP-1R protein and
196 mRNA, such as the heart. Hence, liraglutide is more likely to have a direct effect on
197 epicardial fat transcriptome than mediated by weight loss or glycemic control.
198 The LEAD trials showed a decrease in mean weight ranging from 1 to 3.2 kg (2.2 to 7.04
199 pounds) over the course of 26 or 52 weeks with liraglutide.

200

201 **Significance** We believe that this study proposal may have a great relevance and impact
202 in the research and clinical management of CAD. From a pathophysiological perspective,
203 this study proposal can provide data that will contribute the understanding of the complex
204 mechanisms that lead to the development and progression of CAD. Understanding whether
205 EAT plays a metabolic role in CAD is key. This study can provide evidences of the recently
206 suggested cardioprotective mechanisms of Liraglutide. Treatment with Liraglutide and
207 other GLP1-A may reduce EAT inflammation and revert EAT to its physiological function
208 and therefore to a cardioprotective role. From a clinical perspective, this study proposal
209 can provide data that will open new avenues and have an important impact in the
210 management of CAD. Liraglutide may become an effective treatment of patients with CAD
211 and diabetic cardiovascular complications. EAT can be easily measured, as we first
212 developed, and then targeted by Liraglutide, other GLP-1A or other anti-inflammatory
213 drugs in patients with CAD.

214 **Innovation** This proposal contains a number of novel concepts with important clinical
215 applications. For the first time this project will evaluate the idea that GLP-1 activation may
216 reduce EAT inflammation in subjects with T2DM and CAD. This is will be the first time
217 that liraglutide effects will be evaluated on EAT samples obtained from subjects with
218 T2DM and CAD. These important points will be addressed in well-studied population of
219 subjects, as was never done before. Based on pre-existing data, the expected liraglutide
220 effects on the epicardial adipose tissue inflammatory genes, primary endpoint, may not
221 necessarily be time dependent. The shorter term of treatment that may occur in some
222 patients may actually rule out the potential confounding effect of the liraglutide-associated
223 weight loss on the study outcomes

224

225 **Study Rationale** Liraglutide, may have properties that go beyond the glucose-lowering
226 effects, as the recent LEADER trial showed that Liraglutide reduces the risk of major
227 cardiovascular events. Hence, our timely proposal will help the understanding of the

228 mechanisms of the cardio-protective effects of Liraglutide. As our preliminary data are
229 showing that a) EAT is highly inflammatory fat depot affecting the coronary arteries, b)
230 Liraglutide causes a massive and rapid reduction of EAT thickness, c) EAT expresses GLP-
231 1R our hypotheses can be likely proven in this study. Our proposal would provide stronger
232 evidences for using GLP-1As in the treatment of CAD. In addition, as EAT is an easily
233 measurable and modifiable risk factor, as we first developed, it can be targeted by
234 Liraglutide. The randomized, double-blind, placebo-controlled study design will allow for
235 an independent and unbiased effect of Liraglutide on study results. In addition, actions to
236 equalize weight loss and maintain similar glucose control between study arms will rule out
237 the confounding effects of these factors on the study outcomes.

238 **Specific Objectives**

239 **Primary Objective:**

240 • to test the hypothesis that liraglutide can reduce the pro-inflammatory
241 transcriptome profile of EAT of subjects with T2DM and CAD.

242 **Secondary Objectives:**

243 • to assess the hypothesis that liraglutide will reduce the ultrasound measured EAT
244 thickness in subjects with T2DM and CAD.
245 • to evaluate the hypothesis that liraglutide can produce more anti-inflammatory
246 effects in the EAT as compared to SAT of subjects with T2DM and CAD.
247 • to test the hypothesis that EAT mRNA and protein expression of GLP-1R will be
248 greater in subjects receiving liraglutide as compared to those continuing their
249 standard therapy

250

251 **Research Design and Methods**

252 **Study Hypotheses**

253 **Hypothesis for Primary Objective:** We hypothesize that EAT inflammatory gene mRNA
254 and protein expression will be lower in subjects receiving additional therapy with
255 liraglutide as compared to those who will continue with their current treatment.

256 **Hypothesis for Second Objectives:** based on our biomolecular and clinical preliminary
257 data, we hypothesize that a) EAT thickness will respond and decrease more on liraglutide
258 than on standard therapy, b) inflammatory genes and protein expression will be different
259 in EAT vs SAT c) EAT GLP-1R expression will be greater in patients on liraglutide vs
260 those on standard therapy.

261

262 **Endpoints**

263 **Primary Endpoint:**

264 • Change from baseline in EAT inflammation (measured as mRNA and protein
265 expression of TNF- α and IL-6) within a minimum of 3 and up to 12 weeks of treatment

266 **Secondary Endpoints:** Change from baseline within a minimum of 3 and up to 12 weeks of
267 treatment for the following parameters:

- 268 • Ultrasound measured EAT thickness
- 269 • SAT inflammation (measured as mRNA and protein expression of TNF- α and IL-6)
- 270 • EAT GLP-1R (measured as mRNA and protein expression of GLP-1R)

271 **Study Type**

272 This is an Investigator Sponsored Study (ISS).

273 This will be a 12-week randomized, double-blind, placebo-controlled interventional study
274 in 40 patients with T2DM and CAD with an acceptable glycemic control on their current
275 diabetes regimen who require elective coronary artery bypass grafting (CABG) regardless
276 of their participation in the study.

277 A minimum time frame of 3-week treatment will be considered to detect significant
278 changes in the study endpoints. If not all subjects would be able to complete the 12
279 weeks, study outcomes will be evaluated at the 3 week time point.

280

281 **Study Design** Study subjects will be randomized in two groups of 20 patients to receive
282 additional liraglutide, (L-group) or to remain on current treatment or placebo (D-group).

- 283 • L-group will be started on liraglutide. Liraglutide will be started and administered
284 for 12 weeks prior to CABG with a starting dose of 0.6 mg (after a least one week)
285 and subsequent increments to 1.2 mg (after a least one week) and to 1.8 mg (after
286 at least a week on 1.2 mg). The dose of 1.8 mg daily will be maintained until the
287 end of the 12-week study. Other and current diabetes treatment will be continued.
288 In those study participants who may be impacted by CABG scheduling and
289 COVID-19, and cannot complete the 12-week treatment, we will consider a
290 minimum time frame of 3 weeks to detect significant changes in the study primary
291 endpoints.
- 292 • D-group: placebo will be administered in addition to current treatment prior to the
293 CABG with a starting dose of 0.6 mg (after a least one week) and subsequent
294 increments to 1.2 mg (after a least one week) and to 1.8 mg (after at least a week
295 on 1.2 mg). Patients will be started on a supervised diet to achieve approximately
296 5% of weight loss between 3 and 12 weeks. In those study participants who may be
297 impacted by CABG scheduling and COVID-19, and cannot complete the 12-week
298 treatment, we will consider a minimum time frame of 3 weeks to detect significant
299 changes in the study primary endpoints.

