

1

2 **Safety and Efficacy of Initializing the**

3 **Control-IQ Artificial Pancreas System Using**

4 **Total Daily Insulin**

5

6

7

8

9

10 **Participating Institutions**

11 University of Virginia Center for Diabetes Technology

12

13

14

15

16

17

18

19

20 NCT03804983

21 Version Number: v1.4

22 **2/7/2019**

23

24

KEY ROLES

Protocol Sponsor/Chair	
Name, degree	Marc Breton, PhD
Institution Name	University of Virginia
Study Licensed Medical Investigator	
Name, degree	Melissa Schoelwer, MD
Institution Name	University of Virginia

25

26

TABLE OF CONTENTS

27	CHAPTER 1: BACKGROUND INFORMATION.....	13
28	1.1 Introduction.....	13
29	1.2 Rationale	15
30	1.3 Potential Risks and Benefits of the Investigational Device.....	15
31	1.3.1 Known Potential Risks.....	16
32	1.3.1.1 Venipuncture Risks.....	16
33	1.3.1.2 Fingerstick Risks.....	16
34	1.3.1.3 Subcutaneous Catheter Risks (CGM)	16
35	1.3.1.4 Risk of Hypoglycemia	16
36	1.3.1.5 Risk of Hyperglycemia.....	16
37	1.3.1.6 Risk of Device Reuse.....	17
38	1.3.1.7 Risk of Injury during Ski/Snowboarding.....	17
39	1.3.1.8 Other Risks	17
40	1.3.2 Known Potential Benefits	17
41	1.4 General Considerations.....	18
42	CHAPTER 2: STUDY ENROLLMENT AND SCREENING.....	19
43	2.1 Participant Recruitment and Enrollment.....	19
44	2.1.1 Informed Consent and Authorization Procedures.....	19
45	2.2 Participant Inclusion Criteria.....	19
46	2.3 Participant Exclusion Criteria.....	20
47	2.4 Screening Procedures.....	21
48	2.4.1 Eligibility and Baseline Procedures at Screening	21
49	CHAPTER 3: STUDY SYSTEM TRAINING	22
50	3.1 Study Equipment Training.....	22
51	3.1.1 Initiation of CGM	22
52	3.1.2 Initiation of Study Pump.....	22
53	3.1.3 Initiation of Activity Tracker.....	22
54	3.1.4 Blood Glucose and Ketone Testing	23
55	3.1.5 Post-Training Check In	23

UNIVERSITY OF VIRGINIA

56	CHAPTER 4: SKI ADMISSION PROCEDURES	24
57	4.1 Admission Check-In Procedures	24
58	4.1.1 Participant Check-In & Verification.....	24
59	4.1.2 Randomization	24
60	4.2 Main Admission Activities and Procedures.....	25
61	4.2.1 General Admission Overview.....	25
62	4.2.2 Device Procedures for the Participants.....	25
63	4.2.3 Participants' Admission Itinerary	25
64	CHAPTER 5: AT-HOME TREATMENT & STUDY COMPLETION.....	28
65	5.1 At-Home Treatment Continuation.....	28
66	5.1.1 Post Admission Follow-up Phone Call	28
67	5.2 Final Study Visit.....	28
68	5.3 Early Termination Visit (If Applicable)	28
69	5.4 Unscheduled Visits	28
70	5.5 Participant Access to Study Device at Study Closure	28
71	CHAPTER 6: STUDY DEVICES.....	30
72	6.1 Description of the Investigational Device	30
73	6.1.1 Insulin Pump	30
74	6.1.2 Continuous Glucose Monitoring.....	30
75	6.1.3 Blood Glucose Meter and Strips.....	30
76	6.1.3.1 Blood Glucose Meter Testing.....	30
77	6.1.3.2 Blood Glucose Meter Supplies	30
78	6.1.4 Blood Ketone Meter and Strips.....	30
79	6.1.4.1 Blood Ketone Testing	30
80	6.1.4.2 Blood Ketone Meter Supplies.....	30
81	6.1.5 Activity Tracker.....	31
82	6.1.6 Study Device Accountability Procedures	31
83	6.1.7 Blood Ketone Testing	31
84	6.2 Safety Measures.....	31
85	6.2.1 CGM Calibration	31

UNIVERSITY OF VIRGINIA

86	6.2.2 System Failure	31
87	6.2.3 Hypoglycemia Threshold Alert and Safety Protocol.....	31
88	6.2.4 Hyperglycemia Threshold Alert and Safety Protocol.....	32
89	CHAPTER 7: POINT-OF-CARE TESTING.....	33
90	7.1 Point-of-Care Samples.....	33
91	CHAPTER 8: ADVERSE EVENTS, DEVICE ISSUES, AND STOPPING RULES	34
92	8.1 Adverse Events	34
93	8.1.1 Definitions.....	34
94	8.1.2 Reportable Adverse Events.....	35
95	8.1.2.1 Hypoglycemic Events.....	35
96	8.1.2.2 Hyperglycemic Events/Diabetic Ketoacidosis.....	35
97	8.1.3 Relationship of Adverse Event to Study Device.....	36
98	8.1.4 Intensity of Adverse Event.....	36
99	8.1.5 Coding of Adverse Events	36
100	8.1.6 Outcome of Adverse Event.....	36
101	8.2 Reportable Device Issues.....	37
102	8.3 Pregnancy Reporting.....	38
103	8.4 Timing of Event Reporting	38
104	8.5 Stopping Criteria.....	38
105	8.5.1 Participant Discontinuation of Study Device.....	38
106	8.5.2 Criteria for Suspending or Stopping Overall Study	39
107	8.6 Risks.....	39
108	CHAPTER 9: MISCELLANEOUS CONSIDERATIONS	40
109	9.1 Drugs Used as Part of the Protocol.....	40
110	9.2 Prohibited Medications, Treatments, and Procedures	40
111	9.3 Participant Compensation	40
112	9.4 Participant Withdrawal	40
113	9.5 Confidentiality	40
114	CHAPTER 10: STATISTICAL CONSIDERATION.....	41

UNIVERSITY OF VIRGINIA

115	10.1 Statistical and Analytical Plans.....	41
116	10.2 Statistical Hypotheses.....	41
117	10.3 Sample Size.....	41
118	10.4 Outcome Measures	41
119	10.4.1 Primary Efficacy Endpoint	41
120	10.4.2 Secondary Efficacy Endpoints.....	41
121	10.4.2.1 Safety Analyses.....	42
122	10.5 Device Issues	42
123	CHAPTER 11: DATA COLLECTION AND MONITORING.....	44
124	11.1 Case Report Forms and Device Data.....	44
125	11.2 Study Records Retention	44
126	11.3 Protocol Deviations.....	44
127	CHAPTER 12: ETHICS/PROTECTION OF HUMAN PARTICIPANTS.....	45
128	12.1 Ethical Standard.....	45
129	12.2 Institutional Review Boards.....	45
130	12.3 Informed Consent Process	45
131	12.3.1 Consent Procedures and Documentation	45
132	12.3.2 Participant and Data Confidentiality.....	45
133	CHAPTER 13: REFERENCES.....	47
134		
135		

LIST OF ABBREVIATIONS

ABBREVIATION	DEFINITION
AP	Artificial Pancreas
BG	Blood Glucose
BT/BTLE	Bluetooth, Bluetooth low energy
CRF	Case Report Form
CGM	Continuous Glucose Monitoring
CLC	Closed-Loop Control
CSII	Continuous Subcutaneous Insulin Injection
CTR	Control-to-Range
DiAs	Diabetes Assistant
DKA	Diabetic Ketoacidosis
EC	European Commission
FDA	Food and Drug Administration
GCP	Good Clinical Practice
HbA1c	Hemoglobin A1c
HCL	Hybrid Closed Loop
ID	Identification
iDCL	International Diabetes Closed Loop
IDE	Investigational Device Exemption
IOB	Insulin-on-Board
IQR	Interquartile Range
JDRF	Juvenile Diabetes Research Foundation
NIH	National Institutes of Health
POC	Point-of-Care
QA	Quality Assurance
QC	Quality Control
RBM	Risk-Based Monitoring
SAP	Sensor-Augmented Pump
SD	Standard Deviation
TDI	Total Daily Insulin
UI	User Interface

139

Signature Page

140

141 Safety and Efficacy of Initializing the Control-IQ Artificial
142 Pancreas System Using Total Daily Insulin

143

144 **Protocol Identifying Number: Winter-Study-2019**

145 **IDE Sponsor: Marc Breton, PhD**

146 **Version Number: v1.4**

147 **2/7/2019**

148

149

Protocol Chair/Director	
Name, degree	Marc Breton, PhD
Signature / Date	

150

151 **SITE PRINCIPAL INVESTIGATOR STATEMENT OF COMPLIANCE**

152 Protocol Title: Safety and Efficacy of Initializing the Control-IQ Artificial Pancreas System
153 Using Total Daily Insulin

154 Protocol Version/Date: v1.4/07FEB2019

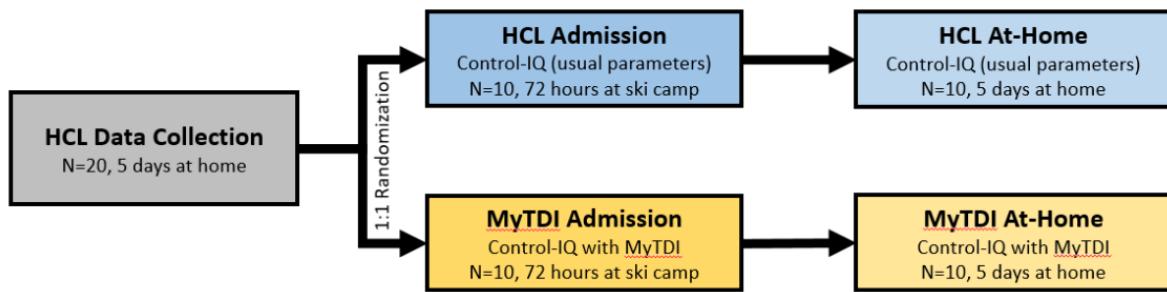
155 I have read the protocol specified above. In my formal capacity as a Site Principal Investigator,
156 my duties include ensuring the safety of the study participants enrolled under my supervision
157 with complete and timely information, as outlined in the protocol. It is understood that all
158 information pertaining to the study will be held strictly confidential and that this confidentiality
159 requirement applies to all study staff at this site.