300

301 Ultrasonographic measurement of EAT thickness will be performed at baseline and
302 after 12 weeks in all patients, regardless of the study arm.

303 All groups will receive lifestyle and diabetes education, and supervised diet as
304 part of the standard care, to insure similar glycemic control between arms and
305 weight loss. Study patient will be also required to check and log their finger stick

307 blood glucose twice daily (fasting before breakfast and at bedtime) and report the
308 readings to the study coordinator on a bi-weekly base.
309

310 **Rationale for study Design**

311 The randomized, double-blind, placebo-controlled study design will allow for an
312 independent and unbiased effect of liraglutide on study results.
313

314

315 **Rationale for minimum study time line of 3 weeks.**

316 The pre-operative clinic schedule may not always allow to wait the full 12 weeks between
317 the patient's enrollment and the CABG, standard of care procedure. Dr Lamelas is the only
318 cardiac surgeon at UM performing elective CABGs. Once the patient is randomized and
319 randomly allocated to one of the study arms, the length of the treatment is set by the date
320 of standard of care CABGs. During the current COVID-19 pandemic, the number of
321 elective CABGs has been reduced and we cannot reschedule or delay the surgery
322

323 **Study Population:** Study group will be formed by 40 patients with T2DM and with
324 clinically and angiographically stable CAD who will undergo CABG surgery, as part of
325 their standard medical care. Cardiac surgery will be elective procedure in
326 hemodynamically stable patients taking their standard cardiac treatments and under the
327 care of the cardiologist.

328

329 **Study team and site:** Dr Iacobellis is Professor of Medicine, Division of
330 Endocrinology, Diabetes and Metabolism. Dr Iacobellis pioneered EAT echocardiographic
331 measurement and he is considered the leading expert in the epicardial fat. Dr Iacobellis will
332 lead and supervise liraglutide therapy, EAT measurement, analysis and interpretation of
333 the data. Dr Frasca, Research Assistant Professor, Dept. Microbiology and Immunology,
334 will lead and supervise adipose tissue analysis. Dr Claudia Martinez is associate professor
335 of Cardiology and contributes to patient recruitment. Dr Joseph Lamelas, professor of
336 cardiothoracic surgery will be the cardiac surgeons for this study. Low calorie diet (LCD)
337 and other nutritional aspects will be managed and supervised by the Division of
338 Endocrinology registered dietitian (RD), as part of the standard care. University of Miami
339 has been the site of several National Health Institute (NIH) studies and many peer-reviewed
340 publications. The Division of Endocrinology Diabetes and Metabolism is fully equipped
341 and trained to visit, follow up and manage patients with diabetes. The Division of
342 Endocrinology provides multiple outpatient diabetes clinics at the Diabetes Research
343 Institute (DRI). Division of Endocrinology clinical laboratory is fully accredited and
344 equipped to perform state-of- the-art diagnostic tests assisting in the diagnosis and
management of diabetes.

345

346 **Inclusion Criteria**

347 - T2DM as defined by American Diabetes Association (ADA) criteria
348 - Adult patients with T2DM who are indicated to receive liraglutide, not as first-line
349 therapy, in addition to diet and exercise to improve glycemic control
350 - Hemoglobin A1c (HbA1c) \leq 9%
351 - Age \geq 18 years old
352 - Body mass index (BMI) \geq 27 Kg/m² and/or waist circumference \geq 102 cm (40
353 inches) in men and 88 cm (35 inches) in women, respectively.
354 - Clinically and angiographically stable CAD who requires CABG as part of the
355 standard medical care, as CAD does not represent a contraindication for using
356 liraglutide. The stability of the CAD further warranties that study patients will not
357 be exposed to higher risk by using liraglutide.

358

359 **Exclusion Criteria**

360 - Patients with a personal or family history of medullary thyroid carcinoma or
361 patients with Multiple Endocrine Neoplasia syndrome type 2
362 - Patients with a prior serious hypersensitivity reaction to liraglutide
363 - Other contra-indications to liraglutide in accordance with risks and safety
364 information included in the latest updated prescribing information
365 - Type 1 diabetes, as defined by ADA criteria
366 - Current use of other GLP-1A, dipeptidyl peptidase 4 (DPP4) or Sodium Glucose
367 transporter 2 (SGLT2) inhibitors, thiazolidinediones (TZDs), pramlintide and fixed
368 prandial insulin.
369 - Patients with unstable CAD, assessed by the Cardiology team and defined as new
370 onset angina, rest angina, rapidly increasing or crescendo angina
371 - History of diabetic ketoacidosis, pancreas or beta-cell transplantation, or diabetes
372 secondary to pancreatitis or pancreatectomy; acute or chronic infective diseases,
373 cancer or chemotherapy, history of pulmonary, renal or liver diseases, and drug
374 abuse
375 - Patients with chronic and acute inflammatory conditions such as sepsis, rheumatoid
376 arthritis, ectopic dermatitis, asthma, ulcerative colitis.
377 - Current use of systemic corticosteroids in the 3 months prior this study.
378 - Pregnant women
379 - Women of childbearing potential who are not using adequate contraceptive
380 methods (as required by local law or practice)

381

382 **Investinational drug**

383 Liraglutide [rDNA origin] injection, solution for subcutaneous use. Liraglutide will be
384 prescribed according to the same, current indications of the marketed Victoza.

385

386 **Withdrawal Criteria**

387 1. The subject may withdraw at will at any time.
388 2. The subject may be withdrawn from the trial at the discretion of the investigator due to
389 a safety concern or if judged non-compliant with trial procedures or included in
390 contravention to the inclusion and/or exclusion criteria.
391 3. Subject diagnosed with acute pancreatitis by clinical and/or radiographic criteria.
392 4. Pregnancy, positive pregnancy test prior to the enrollment or intention to become
393 pregnant.
394 5.
395 6. Subjects who will not tolerate liraglutide dose increase to 1.2 or 1.8 mg will remain in
396 the study at the highest tolerated dose

397 **Subject Replacement**

398 There will be no replacement of subjects in this trial.

399

400 **Rationale for Study Population**

401 We anticipate that approximately 400 patients will be screened in a 2-year period. We will
402 recruit patients with T2DM and clinically and angiographically stable CAD who will
403 undergo CABG surgery, as part of their standard medical care. Cardiac surgery will be
404 elective procedure in hemodynamically stable patients taking their standard cardiac
405 treatments and under the care of the cardiologist.

406

407 **Recruitment strategy:** Participants will be recruited among the outpatient population who
408 routinely refer to the Division of Cardiothoracic Surgery (Dr Lamelas and collaborators),
409 Division of Cardiology (Dr Martinez) and Division of Endocrinology, Diabetes and
410 Metabolism outpatient clinics (Dr Iacobellis), at University of Miami.

411 **Visit Procedures**

412 **Study Timetable:** This study will consist of two clinical visits prior the cardiac surgery
413 and adipose tissue collection during the surgical intervention. Consecutive subjects with
414 T2DM and CAD who are candidate for elective cardiac surgery regardless of their
415 participation in the study will be selected, informed and consented. Patients suitable to
416 wait 12 weeks for cardiac surgery will be identified by the cardiology team and accordingly
417 scheduled, as part of the standard care. Anthropometrics, blood draw for laboratory
418 measures and echocardiographic measurements of EAT thickness will be performed at
419 baseline and before cardiac surgery that will be scheduled 12 weeks after study enrollment
420 and treatment. Adipose tissue collection will be collected during the cardiac surgery.
421 Study outcomes will be collected at 3 weeks in both groups in those patient who may not
422 be able to complete the 12- week treatment due to CABG logistics and COVID-19 impact
423 on scheduling

424

425 **Assessments for Efficacy**

426 **Adipose tissue collection:** EAT biopsy samples (average 0.5-1.0 g) will be taken, before
427 heparin administration, near the proximal tract of the right coronary artery. Each tissue
428 sample will be snap frozen in liquid nitrogen and stored at -80 °C until analysis in a freezer.
429 The subcutaneous fat tissue (SAT) will be harvested at the site of the thoracic wound and
430 preserved in the same manner.

431 **Gene expression:** in freshly isolated mature adipocytes (from EAT and SAT), extraction
432 of total RNA, quantification of mRNA, c-DNA generation qRT-PCR will be performed for
433 measuring expression of the inflammatory genes (TNF- α , IL-6) and GLP-1R.

434 **Western Blot:** Total proteins will be extracted from frozen EAT and SAT adipocytes and
435 blotted for TNF- α , IL6, as previously described.

436 In addition to the mRNA expression of GLP1R, we will also measure protein expression
437 of GLP-1R by western blotting. Total cell lysates from the EAT will be obtained as follows.
438 Cells will be resuspended in M-PER (Mammalian Protein Extraction Reagent, Thermo
439 Scientific), incubated on ice for 20 min, sonicated for a few seconds and then centrifuged
440 (14,000 rpm, 15 min, 4°C) to obtain protein lysates which will be stored at -80°C until
441 use. Protein content will be determined by Bradford assay before western blotting runs.
442 Antibodies will be anti-GLP1R Mab 3F52 (Novo Nordisk) and anti-GAPDH (GeneTex)
443 as loading control.

444 **Immunofluorescence**

445 To confirm GLP-1R protein expression, immunofluorescence will be performed on EAT
446 and SAT samples using Mab 3f52 against GLP-1R, as previously described by Pyke et al
447 23-24. This mouse monoclonal antibody has been extensively validated to show its
448 specificity. Due to the relatively low abundance of GLP-1R the immunofluorescence will
449 be performed using a tyramide signal amplification reagent (TSA kit#26 from Molecular
450 probes) according to the manufacturer instructions. In summary, cryosection of the samples
451 will be performed at -35 °C with 12 μ m thickness using a Leica CM1850 UV cryostat
452 (Wetzlar, Germany). The sections will be fixed for 20 min with 4% PFA, washed with PBS
453 and dried at room temperature overnight. Sections will be washed 3 x with PBS and
454 incubated with PBS with 3% BSA and 0.4% triton X for 1 hour. Sections will then
455 incubated with Mab 3f52 (1:50 dilution) antibody overnight in PBS with 3% BSA and
456 0.4% triton X. Sections will be then washed 4 times with PBS and incubated with
457 biotinylated anti mouse IgG for 1 hour at room temperature, washed 4 times with PBS,
458 then incubated at room temperature with horseradish peroxidase-streptavidin for another
459 hour, washed 4 times with PBS and then incubated at room temperature with alexa fluor
460 647 tyramide for 10 min. Sections will be further washed 3 times and incubated with DAPI
461 (Thermo fisher, Waltham, MA) for 30 min. The samples will be washed 3 times with PBS
462 and mounted on Mowiol 4-88 (Sigma-Aldrich, St Louis, MO). The tyramide signal can
463 amplify from 10 to 200 times the immunofluorescence signal from low expressed proteins
464 (Molecular probes, Eugene, OR). The fluorescence images will be acquired using a Zeiss
465 LSM 710 confocal microscope (Oberkochen, Germany).

466 **Echocardiographic EAT Thickness:**

467 Echocardiogram for EAT thickness measurement will be performed at baseline and after
468 12 weeks in all patients, regardless of the study arm. EAT thickness will be measured
469 according to the method firstly described and validated by Iacobellis ⁷⁻⁸. Briefly, EAT will
470 be identified as the echo-free space between the outer wall of the myocardium and the
471 visceral layer of pericardium. EAT thickness will be measured perpendicularly on the free
472 wall of the right ventricle at end-systole in three cardiac cycles. Parasternal long views
473 allow the most accurate measurement of EAT on the right ventricle, with optimal cursor
474 beam orientation. Maximum epicardial fat thickness will be measured at the point on the
475 free wall of the right ventricle along the midline of the ultrasound beam, perpendicular to
476 the aortic annulus, used as anatomical landmark for this view. The average value of three
477 cardiac cycles will be considered.

478 ***Reliability of echocardiographic measurement of EAT***

479 Reliability of echocardiographic measurement of EAT will be assessed by the intra-class
480 correlation coefficient. Inter- and intra-observer reproducibility will be evaluated by the
481 intra- class correlation coefficient in all subjects. Echocardiograms will be read by Dr
482 Iacobellis and an experienced cardiac imaging technician. Previously published studies
483 have shown that intra- and inter-observer reproducibility of epicardial fat measurement was
484 excellent. Intra-class correlation coefficients varied from 0.90 to 0.98 and from 0.93 to
485 0.98, respectively indicating good reproducibility and reliability. Both readers will be
486 blinded to the subjects' clinical data.

487 **Anthropometrics and Clinical measures:** As standard of care, height (in cm) and weight
488 (in kg) will be measured, and BMI will be calculated. Waist circumference (in cm or
489 inches) will be measured as the minimum circumference between the lower rib margin and
490 the iliac crest. Blood pressure will be also measured.

491 **Blood Measurements:** Lipid panel, lipase, and amylase are not study end-points and will
492 be collected if made available through a standard of care procedure at baseline and after 4
493 or 12 weeks.

494 **Low calorie Diet (LCD)** A low calorie diet program will be prescribed to study patients
495 and controls. A RD who will reach out to patients to insure adherence to the dietary
496 program will supervise the LCD. This will help patients to achieve approximately 5% of
497 weight loss between 3 and 12 weeks.