160 This trial will be carried out in accordance with ICH E6 Good Clinical Practice (GCP) and as
161 required by the following: United States (US) Code of Federal Regulations (CFR) applicable to
162 clinical studies (45 CFR Part 46, 21 CFR Part 50, 21 CFR Part 56, 21 CFR Part 312, and/or 21
163 CFR Part 812).

164 As the Principal Investigator, I will assure that no deviation from, or changes to the protocol
165 will take place without prior agreement from the sponsor and documented approval from the
166 Institutional Review Board (IRB), or other approved Ethics Committee, except where necessary
167 to eliminate an immediate hazard(s) to the trial participants.

168 All key personnel (all individuals responsible for the design and conduct of this trial) have
169 completed Human Participants Protection Training and Good Clinical Practice Training.
170 Further, I agree to ensure that all staff members involved in the conduct of this study are
171 informed about their obligations in meeting the above commitments.

172 Investigator's Signature _____ Date: ____ / ____ / ____


173 dd mmm yyyy

174 Investigator's Name: _____

175 Site Name: _____

PROTOCOL SUMMARY

PARTICIPANT AREA	DESCRIPTION
Title	Safety and Efficacy of Initializing the Control-IQ Artificial Pancreas System Using Total Daily Insulin
Investigational Device	Control-IQ Artificial Pancreas System with MyTDI
Objectives	The objective of the study is to assess the safety and efficacy of using the Control-IQ artificial pancreas system using MyTDI in a randomized controlled trial.
Study Design	Up to 25 participants may be consented. Up to 20 participants will complete a 5-day at-home data collection period prior to coming to the Ski Admission where they will be randomized in a 1:1 fashion. Half of participants will initiate on the Control-IQ AP with their usual parameters while half will be initiated on the Control-IQ with MyTDI AP system. Participants will continue study treatment for an additional 5 days at home following the end of the Ski Admission.
Number of Sites	1
Endpoint	The primary outcome for the first phase is time in target range 70-180 mg/dL measured by CGM in Control-IQ group vs Control-IQ with MyTDI group over approximately 2 weeks.
Population	<p>Key Exclusion Criteria</p> <ul style="list-style-type: none"> - Age 12-18 - Clinical diagnosis of Type 1 Diabetes <p>Key Exclusion Criteria</p> <ul style="list-style-type: none"> - History of DKA in the past 6 months - History of hypoglycemic seizure or loss of consciousness in the past 6 months
Sample Size	20 participants (up to 25 may be consented)
Treatment Groups	<p>Group 1 (HCL – Hybrid Closed Loop):</p> <ul style="list-style-type: none"> • Control-IQ with usual parameters <p>Group 2 (MyTDI):</p> <ul style="list-style-type: none"> • Control-IQ with MyTDI
Participant Duration	3 weeks
Protocol Overview/Synopsis	After consent is signed, eligibility will be assessed. Eligible participants will be screened and enter the data collection period for approximately 5 days at home. Participants will then be randomized 1:1 to the use of Control-IQ vs. Control-IQ with MyTDI during a 72 hours ski admission. Following the admission, participants will continue the randomized treatment for approximately 5 days at home.

179

180

Figure 1: Study Design

181 Following a 5-day at-home data collection period, participants will be randomized 1:1 to use the
182 Control-IQ system with their usual parameters or the Control-IQ system based on his/her total
183 daily insulin. This treatment will continue through the Ski Admission and for 5 days at home.

Table 1. Schedule of Study Visits and Procedures

	Screening	Post-Training Data Collection	Ski Admission	Post-Admission Data Collection	End of Study
Location	Clinic	Home	Ski Lodge	Home	Home
Comment	Screen / Enroll	5 Days	72 Hours	5 Days	15-60 min
Informed Consent	X				
Eligibility Assessment	X				189
Medical History	X				190
HbA1c	X				191
Randomization			X		
Pregnancy test (if applicable)	X		X		192
Physical Exam	X		X		193
Vital Signs (including height/weight)	X		X		
Device Data download(s)			X		X ¹⁹⁴
Wear Study CGM, Insulin Pump, & Activity Tracker		X	X	X	195
Group 1: - Control-IQ AP (usual parameters)			X		196
Group 2: - Control-IQ AP with myTDI			X		197
Review diabetes management and AEs	X	X	X	X	X ¹⁹⁸

199

Chapter 1: Background Information

200

1.1 Introduction

201 The Tandem t:slim X2 insulin pump with Control-IQ Technology is a third-generation closed-
202 loop control (CLC) system. The CLC is an “artificial pancreas” (AP) that uses algorithms to
203 automatically manage insulin delivery for people with diabetes based on their blood sugar and
204 calculated insulin needs. This system retains the same control algorithm that was initially tested
205 by UVA’s DiAs system and then implemented in the inControl system. DiAs is described in 13
206 IDEs (see IDEs 1-12 and 14 in the list below) and inControl is described in IDEs G160097,
207 G160181, G150240, G140169/S010. For complete algorithmic and clinical background, we
208 refer to these IDEs and to a number of scientific publications that describe glycemic control
209 outcomes and clinical impressions from the use of these systems (see list of peer-reviewed
210 papers in References). This control algorithm has been implemented in two mobile platforms
211 (DiAs and inControl) and has been tested in over 30 clinical trials by hundreds of adults and
212 children with type 1 diabetes in the United States and overseas

213 This trial will expand on a number of clinical trials that have extensively tested the AP system in
214 over 350,000 hours of outpatient human use and in several centers in the U.S. and abroad. The
215 italicized IDEs are currently using the t:slim X2 with Control-IQ Technology system proposed in
216 this trial:

- 217 1. IDE #G110095: Feasibility study of closed loop control in type 1 diabetes using heart rate
218 monitoring as an exercise marker, approved 10/08/2011;
- 219 2. IDE #G120032: Early feasibility (pilot) study of outpatient control-to-range; 3/2/2012;
- 220 3. IDE #G120210: Early feasibility study 2 of outpatient control-to-range; 10/12/2012;
- 221 4. IDE #G130118: DiAs control-to-range nocturnal closed-loop camp study; 6/19/2013;
- 222 5. IDE #G130121: Optimizing closed-loop control of type 1 diabetes mellitus in adolescents;
223 6/19/2013;
- 224 6. IDE# G130142: Closed loop control in adolescents using heart rate as exercise indicator;
225 7/16/13;
- 226 7. IDE #G130143: Early feasibility study of adaptive advisory/automated (AAA) control of type
227 1 diabetes; 7/19/2013;
- 228 8. IDE #G140066: Full day and night closed-loop with DiAs platform; 5/9/14.
- 229 9. IDE #G140068: Unified Safety System (USS) Virginia Closed Loop versus sensor augmented
230 pump therapy overnight in type 1 diabetes; 5/14/2014;
- 231 10. IDE #G140089: Outpatient control-to-range: Safety and efficacy with day-and-night in-home
232 use; 6/6/2014;

233 11. IDE #G140169: Unified Safety System (USS) Virginia Closed-Loop versus Sensor
234 Augmented Pump (SAP) therapy for hypoglycemia reduction in type 1 diabetes; 10/3/2014.

235 12. IDE #G150221: Reducing risks and improving glucose control during extended exercise in
236 youth with T1DM: The AP Ski Camp; 11/09/2015;

237 13. IDE #G150240: Project Nightlight: Efficacy and system acceptance of dinner/night vs. 24 hr
238 closed loop control; 11/12/2015;

239 14. IDE #G160047: Closed-loop in young children 5-8 years old using DiAs platform;
240 03/29/2016;

241 15. IDE #G160097: Clinical Acceptance of the Artificial Pancreas: the International Diabetes
242 Closed-Loop (iDCL) Trial/Research Site Training Protocol; 06/03/16.

243 16. IDE#G160181: PROTOCOL 1 for “Clinical Acceptance of the Artificial Pancreas: The
244 International Diabetes Closed Loop (iDCL) Trial; 09/21/16

245 17. IDE#G170255: Protocol 3 for “Pilot Trial of t:slim X2 with Control-IQ Technology”;
246 11/16/17 and IDE#G170255/S001 Protocol 3 for “Training Study of t:slim X2 with Control-IQ
247 Technology”; 11/16/17

248 18. IDE#G160181: Real-Time Monitoring and Glucose Control During Winter-Sport Exercise in
249 Youth with Type 1 Diabetes: The AP Ski Camp Continued; 10/26/2017

250 19. *IDE#G150240/S008: A long-term home use study, enrolling 18-70 years old T1D participants
251 since January 2018; this study is expected to be completed April 2019; 02/02/18;*

252 20. *IDE#G18053 : “The International Diabetes Closed Loop (iDCL) trial: Clinical Acceptance
253 of the Artificial Pancreas - A Pivotal Study of t:slim X2 with Control-IQ Technology”;
254 randomized controlled trial of 6 month at home closed loop system vs. sensor-augmented pump
255 with a 3 month extension phase ; 04/13/18 ;*

256 21. *IDE #G180174: “The VRIF Trial: Hypoglycemia Reduction with Automated-Insulin Delivery
257 System”; 08/29/18.*

258 22. *IDE#G180053/S007 : “The International Diabetes Closed Loop (iDCL) trial: Clinical
259 Acceptance of the Artificial Pancreas - A Pivotal Study of t:slim X2 with Control-IQ Technology
260 – Extension Study ;”A 3-month extension study for participants who completed the prior 6-
261 month randomized controlled trial (RCT) of a closed loop system (Control-IQ) vs. sensor-
262 augmented pump (SAP); [PENDING REVIEW BY AGENCY]*

263 23. *IDE#G180053/S008 : “The International Diabetes Closed Loop (iDCL) Trial: Clinical
264 Acceptance of the Artificial Pancreas in Pediatrics - A Pivotal Study of t:slim X2 with Control-
265 IQ Technology”; 4-month parallel group randomized clinical trial with 3:1 randomization to
266 intervention with the closed loop system vs. standard of care (SC); [PENDING REVIEW BY
267 AGENCY]*

268 This trial will test the closed-loop AP system both under home conditions as well as during a
269 stress situation of ski camp while utilizing a new feature, MyTDI, which will be described in
270 more detail in the next section.