498 **Assessments for Safety**

499 **Potential Risks to the Subjects**

500 The risks of this study are minimal are mainly related to risks associated with the
501 investigational drug liraglutide, echocardiogram, blood draw, and a potential breach of
502 confidentiality.

503 **Drug therapy:** liraglutide, (Victoza®), is a GLP-1A indicated as an adjunct to diet and
504 exercise to improve glycemic control in adults with T2DM. Liraglutide is taken once daily
505 at any time of day, without regard to the timing of meals. Liraglutide is injected

506 subcutaneously in the abdomen, thigh, or upper arm. Liraglutide may cause mild and
507 usually well-tolerable gastro-intestinal side effects (5%), such as nausea, constipation.
508 Liraglutide is contraindicated in patients with a personal or family history of medullary
509 thyroid cancer and in patients with Multiple Endocrine Neoplasia (MEN). Based on
510 spontaneous postmarketing reports, acute pancreatitis has been observed in patients treated
511 with liraglutide. Subjects will be instructed to contact the research staff if they develop new
512 symptoms on the drugs. In case that an acute pancreatitis will be suspected, lab and imaging
513 tests will be ordered. Marked or severe side effects will necessitate discontinuation of study
514 drug.

515 Echocardiography: Diagnostic ultrasound imaging has been used in routine medical care
516 in various forms for over 45 years. Over this period of time, no harmful effects have been
517 identified from its use. Mild discomfort when the probe is pressed against the chest may
518 be experienced, but otherwise there are no known risks.

519 Adipose tissue collection: Intra-operative collection of a very small sample of adipose
520 tissue do not represent a clinical relevant risk to the study subjects

521 Blood draw: Bruising at the intravenous puncture site may occur which will clear up in a
522 few days. Rarely the skin or vein at the site can become infected. A total of approximately
523 12 cc of blood will be drawn during the course of each of the patient visits which poses no
524 significant risk to a subject who is not severely anemic.

525 Confidentiality: Patient confidentiality is an important issue in any clinical research study.
526 All stored blood will be deidentified using established protocols. Subject's name will not
527 be used in publications or data analyses nor will they be available for discussion by any
528 investigators other than the treating physicians.

530 **PROTECTION AGAINST RISKS**

531 The inclusion and exclusion criteria were designed to limit the possibility of adverse
532 events. Any adverse event will be reported to the sponsor and Institutional Review Board
533 (IRB). Subjects will be informed that they are free to withdraw at any point during the
534 study. We will follow safeguards to minimize the risk to our subjects: a) we will carefully
535 monitor response to medical treatment every 2 weeks by telephone contact, b) as standard
536 clinical procedure women of reproductive age who are sexually active will undergo a urine
537 pregnancy tests prior to participation in the study, c) female subjects whom are pregnant,
538 breast-feeding, or not willing to use appropriate contraception at time of enrollment will
539 not be included in the study. Participation in a research study introduces some inherent loss
540 of privacy. However, full measure will be taken to protect the integrity of patient
541 identifying information. All data used in the analysis and reporting of this evaluation will
542 be without identifiable reference to the patient. Data used for reports or publications will
543 never include identifiable information such as name, date of birth, social security number,
544 address, or medical record number and in most cases will not include any identifiers other
545 than sex, age, race, and diagnosis.

546 **Scheduling CABG timing**

547 In patients with stable CAD found to have CAD anatomy that requires CABG, the timing
548 and schedule for revascularization will be determined by Dr Lamelas. Patients suitable to
549 wait between 3 and 12 week- period for revascularization will be identified and managed
550 with optimal medical therapy, and scheduled for complete revascularization with CABG.

551 **Managing patients becoming unstable or developing acute events during the study**

552 The inclusion and exclusion criteria will limit the possibility of recruiting patients with
553 unstable CAD/angina, as defined before. Study patients showing unstable angina or
554 developing acute cardiac events will be transferred promptly to the local emergency
555 department for evaluation and treatment. If patient status becomes acute and emergent, the
556 adverse event will be reported to the IRB.

557 **Unblinding**

558 The investigator will follow the study's randomization procedures. The blind should
559 ordinarily be broken for serious and unexpected adverse experiences that are associated
560 with the use of a drug to determine if there is a reasonable possibility that the experience
561 may have been caused by the drug. Certain adverse events such as ***known consequences***
562 ***of the underlying disease under investigation*** or events common in the study population
563 generally should ***not*** require unblinding.

564 We feel that in the not likely case (given the inclusion criteria) that a study patient will
565 become unstable or develop acute events during the study, this event would more likely
566 fall in the ***known consequences of the underlying disease under investigation*** rather than
567 caused by the study drug, and therefore should ***not*** require premature unblinding.
568 Nevertheless, it will be upon the principal investigator's best judgement and discretion to

569 break the blind. In this case, the principal investigator will promptly document and report
570 to the IRB and Novo Nordisk any premature unblinding.

571

572 **Subject Compliance**

573 We estimate that the majority of the participants who will be considered eligible will
574 complete the study. Attrition can be estimated as lower than 10%. In the event that
575 participants are lost to follow-up, the research coordinator will contact with the study
576 participant by telephone. The research coordinator will be trained in effective telephone
577 technique to maximize recruitment success. All groups will receive lifestyle and diabetes
578 education, as part of the standard care, to insure similar glycemic control between arms.
579 Study patients will be advised to monitor their capillary glucose twice daily, fasting in the
580 morning and post-prandially. Glucose profile will be tracked bi-weekly by the research
581 coordinator by email or telephone.

582

583 **Statistical Considerations**

584 POWER ANALYSIS

585 The statistical power (two-sided, $\alpha=0.05$) of the study was calculated to detect statistically
586 and clinically meaningful differences in the primary endpoint between the two study arms.
587 Our preliminary data showed that EAT inflammatory genes, including IL-6 and TNF- α are
588 upregulated in subjects with T2DM and CAD and higher in EAT as compared to SAT⁴⁻¹⁷.
589 From our recently published study, we calculated the average coefficient of variance (CV)
590 for differential inflammatory genes to be 42%, but for only 5 T2DM patients.¹⁷ As there
591 are no data on the effects of liraglutide on EAT inflammation, the power analysis was based
592 on our previous data and on the assumption that the difference in EAT TNF- α and IL-6
593 expression between liraglutide treated and placebo treated patients would be clinically
594 meaningful at 33% (approx. 1.3X fold). Based on these data, we propose to sample 40
595 individuals. There will be 20 on liraglutide plus standard therapy versus 20 subjects on
596 liraglutide-matching placebo plus standard therapy contributing EAT and SAT samples
597 collected during cardiac surgery. Using the power set at 90% and $\alpha=0.05$, and given the
598 CV of 42%, this sample size will provide adequate power to detect the clinically significant
599 expected difference (33%) in EAT TNF- α and IL-6 between the two study arms.