271 **1.2 Rationale**

272 The closed-loop AP system works by modulating subcutaneous insulin infusion based on
273 computed real-time needs. Studies have shown that use of an AP system results in increased
274 time in the euglycemic range (70-180 mg/dL), particularly overnight. Challenges persist during
275 times of rapid blood sugar fluctuations, such as following meals or during exercise. Significantly
276 improved glycemic control and fewer hypoglycemic events have been previously demonstrated
277 in pediatric patients using the AP system in summer and winter camp settings. Studies to date
278 have run the system using the foundation of the subject's home insulin parameters, which are
279 often complicated and involve fluctuating basal rates, carbohydrate ratios, and correction factors
280 depending on the time of the day and might not be reflective of his/her true insulin needs. The
281 CLC system allows the user to receive feedback on his/her average total daily insulin needs with
282 a report of Total Daily Insulin (TDI). Clinicians can in turn use TDI to easily determine insulin
283 pump parameters using standard formulas to calculate the optimal basal rate, carbohydrate ratio,
284 and correction factor as follows:

- 285 • Basal rate = TDI/48 (half of the daily insulin needs are delivered in the form of basal
286 insulin)
- 287 • Correction factor (CF) = 1650/TDI
- 288 • Carb ratio (CR) = 450/TDI (to be used for lunch and dinner)
- 289 • Carb ratio for breakfast: to achieve a 20% increase in insulin we will use the following
290 carb ratio: $CR_{bkfst} = CR/1.2$ (to account for increased insulin needs in the morning)

291 The system can then modify the insulin to keep blood glucose in range as necessary.

292 This trial aims to demonstrate the safety and feasibility of using MyTDI to determine insulin
293 parameters on the CLC AP system t:slim X2 with Control-IQ technology for use both at ski
294 camp and at home in adolescent patients with type 1 diabetes.

295 Primary Specific Aim:

296 To assess the safety and feasibility of using insulin parameters as determined by MyTDI during
297 normal outpatient conditions in the t:slim X2 with Control-IQ Technology AP system.

298 Secondary Specific Aims:

299 To assess the safety and feasibility of using insulin parameters as determined by MyTDI during
300 intense exercise outpatient conditions in the t:slim X2 with Control-IQ Technology AP system.

301 **1.3 Potential Risks and Benefits of the Investigational Device**

302 Risks and Benefits are detailed below. Loss of confidentiality is a potential risk; however, data
303 are handled to minimize this risk. Hypoglycemia, hyperglycemia and ketone formation are
304 always a risk in participants with type 1 diabetes and participants will be monitored for this.

305 **1.3.1 Known Potential Risks**306 **1.3.1.1 Venipuncture Risks**

307 A hollow needle/plastic tube will be placed in the arm for taking blood samples. Blood draws
308 can cause some common reactions like pain, bruising, or redness at the sampling site. Less
309 common reactions include bleeding from the sampling site, formation of a small blood clot or
310 swelling of the vein and surrounding tissues, and fainting.

311 **1.3.1.2 Fingerstick Risks**

312 About 1 drop of blood will be removed by fingerstick for measuring blood sugars and sometimes
313 HbA1c or other tests. This is a standard method used to obtain blood for routine hospital
314 laboratory tests. Pain is common at the time of lancing. In about 1 in 10 cases, a small amount
315 of bleeding under the skin will produce a bruise. A small scar may persist for several weeks.
316 The risk of local infection is less than 1 in 1000. This should not be a significant contributor to
317 risks in this study as fingersticks are part of the usual care for people with diabetes.

318 **1.3.1.3 Subcutaneous Catheter Risks (CGM)**

319 Participants using the CGM will be at low risk for developing a local skin infection at the site of
320 the sensor needle placement. If a catheter is left under the skin for more than 24 hours, it is
321 possible to get an infection where it goes into the skin, with swelling, redness and pain. There
322 may be bleeding where the catheter is put in and bleeding under the skin causes a bruise (1 in 10
323 risk).

324 Study staff should verbally alert the participant that on rare occasions, the CGM may break and
325 leave a small portion of the sensor under the skin that may cause redness, swelling or pain at the
326 insertion site. The participant should be further instructed to notify the study coordinator
327 immediately if this occurs.

328 **1.3.1.4 Risk of Hypoglycemia**

329 As with any person having type 1 diabetes and using insulin, there is always a risk of having a
330 low blood sugar (hypoglycemia). The frequency of hypoglycemia should be no more and
331 possibly less than it would be as part of daily living. Symptoms of hypoglycemia can include
332 sweating, jitteriness, and not feeling well. Just as at home, there is the possibility of fainting or
333 seizures (convulsions) and that for a few days the participant may not be as aware of symptoms
334 of hypoglycemia. A CGM functioning poorly and significantly over-reading glucose values
335 could lead to inappropriate insulin delivery.

336 **1.3.1.5 Risk of Hyperglycemia**

337 Hyperglycemia and ketonemia could occur if insulin delivery is attenuated or suspended for an
338 extended period or if the pump or infusion set is not working properly. A CGM functioning
339 poorly and significantly under-reading glucose values could lead to inappropriate suspension of
340 insulin delivery.

341 **1.3.1.6 Risk of Device Reuse**

342 The study CGM system is labeled for single use only. The sensor (the component of the system
343 that enters the skin) will be single use only. The transmitter and receiver may be reused during
344 the study after cleaning the device using a hospital-approved cleaning procedure. The transmitter
345 is attached to the sensor but does not enter the skin and the receiver is a handheld device.
346 Participants will be informed that FDA or relevant national authorities have approved these
347 devices for single use and that by using them among multiple patients, bloodborne pathogens
348 (i.e. Hepatitis B) may be spread through the use of multiple users.

349 The study insulin pump is labeled for single-patient use. During the study, this device may be
350 reused after cleaning adhering to a hospital-approved cleaning procedure. All infusion set
351 equipment will be single patient use only (infusion set insertion kits, tubing, cartridges etc.)
352 Participants will be informed that FDA or relevant national authorities typically approve the
353 insulin pump device for single use and that by using them among multiple patients, bloodborne
354 pathogens (i.e. Hepatitis B) may be spread through the use of multiple users.

355 The study blood glucose meter and blood ketone meter are labeled for single-patient use.
356 During the study, only one person can use each device as there are rare risks that bloodborne
357 pathogens (i.e. Hepatitis B) may be spread through the use of multiple users.

358 **1.3.1.7 Risk of Injury during Ski/Snowboarding**

359 Bruising, dislocations, sprains, and fractures of the leg and shoulders are very common while
360 participating in these activities.

361 **1.3.1.8 Other Risks**

362 Some participants may develop skin irritation or allergic reactions to the adhesives used to secure
363 the CGM, or to secure the insulin infusion sets for the continuous subcutaneous insulin infusion.
364 If these reactions occur, different adhesives or “under-taping” (such as with IV 3000, Tegaderm,
365 etc.) will be tried, sites will be rotated frequently, and a mild topical steroid cream or other
366 medication may be required.

367 Whenever the skin is broken there is the possibility of an infection. The CGM and pump
368 infusion sites are inserted under the skin. It is possible that any part that is inserted under the
369 skin may cause an infection. These occur very infrequently, but, if an infection was to occur,
370 oral and/or topical antibiotics can be used. The risk of skin problems could be greater if you use
371 a sensor for longer than it is supposed to be used. Therefore, participants will be carefully
372 instructed about proper use of the sensor.

373 Data downloaded from the CGM, pump, and the home glucose and ketone meter will be
374 collected for the study as measures of diabetes self-management behaviors. Some people
375 may be uncomfortable with the researchers' having such detailed information about their daily
376 diabetes habits.

377 **1.3.2 Known Potential Benefits**

378 One purpose of this research is to reduce the frequency of hypoglycemia and severe
379 hypoglycemic events in relation to performing a winter sport exercise (skiing/snowboarding).

380 Hypoglycemia is the number one fear of many individuals and families with someone who has
381 type 1 diabetes and this fear often prevents optimal glycemic control.

382 It is expected that this protocol will yield increased knowledge about using an automated
383 closed-loop to control the glucose level. The individual participant may not benefit from study
384 participation.

385 **1.4 General Considerations**

386 The study is being conducted in compliance with the policies described in the study policies
387 document, with the ethical principles that have their origin in the Declaration of Helsinki, with
388 the protocol described herein, and with the standards of Good Clinical Practice (GCP).

389 Whenever possible, data will be directly collected in electronic case report forms, which will be
390 considered the source data.

391 There is no restriction on the number of participants to be enrolled by each site toward the
392 overall recruitment goal.

393 The protocol is considered a significant risk device study, due to the fact that the closed loop
394 system is experimental. Therefore, an investigational device exemption (IDE) from the U.S.
395 Food and Drug Administration (FDA) is required to conduct the study.

Chapter 2: Study Enrollment and Screening

2.1 Participant Recruitment and Enrollment

398 Enrollment will proceed with the goal of having 20 participants, age 12-18 years, enter the
399 randomized trial, with the expectation that 20 participants will complete the randomized trial. A
400 maximum of 25 individuals may be enrolled into screening for the study in order to achieve this
401 goal.

402 Participants will be recruited at the University of Virginia.

2.1.1 Informed Consent and Authorization Procedures

404 Potential eligibility may be assessed as part of a routine-care examination. Before completing
405 any procedures or collecting any data that are not part of usual care, written informed consent
406 will be obtained.

407 For potential study participants ≥ 18 years old, the study protocol will be discussed with the
408 potential study participant by study staff. The potential study participant will be given the
409 Informed Consent Form to read. Potential study participants will be encouraged to discuss the
410 study with family members and their personal physicians(s) before deciding whether to
411 participate in the study.