600 Based on pre-existing data, this sample size will provide adequate power to detect
601 statistically significant differences in EAT TNF- α and IL-6 between the two study arms in
602 those patients who will receive treatment only for 3 weeks. The difference in EAT TNF- α
603 and IL-6 between liraglutide treated and placebo treated patients is expected to be
604 approximately 1X fold after 3 weeks of treatment.

605

606 The larger sample proposed in this current project would likely reduce the variability. To
607 further assure consistency of results, mRNA and protein expression values will be log-

608 transformed prior to statistical analyses unless they will be normally distributed.
 609 Housekeeping genes will be also used for both RT-PCR and western blot analyses.
 610 In those patients who will not complete the 12-week treatment, the analysis of EAT genes
 611 from the samples will be time adjusted

612
 613 Statistical power was also calculated to detect statistically significant differences in the
 614 ultrasound measured EAT thickness, secondary endpoint, between the two study arms Our
 615 group very recently showed that additional therapy with liraglutide for 12 weeks caused a
 616 reduction in ultrasound measured EAT from 9.6 ± 2 to 6.2 ± 1.5 mm ($p < 0.001$) in 54 patients
 617 with T2DM ¹¹. Given the reference value and the expected difference in EAT, the
 618 statistical power of the study (two-sided, $\alpha = 0.05$) was calculated.

619

Outcome	Reference value \pm SD	Expected Difference	Detectable difference with 80% power $\alpha = 0.05$	Detectable difference with >99% power $\alpha = 0.05$
EAT (mm)	9.6 ± 2	-20-or -30%	-20% (absolute difference = 1.9)	-30% (absolute difference = 2.88)

620

621 Assuming a difference of approximately 2 mm (20%) in EAT to be clinically significant
 622 (based on our recent and previously published data ¹⁰⁻¹⁴), a convenience sample of 20
 623 individuals for each group will therefore provide at least the statistical power (80%) to
 624 detect an expected difference of at least -20% in the EAT before and after treatment with
 625 liraglutide. Baseline standard Deviation (SDs) of 2 is expected to lower to approximately
 626 1.5 for the expected change. The expected change of SD will further assure significant
 627 statistical power of the comparative test.

628

629 In those study patients who will not be able to complete the 12-week treatment, we
 630 anticipate to see a 15% of EAT reduction after 3 weeks in patients who will be allocated to
 631 liraglutide. This anticipated 15% of EAT reduction will remain clinically significant. For
 632 example, a EAT thickness of 10 mm may likely decrease to 8.5 mm after 3 weeks of
 633 treatment with liraglutide, a clinically meaningful change for the patient cardio-metabolic
 634 profile.

635

636 This sample size also considers the difficulties with recruitment in the real world clinics.
 637 Based on our previous studies in humans, some participants may be lost to follow-up.

638

639 Student's t-test or non-parametric (Mann-Whitney) tests, depending on whether the genes
 640 mRNA expression and protein present or not a normal distribution, will be used to compare
 641 the effects of treatment (liraglutide versus placebo) on the variables measured. Student's
 642 t-test will be also used to compare ultrasound measured EAT thickness before and after
 643 treatments. Continuous variables will be considered as age-adjusted, sex-adjusted and
 644 weight-adjusted means with their SDs or median, if values are skewed.

645 Univariate regression models will be performed to assess the correlation between clinical
646 variables, including echocardiographic EAT thickness and blood tests, and EAT gene and
647 protein expression. Two-tailed $p < 0.05$ indicates statistical significance.

648

649 **Data Handling and Record Keeping**

650 Each of the dedicated clinic exam rooms provides direct access to the clinical research
651 study electronic data capture (EDC) eVelos system provided by the Clinical Research
652 Informatics and Data Management Unit of the Center for Health Informatics and
653 Bioinformatics at University of Miami (UM). The investigator and research coordinator
654 will collect and manage the data.

655 Data collection records with personal identifiers will be stored in locked file cabinets, at
656 Dominion Tower suite 805, 1400 NW 10th Ave, Miami, FL, 33136. Blood samples drawn
657 and stored in conjunction with this study will not be labeled with information that could
658 directly identify study subjects. Presentation of the study results at scientific meetings or
659 in publications will not identify subjects. Access to research and confidential records will
660 be limited to clinical investigators, research coordinators, and the IRB at UM.

661 **Adipose tissue samples storing**

662 Each adipose tissue sample will be snap frozen in liquid nitrogen and stored at -80°C until
663 analysis in a freezer, in Dr Frasca's lab, University of Miami, Dept of Microbiology, 1600
664 NW 10th Ave Miami FL 33136-1015. Once the sample is taken, it will be unlinked from
665 patient's name. This will assure confidentiality and anonymity. Current or future research
666 on adipose tissue samples will need to be approved by the local IRB.

667

668 **Ethical Considerations**

669 The study has been approved by the UM local institutional review board (IRB). The study
670 will be conducted in accordance with the Declaration of Helsinki. The study will be
671 conducted in accordance with the ICH GCP guidelines. The investigator will comply with
672 all applicable regulatory and legal requirements, ICH GCP guidelines and the Declaration
673 of Helsinki in obtaining and documenting the informed consent.

674 **Informed Consent:** Eligible and willing participant will be approached by the
675 investigators or the research coordinator and consented. Written informed consent form
676 will be obtained from the subjects before "baseline" activities begin. Each patient will sign
677 and date the informed consent. As standard procedure, patients will be informed of the
678 risks and complications related to cardiac surgery, regardless of their participation in the
679 study.

680

681

682 **Study Schedule**

683 Expected milestones:

- 684 • start of study: 09/01/2017

685 • first patient first visit 09/01/2017
686 • last patient last visit 10/31/2023
687 • Planned completion of integrated final study report 12/2023

688

689 **Study Drugs and Materials**

690 **Trial drugs**

691 Trial drugs will be supplied as liraglutide and matching liraglutide-placebo pre-filled pens
692 for subcutaneous injection, provided by Novo Nordisk. Pre-filled, multi-dose pen for
693 subcutaneous injection delivers doses of 0.6 mg, 1.2 mg, or 1.8 mg (6 mg/mL, 3 mL).

694 **Labelling of trial drugs:** All the pre-filled pens will be labeled “liraglutide/placebo”

695 **Trial drugs supply** Trial drugs (liraglutide and matching placebo) will be supplied to each
696 study subject by Novo Nordisk.

697 Clinical Supply in Novo Nordisk Headquarter will revert with timeline for delivery of trial
698 drugs when protocol is approved, and Novo Nordisk Headquarter will receive a signed
699 contract and other additional information. Standard delivery is 4 months.

700 **Storage and Drug Accountability of Study Medication**

701 The investigator will ensure the availability of proper storage conditions and record and
702 evaluate the temperature. Prior to first use, trial drugs will be stored in a refrigerator
703 between 36°F to 46°F (2°C to 8°C). After initial use of the trial drug pen, the pen can be
704 stored for 30 days at controlled room temperature (59°F to 86°F; 15°C to 30°C) or in a
705 refrigerator (36°F to 46°F; 2°C to 8°C). Trial drugs will be not dispensed to any person not
706 enrolled in the study. Unused trial drugs will be stored separately from used trial
707 medication.

708 **Randomization and Blinding**

709 This will be a double-blind, parallel group, placebo controlled study. The method of
710 allocation generation will be a computerized random-number generator. The sequence will
711 be generated by the process of restricted randomization. Computer-based randomization
712 process will be managed by the UM Research pharmacy.

713

714 **Concomitant Illnesses and Medications**

715 **Background medications:**

716 **Metformin.** Metformin is considered background medication (non-investigational
717 medicinal product) and will not be provided during the trial. Dose adjustments could occur
718 during the trial at the investigator’s discretion. As Iacobellis et al ¹² recently showed no
719 significant effects of metformin on EAT, we do not anticipate that metformin dose
720 adjustment may influence the study outcomes.

721 **Long acting insulins.** Insulin is considered background medication (non-investigational
722 medicinal product) and will not be provided during the trial. The total daily dose of insulin
723 could be adjusted during the trial at the investigator’s discretion. Iacobellis’ group recently
724 performed a 24-week interventional study to compare EAT changes in insulin-naïve

725 inadequately controlled patients with type 2 diabetes following basal insulin initiation with
726 detemir vs. glargine. No significant changes in EAT between detemir and glargine were
727 observed. ²¹ Based on these findings we do not anticipate that insulin treatment may
728 influence the study outcomes.

729 **Sulfonylureas.** Sulfonylurea treatment is considered background medication (non-
730 investigational medicinal product) and will not be provided during the trial. During the
731 study, no up-titration of sulfonylurea dosage will be allowed. Dose reduction of SU due to
732 hypoglycemia may be allowed at the investigators discretion. In the event of
733 hypoglycemia, the dose of sulfonylurea can be reduced or the drug can be stopped at the
734 investigator's discretion.

735 **Adverse Events**

736 In the case of an adverse event (AE), the investigator will comply with all local legal,
737 regulatory, and IRB requirements. The investigator will report to IRB all adverse events
738 including not serious and serious adverse events (SAE), suspected unexpected serious
739 adverse reactions (SUSARs), serious adverse drug reactions (SADRs). The investigator
740 will report all SAEs, SUSARs, and SADRs at the same time such events are reported to
741 regulatory authorities or within 15 days from the investigator becoming aware of such
742 adverse events, whichever comes first.

743 The investigator will use the approved Updated Prescribing Information for Victoza®. The
744 investigator will collect the following information at minimum for each of these events: 1.
745 Study name2. Patient identification 3. Event (preferably a diagnosis) 4. Drug 5. Reporter
746 identification. 6. Causality 7. Outcome

747 **Definitions** An AE is any undesirable medical event occurring to a subject in a clinical
748 trial, whether or not related to the trial product(s). This includes events reported from the
749 first trial related activity after the subject has signed the informed consent and until post
750 treatment follow-up period as defined in the protocol. The following should not be recorded
751 as AEs, if recorded as medical history/concomitant illness at screening:
752 • Pre-planned procedure, unless the condition for which the procedure was planned has worsened from
753 the first trial related activity after the subject has signed the informed consent
754 • Pre-existing conditions found as a result of screening procedures

755 Clinical Laboratory Adverse Event: A clinical laboratory AE is any clinical laboratory
756 abnormality regarded as clinically significant i.e. an abnormality that suggests a disease
757 and/or organ toxicity and is of a severity, which requires active management, (i.e. change
758 of dose, discontinuation of trial product, more frequent follow-up or diagnostic
759 investigation).

760 **Serious Adverse Event (SAE):** A serious AE is an experience that at any dose results in
761 any of the following:

- 762 • Death
- 763 • A life-threatening* experience
- 764 • In-patient hospitalization or prolongation of existing hospitalization

765 Suspicion of transmission of infectious agents must always be considered an SAE
766 • A persistent or significant disability/incapacity
767 • A congenital anomaly/birth defect
768 • Important medical events that may not result in death, be life-threatening*, or require
769 hospitalisation may be considered an SAE when, based upon appropriate medical
770 judgement, they may jeopardise the subject and may require medical or surgical
771 intervention to prevent one of the outcomes listed in this definition

772 *The term life-threatening in the definition of SAE refers to an event in which the subject
773 was at risk of death at the time of the event. It does not refer to an event which
774 hypothetically might have caused death if it was more severe.

775 **SADR:** an adverse drug reaction (ADR) is an adverse event for which a causal relationship
776 (Possible/Probable relation) between the study drug and the occurrence of the event is
777 suspected. The ADR should be classified as serious if it meets one or more of the
778 seriousness criteria.

779 **Medical Events of Special Interest (MESI):** A MESI is (1) a medication error (e.g. wrong
780 drug administration or wrong route of administration) or (2) a suspected transmission of an
781 infectious agent via the product

782 **Non-Serious Adverse Event:** A non-serious AE is any AE which does not fulfil the
783 definition of an SAE. Severity Assessment Definitions:

- 784 • Mild: Transient symptoms, no interference with the subject's daily activities
- 785 • Moderate: Marked symptoms, moderate interference with the subject's daily activities
- 786 • Severe: Considerable interference with the subject's daily activities, unacceptable

787 Relationship to study medication Assessment Definitions:

- 788 • Probable: Good reasons and sufficient documentation to assume a causal relationship
- 789 • Possible: A causal relationship is conceivable and cannot be dismissed
- 790 • Unlikely: The event is most likely related to an etiology other than the trial product

791 **Outcome Categories and Definitions:** • Recovered: Fully recovered or by medical or
792 surgical treatment the condition has returned to the level observed at the first trial related
793 activity after the subject signed the informed consent• Recovering: The condition is
794 improving and the subject is expected to recover from the event. This term should only be
795 used when the subject has completed the trial • Recovered with sequelae: As a result of the
796 AE, the subject suffered persistent and significant disability/incapacity (e.g. became
797 blind, deaf, paralysed). Any AE recovered with sequelae should be rated as an SAE• Not
798 recovered• Fatal• Unknown

800 **Collection, Recording and Reporting of Adverse Events:** All events meeting the
801 definition of an adverse event will be collected and reported from the first trial related
802 activity after the subject has signed the informed consent and until the end of the post-
803 treatment follow-up period as stated in the protocol.