412 For potential participants under 18 years of age, a parent/legal guardian (referred to subsequently
413 as “parent”) will be provided with the Informed Consent Form to read and will be given the
414 opportunity to ask questions. Potential participants meeting the IRB’s minimum age of assent
415 will be given a Child Assent Form to read and discuss with his/her parents and study personnel.
416 If the parent and child agree to participate, the Informed Consent Form and Child Assent Form
417 will be signed. A copy of the consent form will be provided to the participant and his/her parent
418 and another copy will be added to the participant’s study record.

419 A participant is considered enrolled when the informed consent form has been signed.

2.2 Participant Inclusion Criteria

421 Individuals must meet all of the following inclusion criteria in order to be eligible to participate
422 in the study.

430 • Age 12-18 years

431 • Currently using no insulins other than one of the following rapid-acting insulins at the
432 time of enrollment: insulin lispro (Humalog), insulin aspart (Novolog), or insulin
433 glulisine (Apidra). If using glulisine, subject must be willing to switch to lispro or aspart.

434 • Treatment with any non-insulin glucose-lowering agent (including GLP-1 agonists,
435 Symlin, DPP-4 inhibitors, SGLT-2 inhibitors, biguanides, sulfonylureas, and
436 naturaceuticals) is permitted if stable on current dose for at least 3 months.

437 • Willingness to wear a continuous glucose sensor and physiological monitor for the
438 duration of the study.

439 • For females, not pregnant or breastfeeding. Female subjects who are sexually active
440 should agree to use birth control during the study.

441 **2.3 Participant Exclusion Criteria**

442 Individuals meeting any of the following exclusion criteria at baseline will be excluded from
443 study participation.

444 • Diabetic ketoacidosis in the past 6 months

445 • Hypoglycemic seizure or loss of consciousness in the past 6 months

446 • History of seizure disorder

447 • History of any heart disease including coronary artery disease, heart failure, or
448 arrhythmias

449 • History of altitude sickness

450 • Chronic pulmonary conditions that could impair oxygenation

451 • Cystic fibrosis

452 • Current use of oral glucocorticoids, beta-blockers or other medications, which in the
453 judgement of the investigator, would be a contraindication to participation in the study.

454 • History of ongoing renal disease (other than microalbuminuria).

455 • Subjects requiring intermediate or long-acting insulin (such as NPH, Detemir, or
456 Glargine).

457 • Pregnancy

458 • Presence of a febrile illness within 24 hours of the Ski Admission.

459 • Medical or psychiatric conditions that in the judgement of the investigator might interfere
460 with the completion of the protocol such as:

461 ○ Inpatient psychiatric treatment in the past 6 months
462 ○ Uncontrolled adrenal insufficiency
463 ○ Alcohol abuse

464 **2.4 Screening Procedures**

465 After informed consent has been signed, a potential participant will be evaluated for study
466 eligibility through the elicitation of a medical history, performance of a physical examination
467 by study personnel (i.e. licensed medical physicians and nurse practitioners) and local laboratory
468 testing if needed to screen for exclusionary medical conditions.

469 Individuals who do not initially meet study eligibility requirements may be rescreened at a later
470 date per investigator discretion.

471 **2.4.1 Eligibility and Baseline Procedures at Screening**

472 The following procedures and testing will be performed to ensure eligibility:

473 • Inclusion and exclusion criteria assessed
474 • Demographics (date of birth, sex, race and ethnicity)
475 • Contact information
476 • Medical history
477 • Concomitant medications and supplements
478 • Pregnancy Test for women of child-bearing potential (urine)
479 • Blood draw
480 • Hemoglobin A1c measured using the DCA2000 or comparable point of care device or local
481 lab; a lab result within 3 months of enrollment may be used at the investigator's discretion
482 • Physical examination including height, weight, and vital signs (physical exam from the last
483 12 months may be used at the investigator's discretion)

484

Chapter 3: Study System Training

485

3.1 Study Equipment Training

486

This phase may begin immediately after enrollment is complete. Participants will be trained and begin using the Control-IQ system to manage their glucose levels and insulin delivery at the conclusion of the training session. Participants will discontinue the use of their existing CGM and insulin pump, if applicable. Training on use of the activity tracker (i.e. Fitbit) will also occur. Participants will use the study equipment (study insulin pump, study CGM, study activity tracker) to collect data for approximately 5 days prior to the Ski Admission. During this at-home portion of the study, participants will be remotely monitored by at least one of their parents or care providers, using the Dexcom or Tandem app.

494

3.1.1 Initiation of CGM

495

The participant will be provided with sensors and instructed to use the study CGM on a daily basis. Training will be provided to participants not experienced with CGM use as to how to use the CGM in real-time to make management decisions and how to review the data after an upload for retrospective review. Participants using a personal CGM prior to the study will discontinue the personal CGM beginning in this period.

500
501

The participant will be observed placing the sensor. The study CGM user's guide will be provided for the participant to take home.

502

3.1.2 Initiation of Study Pump

503

Participants will complete training on the study pump as detailed below.

504
505
506
507
508
509

- The participant will be fully instructed on the study insulin pump. A qualified system trainer (i.e. Certified Diabetes Educator) will conduct the training and in particular discuss differences from their home pump in important aspects such as calculation of insulin on board and correction boluses. Additional topics are not limited to but may include: infusion site initiation, cartridge/priming procedures, setting up the pump, charging the pump, navigation through menus, bolus procedures including stopping a bolus, etc.

510
511
512
513

- The study team will assist the participant in study pump infusion site initiation and will start the participant on the study pump. The study pump will be programmed with the participant's usual basal rates and pump parameters. The participant's personal pump will be removed.

514
515

- The participant will be supervised with the study pump during at least one meal or snack bolus to ensure participant understanding of the pump features.

516
517

- The participant will be encouraged to review the literature provided with the pump and infusion sets after the training is completed.

518

3.1.3 Initiation of Activity Tracker

519
520

Participants will receive a commercially available activity tracker to collect additional information about movement and heart rate. The activity tracker can be removed during bathing.

521

522 **3.1.4 Blood Glucose and Ketone Testing**

523 Participants will receive supplies for blood glucose and ketone testing.

524 • Blood glucose testing

525 ◆ Participants will be provided with a study blood glucose meter and test strips.

526 ◆ All study blood glucose meters will be QC tested with at least two different

527 concentrations of control solution if available during all office visits. A tested meter

528 will not be used in a study if it does not read within the target range at each

529 concentration per manufacturer labeling.

530 ◆ Participants will be reminded to use the study blood glucose meter for all fingerstick

531 BGs during the study.

532 ◆ Participants will be given guidelines for treatment of low or high blood glucose.

533 • Blood ketone testing

534 ◆ Participants will be provided with a study blood ketone meter and test strips.

535 ◆ All study blood ketone meters will be QC tested with at least two different

536 concentrations of control solution if available during all office visits. A tested meter

537 will not be used in a study if it does not read within the target range at each

538 concentration per manufacturer labeling.

539 ◆ Participants will be instructed to perform blood ketone testing as described in

540 section 6.2.4

541 ◆ Participants will be given guidelines for treatment of elevated blood ketones

542 • Participants will be required to have a home glucagon emergency kit. Participants who

543 currently do not have one will be given a prescription for the glucagon emergency kit

544 **3.1.5 Post-Training Check In**

545 The study team will contact the participants approximately 48-72 hours after initiation of the

546 study equipment to discuss:

547 • Questions or concerns about the study and/or equipment

548 • Ensure proper use of study equipment

549 • Ask about the occurrence of any events, including adverse events

550 Members of the study team are available 24 hours a day to address questions or concerns from

551 the participants. Participants will have the contact information of multiple team members. If

552 there is a medical emergency that requires immediate medical attention, participants will be

553 instructed to call emergency medical services (e.g. 911).

554

555

556

Chapter 4: Ski Admission Procedures

557

4.1 Admission Check-In Procedures

558

4.1.1 Participant Check-In & Verification

559 At time of check-in, participants will undergo the following procedures/tests:

- 560 • Vital signs measured
- 561 • A fever or had a significant illness within 24-hours of admission will disqualify
- 562 participant from study
- 563 • A fingerstick blood glucose and fingerstick ketone measurement will be obtained
- 564 • Female subjects of childbearing potential will be required to complete a urine pregnancy
- 565 test. If positive, participant will be discontinued from the study.
- 566 • Study devices and insertion sites will be inspected
- 567 • Confirm that the participant brought his/her personal insulin, study supplies, and regular
- 568 medications.
- 569 • Participants will be asked to perform a blood ketone fingerstick. If ketones >1.5 mmol/L,
- 570 study staff should treat with oral hydration and, if needed, the Glycemic Treatment
- 571 Guidelines will be followed; ketones will be re-checked every hour until ≤1.5 mmol/L.
- 572 The participant will be able to begin participation in the winter sport activities once the
- 573 CGM reads between 80-300 mg/dL and ketones are ≤1.5 mmol/L.
- 574 • Data from the participant's insulin pumps will be reviewed and/or downloaded for a
- 575 review of pump settings and average of daily insulin delivery.

576

4.1.2 Randomization

577 After participants have successfully checked in and are deemed eligible to continue participation
578 in the study, they may be randomized. Using a randomized block design, the participants will be
579 assessed and put in blocks of two according to age and HbA1c. If an identical match is not
580 possible, the closest in age and HbA1c value will be paired and then randomized – one member
581 of each block randomly assigned to each of the two treatment groups.

582 Participants who randomize to Group 1 Hybrid Closed Loop (HCL) will have no modifications
583 to their insulin pump parameters other than the standard 20% reduction in insulin to account for
584 increased exercise while at ski camp. Participants who randomize to Group 2 (MyTDI) will have
585 modifications to their insulin pump parameters to take into consideration his/her total daily
586 insulin along with the 20% reduction in insulin during ski camp.