804 **Follow-up of Adverse Events:** During and following a subject's participation in a clinical
805 trial, the investigator and institution will provide adequate medical care to the study subject

806 for any study-related adverse events, including clinically significant laboratory values
807 related to the study. This medical care for study subjects will be provided regardless of
808 their insurance status. All adverse events classified as serious or severe or
809 possibly/probably related to the trial product will be followed until the subject has
810 recovered and all queries have been resolved. For cases of chronic conditions follow-up
811 until the outcome category is “recovered” is not required, as these cases can be closed with
812 an outcome of “recovering” or “not recovered”. All other adverse events will be followed
813 until the outcome of the event is “recovering” (for chronic conditions), or “recovered” or
814 until the end of the post-treatment follow-up stated in the protocol, whichever comes first,
815 and until all queries related to these AEs have been resolved.

816 **Pregnancy:** Pregnancy test must be negative prior to be enrolled in the study, as per
817 standard care. However, study subjects will be instructed to notify the investigator
818 immediately if they become pregnant. The investigator will report to IRB any pregnancy
819 occurring during the trial period. Reporting of pregnancy by investigator will occur within
820 the same timelines described above for reporting of Adverse Events.

821 **Precautions/Over-dosage:** Precautions and procedures will be observed in the event of
822 overdose of liraglutide provided during the study.

823

824 **Liability and Subject Insurance**

825 The investigator must state that during and following a subject’s participation in trial, the
826 investigator and his/her institution will provide adequate medical care to the study subject
827 for any study-related adverse events, including clinically significant laboratory values
828 related to the study. This medical care for study subjects will be provided regardless of
829 their insurance status.

830 The investigator will be responsible for the conduct of the study and agrees to defend,
831 indemnify, and hold harmless Novo Nordisk, any of its parent companies, affiliates, or
832 subsidiaries, and their respective officers, directors, employees, agents, representatives,
833 distributors, salespersons, customers, licensees, and end-users from and against any claim,
834 suit, demand, loss, damage, expense or liability imposed by any third party arising from or
835 related to: (a) any breach of investigator’s obligations; or (b) investigator’s negligent or
836 grossly negligent use or willful misuse of the study drug, the results, or services derived
837 there from. This indemnification shall not apply in the event and to the extent that a court
838 of competent jurisdiction or a duly appointed arbiter determines that such losses or liability
839 arose as a result of Novo Nordisk’s gross negligence, intentional misconduct, or material
840 breach of its responsibilities.

841 **Publication Plan**

842 Data generated from the study will be published in highly ranked peer reviewed scientific
843 journals, such as Diabetes, Diabetes Care, Obesity or Circulation and presented at national
844 and international meetings, such as ADA 2018-19, ENDO Society 2018-19 and American

845 Heart Association 2018-19. Novo Nordisk will have any manuscripts for publication for
846 review with a right to comment.

847 The investigator will register the study with a publicly assessable database such as
848 clinicaltrials.gov.

849

850 **REGULATORY CONSIDERATIONS**

851 We plan to conduct the trial under an IND exemption. After reviewing 21 CFR
852 312.2(b)(1) and FDA's "Guidance for Clinical Investigators, Sponsors, and IRBs
853 Investigational New Drug Applications (INDs) Determining whether human research
854 studies can be conducted without an IND, September 2013", we believe an IND
855 exemption is applicable to this study as it meets all the criteria, as reported in the table:

857 21CFR 3 12.2 (B) EXEMPTIONS

858 **(1) the clinical investigation of a drug product that is lawfully marketed in the**
 859 **united states is exempt from the requirements of this part if all the following**
 860 **apply:**

861

<p>(i) The investigation is not intended to be reported to FDA as a well-controlled study in support of a new indication for use nor intended to be used to support any other significant change in the labeling for the drug;</p>	<p>Meets criteria. This clinical trial is not intended to be reported to the FDA in support of a new indication or change in Victoza labeling.</p>
<p>(ii) If the drug that is undergoing investigation is lawfully marketed as a prescription drug product, the investigation is not intended to support a significant change in the advertising for the product.</p>	<p>Meets criteria. This investigation is not intended to support a significant change in the Victoza advertising.</p>
<p>(iii) The investigation does not involve a route of administration or dosage level or use in a patient population or other factor that significantly increases the risks (or decreases the acceptability of the risks) associated with the product</p>	<p>Meets criteria. In this clinical trial liraglutide (and the matching placebo) will be administered according to the labeled route and dosage (Pre-filled, multi-dose pen for subcutaneous injection that delivers doses of 0.6 mg, 1.2 mg, or 1.8 mg (6 mg/mL, 3 mL). In this clinical trial liraglutide (and the matching placebo) will be used according to the indications. Liraglutide will be used in adults with type 2 diabetes (T2DM) in adjunct to diet and exercise advices and not as first-line therapy, as study patients will continue their standard diabetes therapy. Hence, liraglutide/placebo is prescribed under inclusion criteria that are the same as for marketed Victoza. Exclusion criteria for liraglutide are also the same as marketed Victoza. This investigation will not increase the risks in the study population.</p>
<p>(iv) The investigation is conducted in compliance with the requirements for institutional review set forth in part 56 and with the requirements for informed consent set forth in part 50;</p>	<p>Meets criteria. This study will be reviewed and approved by the University of Miami IRB Institutional Review board prior to study start and will meet with the requirements for informed consent.</p>
<p>(v) The investigation is conducted in compliance with the requirements of 21 CFR 3 12.7.</p>	<p>Meets criteria. Study Investigator, or any person acting on behalf of the investigator, will not represent in a promotional context that the study drug is safe or effective for the purposes for which it is under investigation or otherwise</p>

promote the study drug.