587 The MyTDI adjustments will be as follows:

- 588 • A single basal rate equal to TDI/48 will be implemented across the whole day
- 589 • A single correction factor of 1650/TDI will be implemented across the whole day

590 • Carbohydrate ratios will be set at:

591 ○ 0000-04:00 CR=450/TDI

592 ○ 0400-1100 CR=450(TDI)/1.2

593 ○ 1100-0000 CR=450/TDI

594 TDI will be reduced by 20% of the internal Control-IQ estimation total daily dose; if not
595 available, total daily dose over the last 5 days will be used.

596 Aside from the insulin pump settings, all other study procedures are identical in the two
597 treatment groups during the Admission and the second at-home portion of the study.

598 **4.2 Main Admission Activities and Procedures**

599 **4.2.1 General Admission Overview**

600 During the entire admission, participants will be monitored remotely by the study team. Study
601 team members trained in all protocol interventions (including the hypo and hyperglycemia safety
602 protocols) will be skiing with the participants, with each member remotely connected to the
603 participants CGM data. In addition, a study team member trained in all protocol and glycemic
604 treatment guidelines procedures will be available at a central location in the resort.

605 All recreational activities will be managed by '*Riding on Insulin*' with study staff supervision.

606 During the overnight hours, study staff will be actively monitoring real-time CGM data for all
607 participants from a dedicated room in the ski resort with direct access to the participants.

608 **4.2.2 Device Procedures for the Participants**

609 All participants will continue to wear the CGM and insulin pump that was provided to them at
610 the Screening Visit throughout the Admission, with the only difference between the randomized
611 groups being the insulin regimen settings in the AP system.

612 Participants will have all equipment with them at all times, including a cell phone (personal or
613 study-provided) with the Dexcom Follow App. Participants will be asked to respond to both
614 hypoglycemia and hyperglycemia alarms. If they do not respond to the alarms within 10
615 minutes, study personnel will assist the subject as per the Glycemic Treatment Guidelines.
616 Participants may be re-educated as needed by the study staff, who will be available at all times to
617 assure proper use of all study equipment.

618 **4.2.3 Participants' Admission Itinerary**

619 Participants will generally follow the below schedule during the Admission:

620 **Evening of Check-in**

621 1500-1900: Check-In & Randomization. Participants will undergo the check-in procedures
622 outlined in section 4.1. Study team will download the study equipment.

623 1900-2000: Dinner. The study CGM will be used to determine the pre-meal bolus.

624 2000-2300: Evening Activity.

625 **Day 1**

626 0800-0900: Breakfast. The study CGM will be used to determine the pre-meal bolus.

627 0900-1200: Morning Ski Activity. Participants will begin the morning ski session if his/her
628 CGM reads >100 mg/dL. If ≤ 100 mg/dL, the Glycemic Treatment Guidelines will be followed
629 until cleared to begin activity.

630 1200-1300: Lunch. The study CGM will be used to determine the pre-meal bolus.

631 1300-1600: Afternoon Ski Activity. Participants will begin the afternoon ski session if his/her
632 CGM reads >100 mg/dL. If ≤ 100 mg/dL, the Glycemic Treatment Guidelines will be followed
633 until cleared to begin activity.

634 1600-1800: Quiet time

635 1800-2000: Dinner. The study CGM will be used to determine the pre-meal bolus.

636 2200: Bedtime Snack. The study CGM will be used to determine the pre-meal bolus.

637 2030-2300: Evening Activity.

638 **Day 2**

639 0800-0900: Breakfast. The study CGM will be used to determine the pre-meal bolus.

640 0900-1200: Morning Ski Activity. Participants will begin the morning ski session if his/her
641 CGM reads >100 mg/dL. If ≤ 100 mg/dL, the Glycemic Treatment Guidelines will be followed
642 until cleared to begin activity.

643 1200-1300: Lunch. The study CGM will be used to determine the pre-meal bolus.

644 1300-1600: Afternoon Ski Activity. Participants will begin the afternoon ski session if his/her
645 CGM reads >100 mg/dL. If ≤ 100 mg/dL, the Glycemic Treatment Guidelines will be followed
646 until cleared to begin activity.

647 1600-1800: Quiet time

648 1800-2000: Dinner. The study CGM will be used to determine the pre-meal bolus.

649 2200: Bedtime Snack. The study CGM will be used to determine the pre-meal bolus.

650 2030-2300: Evening Activity.

651 **Day 3**

652 0800-0900: Breakfast. The study CGM will be used to determine the pre-meal bolus.

653 0900-1200: Checkout and discharge to parents. The study staff will adjust all participants'
654 insulin pumps to remove the 20% rate reduction with the cessation of ski activity and in
655 anticipation of the at-home treatment period. Participants will be discharged if appropriate and
656 in accordance with the Glycemic Treatment Guidelines. Participants will be discharged with the
657 study equipment and any supplies needed for the at-home treatment period.

658 **Chapter 5: At-Home Treatment & Study Completion**

659 **5.1 At-Home Treatment Continuation**

660 Participants discharged from the Ski Admission will continue the randomized treatment for
661 approximately 5 days at home. Participants are free to engage in their normal daily activities and
662 diets during this time. Participants will receive and be instructed to follow the Glycemic
663 Treatment Guidelines during this time. During the at-home continuation portion of the study,
664 participants will be remotely monitored by at least one of their parents or care providers, using
665 the Dexcom or Tandem app.

666 **5.1.1 Post Admission Follow-up Phone Call**

667 The study team will contact the participants approximately 24-48 hours after they are discharged
668 from the Ski Admission to discuss:

- 669 • Questions or concerns about the study and/or equipment
- 670 • Ensure proper use of study equipment
- 671 • Ask about the occurrence of any events, including adverse events

672 Members of the study team are available 24 hours a day to address questions or concerns from
673 the participants. Participants will have the contact information of multiple team members. If
674 there is a medical emergency that requires immediate medical attention, participants will be
675 instructed to call emergency medical services (e.g. 911).

676 **5.2 Final Study Visit**

677 The final study visit may be performed remotely (phone) or in-person. After approximately 5
678 days of at-home use of the study-assigned treatment, participants will be instructed to turn off the
679 Control-IQ system and remove the study equipment. If this visit is performed in person, the
680 participant will return the study equipment to the study team. If this visit is performed remotely,
681 the participant will return the study equipment by mailing it. At this visit, participants will be
682 asked about any existing adverse events and any new adverse events that have not been reported
683 to the study team.

684 **5.3 Early Termination Visit (If Applicable)**

685 Participants will be asked to come for an end of study visit in the event of withdrawal or early
686 termination.

687 **5.4 Unscheduled Visits**

688 Participants may have unscheduled visits during the study period if required for additional device
689 training or other unanticipated needs per the study investigator discretion.

690 **5.5 Participant Access to Study Device at Study Closure**

691 Participant will return all investigational study devices and supplies (insulin pump, CGM,
692 activity tracker, and related supplies) at study closure. Participant may keep the study ketone

UNIVERSITY OF VIRGINIA

693 meter and study glucometer if these devices are not marked for investigational use only after the
694 study team has downloaded all data from the devices.

695

696

Chapter 6: Study Devices

697

6.1 Description of the Investigational Device

698

6.1.1 Insulin Pump

699

The study system will include the Tandem t:slim X2 with Control-IQ Technology.

700

6.1.2 Continuous Glucose Monitoring

701

The study CGM will include Dexcom G6 transmitter and sensors when using the Tandem t:slim X2 with Control-IQ technology. The CGM sensor will be replaced at least once every 10 days.

703

6.1.3 Blood Glucose Meter and Strips

704

Blood glucose levels will be measured using the study's blood glucose meter (glucometer) and the CGM device will be calibrated if needed using the study glucometer and strips in accordance with the manufacturer's labeling.

707

6.1.3.1 Blood Glucose Meter Testing

708

- All study blood glucose meters will be QC tested with at least two different concentrations of control solution if available during all office visits. A tested meter will not be used in a study if it does not read within the target range at each concentration per manufacturer labeling.
- Participants will be reminded to use the study blood glucose meter for all fingerstick blood glucose measurements.

713

6.1.3.2 Blood Glucose Meter Supplies

714

- Participants will be provided all necessary supplies during the study.
- Participants will be permitted to keep these devices at the conclusion of the study.

716

6.1.4 Blood Ketone Meter and Strips

717

Blood ketone levels will be measured using the Abbott Precision Xtra Ketone Meter and strips in accordance with the manufacturer's labeling. The blood glucose meter component of the Precision Xtra device will not be used.

720

6.1.4.1 Blood Ketone Testing

721

- All study blood ketone meters will be QC tested with at least two different concentrations of control solution if available during all office visits. A tested meter will not be used in a study if it does not read within the target range at each concentration per manufacturer labeling.
- Participants will be instructed on how to perform blood ketone testing.
- Participants will be given guidelines for treatment of elevated blood ketones.

726

6.1.4.2 Blood Ketone Meter Supplies

727

- Participants will be provided all necessary supplies during the study.
- Participants will be permitted to keep these devices at the conclusion of the study.

729 **6.1.5 Activity Tracker**

730 • Participants will be trained on the study activity tracker that will be used to collect additional
731 information about movement and heart rate.

732 • Participants will be asked to wear the device during the entire study. The monitor can be
733 removed during bathing.

734 **6.1.6 Study Device Accountability Procedures**

735 Device accountability procedures will be detailed in the site procedures manual.

736 **6.1.7 Blood Ketone Testing**

737 • All study blood ketone meters will be QC tested with at least two different concentrations of
738 control solution if available during all office visits. A tested meter will not be used in a study
739 if it does not read within the target range at each concentration per manufacturer labeling.

740 • Participants will be instructed on how to perform blood ketone testing.

741 • Participants will be given guidelines for treatment of elevated blood ketones.

742 **6.2 Safety Measures**743 **6.2.1 CGM Calibration**

744 Throughout the study, participants will be instructed to calibrate the study CGM in accordance
745 with manufacturer labelling.

746 **6.2.2 System Failure**

747 If the CGM signal becomes unavailable for more than 20 minutes consecutively, Control-IQ or
748 closed loop will not operate to automatically adjust insulin. If the CGM is not connected, the
749 system will revert to usual function of the pump and deliver insulin with the insulin dosing
750 parameters programmed in the system for that individual. Resumption of Closed-Loop will
751 occur automatically once CGM signal is available again.

752 If the study system is unable to activate Control-IQ for any reason, the pump will automatically
753 revert to preprogrammed basal insulin delivery without any need for instruction from the user.

754 If the t:slim X2 detects a system error that does not allow the pump to operate, the Malfunction
755 Alarm will display and the participant will be instructed to contact Tandem Technical Support
756 via the study team.

757 **6.2.3 Hypoglycemia Threshold Alert and Safety Protocol**

758 During the course of the study, participants will be permitted to change the CGM low glucose
759 threshold alert setting on their device or mobile app, but will be instructed to choose a value no
760 less than 60 mg/dL.

761 The t:slim X2 with Control-IQ system will issue a predictive hypoglycemia alert (Control-IQ
762 Low Alert) when the system predicts BG <70 mg/dL within the next 15 minutes (<80 mg/dL
763 when exercise mode is activated).

764 If the participant receives a Control-IQ Low Alert, a message appears on the UI that is
765 accompanied by vibration followed by vibrations and/or sound if not acknowledged by the user
766 in 5 minutes. This alert remains on the screen until acknowledged by the user. The user is
767 prompted to test blood sugar and treat with carbs.

768 If a participant's CGM reading is <80 mg/dL, the Glycemic Treatment Guidelines will be
769 followed.

770 **6.2.4 Hyperglycemia Threshold Alert and Safety Protocol**

771 During the course of the study, participants will be permitted to change the CGM high glucose
772 threshold alert setting on their device or mobile app, but will be instructed to choose a value no
773 greater than 300 mg/dL.

774 The t:slim X2 with Control-IQ system will issue a predictive hyperglycemia alert (Control-IQ
775 High Alert) when the system has increased insulin delivery, but detects a CGM value above 200
776 mg/dL and does not predict the value will decrease in the next 30 minutes.

777 If the participant receives a Control-IQ High Alert, a message appears on the UI that is
778 accompanied by vibration followed by vibrations and/or sound if not acknowledged by the user
779 in 5 minutes. This alert remains on the screen until acknowledged by the user. The user is
780 prompted to check the site for occlusion and test blood glucose.

781 If a participant's CGM reading is >300 mg/dL for over 2 hours or ≥ 400 mg/dL at any point, the
782 Glycemic Treatment Guidelines will be followed.

783

Chapter 7: Point-of-Care Testing

784 **7.1 Point-of-Care Samples**

785 1. HbA1c:

786 • Performed locally at the Screening visit or a lab result that was completed within 2 weeks
787 prior to the Screening visit.

788 2. Urine Pregnancy:

789 • Performed locally for females of child-bearing potential at the Screening visit and prior to the
790 start of the Ski Admission.

791 **Chapter 8: Adverse Events, Device Issues, and Stopping Rules**

792 **8.1 Adverse Events**

793 **8.1.1 Definitions**

794 Adverse Event (AE): Any untoward medical occurrence in a study participant, irrespective of the
795 relationship between the adverse event and the device(s) under investigation (see section 8.1.2
796 for reportable adverse events for this protocol).

797 Serious Adverse Event (SAE): Any untoward medical occurrence that:

- 798 • Results in death.
- 799 • Is life-threatening; (a non-life-threatening event which, had it been more severe, might have
800 become life-threatening, is not necessarily considered a serious adverse event).
- 801 • Requires inpatient hospitalization or prolongation of existing hospitalization.
- 802 • Results in persistent or significant disability/incapacity or substantial disruption of the ability
803 to conduct normal life functions (sight threatening).
- 804 • Is a congenital anomaly or birth defect.
- 805 • Is considered a significant medical event by the investigator based on medical judgment (e.g.,
806 may jeopardize the participant or may require medical/surgical intervention to prevent one of
807 the outcomes listed above).

808 Unanticipated Adverse Device Effect (UADE): Any serious adverse effect on health or safety or
809 any life-threatening problem or death caused by, or associated with, a device, if that effect,
810 problem, or death was not previously identified in nature, severity, or degree of incidence in the
811 investigational plan or application (including a supplementary plan or application), or any other
812 unanticipated serious problem associated with a device that relates to the rights, safety, or
813 welfare of participants (21 CFR 812.3(s)).

814 Adverse Device Effect (ADE): Any untoward medical occurrence in a study participant which
815 the device may have caused or to which the device may have contributed.

816 Device Complaints and Malfunctions: A device complication or complaint is something that
817 happens to a device or related to device performance, whereas an adverse event happens to a
818 participant. A device complaint may occur independently from an AE, or along with an AE.
819 An AE may occur without a device complaint or there may be an AE related to a device
820 complaint. A device malfunction is any failure of a device to meet its performance specifications
821 or otherwise perform as intended. Performance specifications include all claims made in the
822 labeling for the device. The intended performance of a device refers to the intended use for
823 which the device is labeled or marketed. (21 CFR 803.3). Note: for reporting purposes, sites
824 will not be asked to distinguish between device complaints and malfunctions.

825 **8.1.2 Reportable Adverse Events**

826 For this protocol, a reportable adverse event includes any untoward medical occurrence that
827 meets one of the following criteria:

828 1. A serious adverse event
829 2. An Adverse Device Effect as defined in section 8.1.1, unless excluded from reporting in
830 section 8.
831 3. An Adverse Event occurring in association with a study procedure
832 4. Hypoglycemia meeting the definition of severe hypoglycemia as defined below
833 5. Diabetic ketoacidosis (DKA) as defined below or in the absence of DKA, a hyperglycemic or
834 ketosis event meeting the criteria defined below

835 Hypoglycemia and hyperglycemia not meeting the criteria below will not be recorded as adverse
836 events unless associated with an Adverse Device Effect. Skin reactions from sensor placement
837 are only reportable if severe and/or required treatment.

838 Pregnancy occurring during the study will not be considered an adverse event.

839 **8.1.2.1 Hypoglycemic Events**

840 Hypoglycemia not associated with an Adverse Device Effect is only reportable as an adverse
841 event when the following definition for severe hypoglycemia is met: the event required
842 assistance of another person due to altered consciousness, and required another person to actively
843 administer carbohydrate, glucagon, or other resuscitative actions. This means that the participant
844 was impaired cognitively to the point that he/she was unable to treat himself/herself, was unable
845 to verbalize his/ her needs, was incoherent, disoriented, and/or combative, or experienced seizure
846 or coma. These episodes may be associated with sufficient neuroglycopenia to induce seizure or
847 coma. If plasma glucose measurements are not available during such an event, neurological
848 recovery attributable to the restoration of plasma glucose to normal is considered sufficient
849 evidence that the event was induced by a low plasma glucose concentration.

850 **8.1.2.2 Hyperglycemic Events/Diabetic Ketoacidosis**

851 Hyperglycemia not associated with an Adverse Device Effect is only reportable as an adverse
852 event when one of the following four criteria is met:

- 853 • the event involved DKA, as defined by the Diabetes Control and Complications Trial
854 (DCCT) and described below
- 855 • evaluation or treatment was obtained at a health care provider facility for an acute event
856 involving hyperglycemia or ketosis
- 857 • blood ketone level ≥ 1.5 mmol/L and communication occurred with a health care provider at
858 the time of the event
- 859 • blood ketone level ≥ 3.0 mmol/L, even if there was no communication with a health care
860 provider

861 Hyperglycemic events are classified as DKA if the following are present:

862 • Symptoms such as polyuria, polydipsia, nausea, or vomiting;
863 • Serum ketones ≥ 1.5 mmol/L or large/moderate urine ketones;
864 • Either arterial blood pH < 7.30 or venous pH < 7.24 or serum bicarbonate < 15 ; and
865 • Treatment provided in a health care facility

866 All reportable Adverse Events—whether volunteered by the participant, discovered by study
867 personnel during questioning, or detected through physical examination, laboratory test, or other
868 means—will be reported on an adverse event form online. Each adverse event form is reviewed
869 by the Medical Monitor to verify the coding and the reporting that is required.

870 **8.1.3 Relationship of Adverse Event to Study Device**

871 The study investigator will assess the relationship of any adverse event to be related, possibly
872 related, or unrelated by determining if there is a reasonable possibility that the adverse event may
873 have been caused by the study device.

874 **8.1.4 Intensity of Adverse Event**

875 The intensity of an adverse event will be rated on a three point scale: (1) mild, (2) moderate, or
876 (3) severe. It is emphasized that the term severe is a measure of intensity: thus a severe adverse
877 event is not necessarily serious. For example, itching for several days may be rated as severe,
878 but may not be clinically serious.

879 • MILD: Usually transient, requires no special treatment, and does not interfere with the
880 participant's daily activities.

881 • MODERATE: Usually causes a low level of inconvenience or concern to the participant and
882 may interfere with daily activities, but is usually ameliorated by simple therapeutic measures.

883 • SEVERE: Interrupts a participant's usual daily activities and generally requires systemic
884 drug therapy or other treatment.

885 **8.1.5 Coding of Adverse Events**

886 Adverse events will be coded using the MedDRA dictionary. The Medical Monitor will review
887 the investigator's assessment of causality and may agree or disagree. Both the investigator's and
888 Medical Monitor's assessments will be recorded. The Medical Monitor will have the final say in
889 determining the causality.

890 Adverse events that continue after the participant's discontinuation or completion of the study
891 will be followed until their medical outcome is determined or until no further change in the
892 condition is expected.

893 **8.1.6 Outcome of Adverse Event**

894 The outcome of each reportable adverse event will be classified by the investigator as follows:

895 • RECOVERED/RESOLVED – The participant recovered from the AE/SAE without sequelae.
896 Record the AE/SAE stop date.

897 • RECOVERED/RESOLVED WITH SEQUELAE – The event persisted and had stabilized
898 without change in the event anticipated. Record the AE/SAE stop date.

899 • FATAL – A fatal outcome is defined as the SAE that resulted in death. Only the event that
900 was the cause of death should be reported as fatal. AEs/SAEs that were ongoing at the time
901 of death; however, were not the cause of death, will be recorded as “resolved” at the time of
902 death.