863 **MAIN REFERENCES**

864

- 865 1. Iacobellis G. Local and Systemic effects of the multifaceted Epicardial Adipose
866 Tissue Depot. *Nature Reviews Endocrinology* 2015;11:363-371 PMID: 25850659
- 867 2. Iacobellis G, Bianco AC. Epicardial adipose tissue: emerging physiological,
868 pathophysiological and clinical features. *Trends Endocrinol Metab* 2011; 22:450-
869 7. PMID: 21852149
- 870 3. Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic,
871 biomolecular and clinical relationships with the heart. *Nat Clin Pract Cardiovasc
872 Med* 2005; 2: 536-543 PMID: 16186852
- 873 4. McAninch E, Bianco AC and Iacobellis G. Epicardial Adipose Tissue Has a
874 Unique Transcriptome that is Downregulated in Severe Coronary Artery Disease.
875 *Obesity*, 2015; 23:1267-78. PMID: 25959145
- 876 5. Mahabadi AA, et al. Association of Epicardial Adipose Tissue With Progression of
877 Coronary Artery Calcification Is More Pronounced in the Early Phase of
878 Atherosclerosis: Results From the Heinz Nixdorf Recall Study. *JACC Cardiovasc
879 Imaging*. 2014; 7, 909-916.
- 880 6. Iacobellis G, Lonn E, Lamy A, Singh N, Sharma AM. Epicardial fat thickness and
881 coronary artery disease correlate independently of obesity. *Int J Cardiol*.
882 2011;146:452-4
- 883 7. Iacobellis G, Ribaudo MC, Assael F, Vecchi E, Tiberti C, Zappaterreno A, Di Mario
884 U, Leonetti F. Echocardiographic epicardial adipose tissue is related to
885 anthropometric and clinical parameters of metabolic syndrome: a new indicator of
886 cardiovascular risk. *J Clin Endocrinol Metab* 2003; 88:5163-5168 PMID:
887 14602744
- 888 8. Iacobellis G, Willens HJ. Echocardiographic Epicardial Fat: A Review of Research
889 and Clinical Applications. *J Am Soc Echocardiogr* 2009; 22:1311-1319. PMID:
890 19944955
- 891 9. Malavazos AE, Di Leo G, Secchi F, Lupo EN, Dogliotti G, Coman C, Morricone
892 L, Corsi MM, Sardanelli F, Iacobellis G. Relation of echocardiographic epicardial
893 fat thickness and myocardial fat. *Am J Cardiol*. 2010;105:1831-5. PMID: 20538139
- 894 10. Iacobellis G. Epicardial fat: a new cardiovascular therapeutic target. *Curr Opin
895 Pharmacol*. 2016;27:13-18 PMID: 26848943
- 896 11. Iacobellis G, Mohseni M, Bianco S, Banga PK. Liraglutide causes large and rapid
897 Epicardial Fat reduction *Obesity* 2017; 25:311-316
- 898 12. Morano S, Romagnoli E, Filardi T, Nieddu L, Mandosi E, Fallarino M, Turinese I,
899 Dagostino MP, Lenzi A, Carnevale V. Short-term effects of glucagon-like peptide
900 1 (GLP-1) receptor agonists on fat distribution in patients with type 2 diabetes
901 mellitus: an ultrasonography study. *Acta Diabetol* 2015; 52:727-32

902 13. Lima-Martínez MM, Paoli M, Rodney M, Balladares N, Contreras M, D'Marco L,
 903 Iacobellis G Effect of sitagliptin on epicardial fat thickness in subjects with type 2
 904 diabetes and obesity: a pilot study. *Endocrine*. 2016;51:448-55 PMID: 26233684

905 14. Elisha B, Azar M, Taleb N, Bernard S, Iacobellis G, Rabasa-Lhoret R. Body
 906 Composition and Epicardial Fat in Type 2 Diabetes Patients Following Insulin
 907 Detemir Versus Insulin Glargine Initiation. *Horm Metab Res*. 2015 Sep 4

908 15. Sacks HS, Fain JN, Cheema P, Bahouth SW, Garrett E, Wolf RY. Inflammatory
 909 Genes in Epicardial Fat Contiguous with Coronary Atherosclerosis in the Metabolic
 910 Syndrome and Type 2 Diabetes: Changes associated with pioglitazone. *Diabetes*
 911 *Care* 2011, 34: 730-3

912 16. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA,
 913 Nissen SE, Pocock S, Poulter NR, Ravn LS, Steinberg WM, Stockner M, Zinman
 914 B, Bergenstal RM, Buse JB; LEADER Steering Committee; LEADER Trial
 915 Investigators Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. *N Engl*
 916 *J Med*. 2016;375:311-22

917 17. Camarena V, Wang G, Mohseni M, Salerno and Iacobellis G. Novel Atherogenic
 918 Pathways from the Differential Transcriptome Analysis of Diabetic Epicardial
 919 Adipose Tissue. *Nutrition Metabolism and Cardiovascular Disease* 2017 in press
 920 DOI: <http://dx.doi.org/10.1016/j.numecd.2017.05.010>

921 18. Iacobellis G, Camarena V, Sant D, Wang G. Human Epicardial Fat Expresses Both
 922 Glucagon-Like Peptide 1 And 2 Receptors Genes *Hormone and Metabolic*
 923 *Research* accepted in press 2017

924 19. Faber R, Zander M, Pena A, Michelsen MM, Mygind ND, Prescott E. Effect of the
 925 glucagon-like peptide-1 analogue liraglutide on coronary microvascular function in
 926 patients with type 2 diabetes - a randomized, single-blinded, cross-over pilot study
 927 *Cardiovasc Diabetol*. 2015;14:41 PMID: 25896352

928 20. Noyan GLP-1R agonist liraglutide activates cytoprotective pathways and improves
 929 outcomes after experimental myocardial infarction in mice. *Diabetes*. 2009;58:975-
 930 83

931 21. Yang J, Ren J, Song J, Liu F, Wu C, Wang X, Gong L, Li W, Xiao F, Yan F, Hou
 932 X, Chen L. Glucagon-like peptide 1 regulates adipogenesis in 3T3-L1
 933 preadipocytes. *Int J Mol Med* 2013; 31:1429-35

934 22. Beiroa D, Imbernon M, Gallego R, Senra A, Herranz D, Villarroya F, Serrano M,
 935 Fernø J, Salvador J, Escalada J, Dieguez C, Lopez M, Frühbeck G, Nogueiras.
 936 GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning
 937 through hypothalamic AMPK. *Diabetes*. 2014; 63:3346-58

938 23. Pyke C, Knudsen LB. The Glucagon-Like Peptide-1 Receptor—or Not?
 939 *Endocrinology* 2013;154:4-8.

940 24. Pyke C, Heller RS, Kirk RK, Ørskov C, Reedtz-Runge S, Kaastrup P, Hvelplund
941 A, Bardram L, Calatayud D, Knudsen LB. GLP-1 Receptor Localization in Monkey
942 and Human Tissue: Novel Distribution Revealed With Extensively Validated
943 Monoclonal Antibody. *Endocrinology* 2014; 155:1280-1290

944 25. Shiraki A, Oyama J, Komoda H, Asaka M, Komatsu A, Sakuma M, Kodama K,
945 Sakamoto Y, Kotooka N, Hirase T, Node K. The glucagon-like peptide 1 analog
946 liraglutide reduces TNF-?-induced oxidative stress and inflammation in endothelial
947 cells. *Atherosclerosis*. 2012 Apr;221(2):375-82.

948 26. Krasner NM, Ido Y, Ruderman NB, Cacicedo JM. Glucagon-like peptide-1 (GLP-
949 1) analog liraglutide inhibits endothelial cell inflammation through a calcium and
950 AMPK dependent mechanism. *PLoS One*. 2014 May 16;9(5):e97554.

951

952