903 • NOT RECOVERED/NOT RESOLVED (ONGOING) – An ongoing AE/SAE is defined as
904 the event was ongoing with an undetermined outcome.

905 ◆ An ongoing outcome will require follow-up by the site in order to determine the final
906 outcome of the AE/SAE.

907 ◆ The outcome of an ongoing event at the time of death that was not the cause of death,
908 will be updated and recorded as “resolved” with the date of death recorded as the stop
909 date.

910 • UNKNOWN – An unknown outcome is defined as an inability to access the participant or
911 the participant’s records to determine the outcome (for example, a participant that was lost to
912 follow-up).

913 All clinically significant abnormalities of clinical laboratory measurements or adverse events
914 occurring during the study and continuing at study termination should be followed by the
915 participant’s physician and evaluated with additional tests (if necessary) until diagnosis of the
916 underlying cause, or resolution. Follow-up information should be recorded on source
917 documents.

918 If any reported adverse events are present when a participant completes the study, or if a
919 participant is withdrawn from the study due to an adverse event, the participant will be contacted
920 for re-evaluation within 2 weeks. If the adverse event has not resolved, additional follow-up will
921 be performed as appropriate. Every effort should be made by the Investigator or delegate to
922 contact the participant until the adverse event has resolved or stabilized.

923 **8.2 Reportable Device Issues**

924 All UADEs, ADEs, device complaints, and device malfunctions will be reported irrespective of
925 whether an adverse event occurred, except in the following circumstances.

926 The following device issues are anticipated and will not be reported but will be reported as an
927 Adverse Event if the criteria for AE reporting described above are met:

928 • Component disconnections

929 • CGM sensors lasting fewer than the number of days expected per CGM labeling

930 • CGM tape adherence issues

931 • Pump infusion set occlusion not leading to ketosis

932 • Battery lifespan deficiency due to inadequate charging or extensive wireless communication

933 • Intermittent device component disconnections/communication failures not leading to system
934 replacement

935 • Device issues clearly addressed in the user guide manual that do not require additional
936 troubleshooting

937 • Skin reactions from CGM sensor placement or pump infusion set placement that do not meet
938 criteria for AE reporting

939 **8.3 Pregnancy Reporting**

940 If pregnancy occurs, the participant will be discontinued from the study. The occurrence of
941 pregnancy will be reported on an AE Form.

942 **8.4 Timing of Event Reporting**

943 SAEs must be reported to the IRB per IRB reporting guidelines for this protocol.

944 Other reportable adverse events, device malfunctions (with or without an adverse event), and
945 device complaints should be reported promptly by completion of an electronic case report form,
946 but there is no formal required reporting period.

947 Upon knowledge of an UADE, the investigator will investigate the UADE and if indicated,
948 report the results of the investigation to the IRB, and the FDA within ten working days of the
949 investigator becoming aware of the UADE per 21CFR 812.46(b) (2). The Medical Monitor must
950 determine if the UADE presents an unreasonable risk to participants. If so, the Medical Monitor
951 must ensure that all investigations, or parts of investigations presenting that risk, are terminated
952 as soon as possible but no later than 5 working days after the Medical Monitor makes this
953 determination and no later than 15 working days after first receipt notice of the UADE.

954 In the case of a device system component malfunction (e.g. pump, CGM, control algorithm),
955 information will be forwarded to the responsible company by the site personnel, to be handled
956 by its complaint management system.

957 **8.5 Stopping Criteria**

958 **8.5.1 Participant Discontinuation of Study Device**

959 Rules for discontinuing study device use are described below.

960 • The investigator believes it is unsafe for the participant to continue on the intervention. This
961 could be due to the development of a new medical condition or worsening of an existing
962 condition; or participant behavior contrary to the indications for use of the device that
963 imposes on the participant's safety

964 • The participant requests that the treatment be stopped

965 • Participant pregnancy

966 • One episode of DKA

967 • One severe hypoglycemia event as defined in section 8.1.2.1

968 If pregnancy occurs, the participant will be discontinued from the study entirely. Otherwise, even
969 if the study device system is discontinued, the participant will be encouraged to remain in the
970 study through the final study visit.

971 **8.5.2 Criteria for Suspending or Stopping Overall Study**

972 In the case of a system malfunction resulting in a severe hypoglycemia or severe hyperglycemia
973 event (as defined in section 8.1.2.2), use of the study device system will be suspended while the
974 problem is diagnosed.

975 In addition, study activities could be similarly suspended if the manufacturer of any constituent
976 study device requires stoppage of device use for safety reasons (e.g. product recall). The
977 affected study activities may resume if the underlying problem can be corrected by a protocol or
978 system modification that will not invalidate the results obtained prior to suspension.

979 The study medical monitor will be informed of all serious adverse events and any unanticipated
980 adverse device events that occur during the study and will review compiled safety data at
981 periodic intervals. The medical monitor may request suspension of study activities or stoppage
982 of the study if deemed necessary based on the totality of safety data available.

983 **8.6 Risks**

984 The potential risks associated with use of the study device are described in section 1.3.

985 Additional risks are minor and/or infrequent and include:

986 • Pain, bruising, redness, or infection from blood draws
987 • Loss of confidentiality

988 **Chapter 9: Miscellaneous Considerations**

989 **9.1 Drugs Used as Part of the Protocol**

990 Participants will use either lispro or aspart insulin prescribed by their personal physician.

991 **9.2 Prohibited Medications, Treatments, and Procedures**

992 Participants using glulisine at the time of enrollment will be asked to contact their personal
993 physician to change their prescribed personal insulin to lispro or aspart for the duration of the
994 trial.

995 Treatment with any non-insulin glucose-lowering agent (including GLP-1 agonists, Symlin,
996 DPP-4 inhibitors, SGLT-2 inhibitors, biguanides, sulfonylureas and naturaceuticals) will be
997 reviewed by the study team. Use of these agents must be approved by the investigator prior to
998 initiation of study equipment.

999 The investigational study devices (t:slim X2 insulin pump, study CGM systems) must be
1000 removed before Magnetic Resonance Imaging (MRI), Computed Tomography (CT) or diathermy
1001 treatment. Participants may continue in the trial after temporarily discontinuing use if requiring
1002 one of the treatments above.

1003 **9.3 Participant Compensation**

1004 Participants will not receive compensation or reimbursement for his/her participation in this
1005 study.

1006 **9.4 Participant Withdrawal**

1007 Participation in the study is voluntary, and a participant may withdraw at any time.
1008 For participants who withdraw, their data will be used up until the time of withdrawal.

1009 **9.5 Confidentiality**

1010 For security and confidentiality purposes, participants will be assigned an identifier that will
1011 be used instead of their name. De-identified participant information may also be provided to
1012 Tandem for system evaluation purposes.

1013 **Chapter 10: Statistical Consideration**

1014 **10.1 Statistical and Analytical Plans**

1015 The approach to sample size and statistical analyses are summarized below. A detailed statistical
1016 analysis plan will be written and finalized prior to the first tabulation of data by treatment group
1017 (ie, for DSMB review). The analysis plan synopsis in this chapter contains the framework of the
1018 anticipated final analysis plan.

1019 **10.2 Statistical Hypotheses**

1020 The hypotheses for the primary outcome are:

- 1021 a. *Null Hypothesis*: the use of MyTDI results in a decreased percentage of the time spent
1022 between 70-180mg/dL during home use
- 1023 b. *Alternative Hypothesis* : the use of MyTDI does not results in a decreased percentage of
1024 the time spent between 70-180mg/dL during home use

1025 All outcomes will be analyzed using repeated measure ANOVA between baseline and the
1026 studied period, using within-between factors.

1027 We will compute all outcome for baseline, camp, and the final home segment. Outcomes will be
1028 further refined to focus on daytime (7am-11pm), nighttime (11pm-7am), and for the Ski
1029 Admission, ski time (9am-noon & 1:30pm-4:30)

1030 **10.3 Sample Size**

1031 We set the study to detect an effect size of 0.25 using repeated measure ANOVA and a within-
1032 between comparison (baseline – home, grouped by treatment), assuming 0.75 correlation
1033 between measurements. With N=20 we expect to reach 85% power, allowing for up to 2
1034 participants (10%) to fail to complete the study.

1035 **10.4 Outcome Measures**

1036 **10.4.1 Primary Efficacy Endpoint**

1037 The primary outcome for this study is the percent of time spent between 70mg/dL and 180mg/dL
1038 as computed by the number of CGM values falling in this interval divided by the total number of
1039 available CGM values. CGM gaps inferior to 3 hours will be linearly interpolated

1040 **10.4.2 Secondary Efficacy Endpoints**

1041 Additional CGM outcomes will include:

- 1042 • Percent CGM below 50mg/dL
- 1043 • Percent CGM below 54mg/dL
- 1044 • Percent below 60mg/dL
- 1045 • Percent CGM below 70mg/dL

1046 • Percent CGM above 180mg/dL
1047 • Percent CGM above 250mg/dL
1048 • Percent CGM above 300mg/dL:
1049 • Average CGM
1050 • CGM coefficient of variation
1051 • CGM based LBGI & HBGI
1052 Furthermore, we will compute
1053 • Total amount of insulin used
1054 • Number of Hypoglycemic episodes as defined by contiguous CGM below 70mg/dL
1055 • Number of rescue CHO
1056 • Total amount of rescues CHO

10.4.2.1 Safety Analyses

1058 All randomized participants will be included in these analyses and the circumstances of all
1059 reportable cases of the following will be summarized and tabulated by treatment group:

1060 • Severe hypoglycemia
1061 • Diabetic ketoacidosis
1062 • Other serious adverse events and serious adverse device events
1063 • Unanticipated adverse device effects

10.5 Device Issues

1065 The following tabulations and analyses will be performed by treatment group to assess device
1066 issues:

1067 • Device malfunctions requiring study team contact and other reported device issues
1068 • Sensor performance metrics (difference, absolute relative difference, and International
1069 Organization for Standardization criteria) – if applicable, by sensor version.
1070 • % time CGM data available - overall and by month

1071 The following tabulations will be performed for the CLC arm only:

1072 • Performance metrics, describing the Control-IQ system and its components like:
1073 ♦ % time CGM data were available to the Control-IQ system – overall and by month

UNIVERSITY OF VIRGINIA

- 1074 ◆ % time in different operational modes per week - overall and by month
- 1075 ◆ Rate of different failure events and alarms per 24 hours recorded by the Control-IQ
- 1076 system – overall and by month
- 1077

1078 **Chapter 11: Data Collection and Monitoring**

1079 **11.1 Case Report Forms and Device Data**

1080 The main study data are collected through a combination of case report forms (CRFs) and
1081 electronic device data files obtained from the study software and individual hardware
1082 components. These electronic device files and electronic CRFs from the study website are
1083 considered the primary source documentation.

1084 When data are directly collected in electronic case report forms, this will be considered the
1085 source data. Each participating site will maintain appropriate medical and research records for
1086 this trial, in compliance with ICH E6 and regulatory and institutional requirements for the
1087 protection of confidentiality of participants.

1088 **11.2 Study Records Retention**

1089 Study documents should be retained for a minimum of 2 years after the last approval of a
1090 marketing application in an ICH region and until there are no pending or contemplated marketing
1091 applications in an ICH region or until at least 2 years have elapsed since the formal
1092 discontinuation of clinical development of the investigational product. These documents should
1093 be retained for a longer period, however, if required by local regulations. No records will be
1094 destroyed without the written consent of the sponsor, if applicable. It is the responsibility of the
1095 sponsor to inform the investigator when these documents no longer need to be retained.

1096 **11.3 Protocol Deviations**

1097 A protocol deviation is any noncompliance with the clinical trial protocol, GCP, or procedure
1098 requirements. The noncompliance may be either on the part of the participant, the investigator,
1099 or the study site staff. As a result of deviations, corrective actions are to be developed by the site
1100 and implemented promptly. The site PI/study staff is responsible for knowing and adhering to
1101 their IRB requirements.

1102 **Chapter 12: Ethics/Protection of Human Participants**

1103 **12.1 Ethical Standard**

1104 The investigator will ensure that this study is conducted in full conformity with Regulations for
1105 the Protection of Human Participants of Research codified in 45 CFR Part 46, 21 CFR Part 50,
1106 21 CFR Part 56, and/or the ICH E6.

1107 **12.2 Institutional Review Boards**

1108 The protocol, informed consent form(s), recruitment materials, and all participant materials will
1109 be submitted to the IRB for review and approval. Approval of both the protocol and the consent
1110 form must be obtained before any participant is enrolled. Any amendment to the protocol will
1111 require review and approval by the IRB before the changes are implemented to the study. All
1112 changes to the consent form will be IRB approved; a determination will be made regarding
1113 whether previously consented participants need to be re-consented.

1114 **12.3 Informed Consent Process**

1115 **12.3.1 Consent Procedures and Documentation**

1116 Informed consent is a process that is initiated prior to the individual's agreeing to participate in
1117 the study and continues throughout the individual's study participation. Extensive discussion of
1118 risks and possible benefits of participation will be provided to the participants and their families.
1119 Consent forms will be IRB-approved. The participant will be asked to read and review the
1120 document. The investigator will explain the research study to the participant and answer any
1121 questions that may arise. All participants will receive a verbal explanation in terms suited to
1122 their comprehension of the purposes, procedures, and potential risks of the study and of their
1123 rights as research participants. Participants will have the opportunity to carefully review the
1124 written consent form and ask questions prior to signing.

1125 The participants should have the opportunity to discuss the study with their surrogates or think
1126 about it prior to agreeing to participate. The participant will sign the informed consent document
1127 prior to any procedures being done specifically for the study. The participants may withdraw
1128 consent at any time throughout the course of the trial. A copy of the informed consent document
1129 will be given to the participants for their records. The rights and welfare of the participants will
1130 be protected by emphasizing to them that the quality of their medical care will not be adversely
1131 affected if they decline to participate in this study.

1132 **12.3.2 Participant and Data Confidentiality**

1133 The medical monitor, other authorized representatives of the sponsor, representatives of the IRB
1134 or device company supplying study product may inspect all documents and records required to
1135 be maintained by the investigator, including but not limited to, medical records (office, clinic, or
1136 hospital) for the participants in this study. The clinical study site will permit access to such
1137 records.

UNIVERSITY OF VIRGINIA

1138 The study participant's contact information will be securely stored for internal use during the
1139 study. At the end of the study, all records will continue to be kept in a secure location for as long
1140 a period as dictated by local IRB and Institutional regulations.

1141

Chapter 13: References

1142 1. Anderson SM, Raghinaru D, Pinsker JE, et al. Multinational Home Use of Closed-Loop
1143 Control Is Safe and Effective. *Diabetes Care* 2016;39:1143-50.

1144 2. Breton MD, Brown SA, Karvetski CH, et al. Adding heart rate signal to a control-to-
1145 range artificial pancreas system improves the protection against hypoglycemia during exercise in
1146 type 1 diabetes. *Diabetes Technol Ther* 2014;16:506-11.

1147 3. Breton MD, Chernavsky DR, Forlenza GP, et al. Closed-Loop Control During Intense
1148 Prolonged Outdoor Exercise in Adolescents With Type 1 Diabetes: The Artificial Pancreas Ski
1149 Study. *Diabetes Care* 2017;40:1644-50.

1150 4. Breton MD, Patek SD, Lv D, et al. Continuous Glucose Monitoring and Insulin Informed
1151 Advisory System with Automated Titration and Dosing of Insulin Reduces Glucose Variability
1152 in Type 1 Diabetes Mellitus. *Diabetes Technol Ther* 2018;20:531-40.

1153 5. Chernavsky DR, DeBoer MD, Keith-Hynes P, et al. Use of an artificial pancreas among
1154 adolescents for a missed snack bolus and an underestimated meal bolus. *Pediatr Diabetes*
1155 2016;17:28-35.

1156 6. Cobelli C, Renard E, Kovatchev BP, et al. Pilot Studies of Wearable Outpatient Artificial
1157 Pancreas in Type 1 Diabetes. *Diabetes Care* 2012;35:e65-e7.

1158 7. DeBoer MD, Breton MD, Wakeman C, et al. Performance of an Artificial Pancreas
1159 System for Young Children with Type 1 Diabetes. *Diabetes Technol Ther* 2017;19:293-8.

1160 8. DeBoer MD, Chernavsky DR, Topchyan K, Kovatchev BP, Francis GL, Breton MD.
1161 Heart rate informed artificial pancreas system enhances glycemic control during exercise in
1162 adolescents with T1D. *Pediatr Diabetes* 2017;18:540-6.

1163 9. Del Favero S, Boscarini F, Messori M, et al. Randomized Summer Camp Crossover Trial
1164 in 5- to 9-Year-Old Children: Outpatient Wearable Artificial Pancreas Is Feasible and Safe.
1165 *Diabetes Care* 2016;39:1180-5.

1166 10. Gildersleeve R, Riggs SL, Chernavsky DR, Breton MD, DeBoer MD. Improving the
1167 Safety and Functionality of an Artificial Pancreas System for Use in Younger Children: Input
1168 from Parents and Physicians. *Diabetes Technol Ther* 2017;19:660-74.

1169 11. Keith-Hynes P, Guerlain S, Mize B, et al. DiAs user interface: a patient-centric interface
1170 for mobile artificial pancreas systems. *J Diabetes Sci Technol* 2013;7:1416-26.

1171 12. Keith-Hynes P, Mize B, Robert A, Place J. The Diabetes Assistant: A Smartphone-Based
1172 System for Real-Time Control of Blood Glucose. *Electronics* 2014;3:609.

1173 13. Kovatchev BP, Renard E, Cobelli C, et al. Feasibility of outpatient fully integrated
1174 closed-loop control: first studies of wearable artificial pancreas. *Diabetes Care* 2013;36:1851-8.

1175 14. Kovatchev BP, Renard E, Cobelli C, et al. Safety of outpatient closed-loop control: first
1176 randomized crossover trials of a wearable artificial pancreas. *Diabetes Care* 2014;37:1789-96.

1177 15. Kovatchev B, Cheng P, Anderson SM, et al. Feasibility of Long-Term Closed-Loop
1178 Control: A Multicenter 6-Month Trial of 24/7 Automated Insulin Delivery. *Diabetes Technol
1179 Ther* 2017;19:18-24.

1180 16. Ly TT, Buckingham BA, DeSalvo DJ, et al. Day-and-Night Closed-Loop Control Using
1181 the Unified Safety System in Adolescents With Type 1 Diabetes at Camp. *Diabetes Care*. United
1182 States 2016;e106-7.

1183 17. Place J, Robert A, Ben Brahim N, et al. DiAs web monitoring: a real-time remote
1184 monitoring system designed for artificial pancreas outpatient trials. *J Diabetes Sci Technol*
1185 2013;7:1427-35.

1186 18. Sanchez-Pena R, Colmegna P, Garelli F, et al. Artificial Pancreas: Clinical Study in Latin
1187 America Without Premeal Insulin Boluses. *J Diabetes Sci Technol* 2018;12:914-25.

1188 19. Thabit H, Hovorka R. Coming of age: the artificial pancreas for type 1 diabetes.
1189 *Diabetologia* 2016;59:1795-805.

1190 20. Troncone A, Bonfanti R, Iafusco D, et al. Evaluating the Experience of Children With
1191 Type 1 Diabetes and Their Parents Taking Part in an Artificial Pancreas Clinical Trial Over
1192 Multiple Days in a Diabetes Camp Setting. *Diabetes Care* 2016;39:2158-64.

1193 21. Zisser H, Renard E, Kovatchev B, et al. Multicenter closed-loop insulin delivery study
1194 points to challenges for keeping blood glucose in a safe range by a control algorithm in adults
1195 and adolescents with type 1 diabetes from various sites. *Diabetes Technol Ther* 2014;16:613-22

1196