Target ADHD Executive Working
Memory Training Replication Study

Study Protocol
IRB Approval Date: 9/22/2023



Behavioral and Neural Target Engagement for ADHD Executive Working Memory Training

Phase IT

This proposal is based on converging evidence that suggests prior ADHD working memory training studies might
have produced lackluster clinical outcomes because they focused on enhancing the wrong cognitive and
neurobiological targets. The proposed study will replicate target engagement as assessed in the first phase while
also determining if it correlates with clinically meaningful improvements in ADHD dysfunction. The full project
was designed so that if these study aims are successful, the data we obtain will be adequate to support a future
preliminary efficacy clinical trial.

Many investigators have attempted to show that using intensive cognitive training to increase Attention-
Deficit/Hyperactivity Disorder (ADHD) patients’ capacity to store information within WM might also reduce
symptom severity or functional impairment. Those studies were based on strong evidence for WM behavioral
and neural dysfunction in ADHD, a widely-held belief that WM-related brain dysfunction is etiologically
significant, and arguments that impaired WM contributes to the maintenance of the disorder. But despite
promising early evidence for WM storage training potential efficacy, a decade of equivocal and negative
outcomes from several well-designed randomized clinical trials have left investigators wondering why
meaningful, replicable ADHD clinical improvements are not always achieved when WM storage capacity is
reliably enhanced. Because few investigators want to mistakenly abandon such a promising intervention
premise, there is a search for novel working memory-related treatment targets that focus on something other
than simple WM storage capacity. In this proposal, we synthesize published findings and provide our own pilot
neuroimaging evidence to argue that a better WM training target might be brain regions that specifically
underlie the executive aspects of WM. Such executive working (EWM) memory operations represent patients’
ability to effectively use the information represented in WM for behavioral and cognitive control. These
abilities likely are more meaningful to ADHD behavioral impairment than merely how large patients’ general
WM storage capacity is. An extensive theoretical framework supports that the ‘working’ part of WM involves a
small handful of discrete cognitive operations that flexibly manipulate information within WM, or stabilize
WM representations in the face of different types of environmental distraction. Dozens of prior fMRI studies
reliably link the four primary types of these EWM operations to activity within specific brain regions — the
superior frontal sulcus and mid-lateral prefrontal cortex. Converging evidence including our pilot evidence
shows these regions function abnormally in ADHD, predict ADHD symptom severity, and can be enhanced by
practicing EWM tasks. NIMH’s R61/R33 experimental therapeutics mechanism is ideal to learn if a typical 5-
week, course of intensive training that uses these EWM exercises can engage the proposed brain targets linked
to both EWM ability and to ADHD dysfunction. As the neuroscience-guided, initial 2-year R61 study phase
achieved its milestones, this R33 study phase will seek to replicate, and then show the relevance of target
engagement to ADHD clinical function. If both R61/R33 aims are achieved, a series of secondary analyses will
re-examine the trial outcome data. These efforts will inform the design of any subsequent preliminary efficacy
study, facilitating a rapid transition into larger-scale efficacy testing.



Over a decade ago, considerable interest emerged in whether intensive practice of working memory (WM) tasks
designed to expand one’s overall capacity to store information briefly in mind might benefit patients with
Attention-Deficit/Hyperactivity Disorder (ADHD). WM training has a convincing neuroscientific foundation and
there was exciting preliminary evidence that prompted WM training intervention development. Nearly all clinical
trials to date that have focused on increasing simple short-term WM storage capacity have been disappointing.
Investigators remain perplexed why ADHD patients make very reliable, usually persistent WM gains, but simply
having a larger WM capacity does not convincingly result in ADHD symptom improvements. Our pilot studies
suggest WM training might live up to early expectations if investigators switch focus to a new training target —
‘executive working memory’ (EWM). EWM refers to a few selective attention-based cognitive processes that
operate within WM either to flexibly allow information to be manipulated, or to stabilize and protect mental
representations when they are needed to guide behavior. Converging evidence supports EWM as a potentially
better training target than WM storage capacity. Importantly, our pilot data also show EWM practice alters
ADHD brain function in regions linked to ADHD symptom severity in our prior research. This proposal includes
a 2-year milestone-driven R61 initial test of target engagement using a new EWM training intervention in n=62
ADHD-diagnosed adolescents randomized to a ‘sham training’ placebo or to train on 4 different EWM tasks per
session 4 times each week. Exercise difficulty levels in the active intervention increased across 5 weeks to
continually challenge EWM ability. EWM training used a novel, remotely-supervised ‘at home’ computerized
training approach. Since the R 61 EWM training target engagement milestones were met, a 3-year R33 phase
will begin. The R33 will replicate target engagement in another randomized placebo-controlled trial of n=90 new
ADHD adolescents and attempt to establish a convincing link between the hypothesized targets and ADHD
symptom expression. It also will characterize ADHD brain activity or EWM ability changes relative to typical
levels seen in an n=40 non-ADHD control group.

R33 AIM 1 Replicate and Extend ADHD EWM Training Target Engagement Relative to Placebo
Another randomized, placebo-controlled trial of n=90 new ADHD adolescents will provide evidence needed to
support a subsequent efficacy trial — replication of target engagement and confirmation of clinical relevance.
R33 Hypotheses 1-2 Compared to a ‘sham training’ placebo for which we expect no EWM target change:
1) We will replicate both SFS/mid-1atPFC brain activity/connectivity and behavioral changes seen in the R61.
2) We will see evidence of ‘near transfer’ of EWM behavioral training gains to non-trained EWM tests.

R33 AIM 2 Establish a Link Between Target Engagement and ADHD Symptom Expression
Data will be used to test assumptions the proposed neural targets are relevant to ADHD clinical impairment.

R33 Hypotheses 3-4 There will be a significant association between EWM engagement and ADHD symptoms:
3) Before training, ADHD symptom severity will correlate with EWM brain function and behavior (>.35).
4) The degree of fMRI-measured EWM training target engagement will significantly correlate with ADHD
outcome measured by ADHD symptom severity rating scales and secondary functional inventories.




Unmet ADHD Treatment Need DSM 5 Attention-Deficit/Hyperactivity Disorder (ADHD) * affects 5-7% of
children and adolescents 24. It is marked by excessive impulsivity/hyperactivity and inattention causing
significant academic 51, employment, legal or psychosocial problems and risk for other psychopathology and
substance disorder 7:12: 13 despite the best-supported treatments 416, Stimulant-based medications are first-line
recommended ADHD treatments 7, but have meaningful limitations. Medications manage immediate problem
behavior, but do not prevent poorer ADHD long-term educational, vocational, or social outcomes 8-24. Roughly
/4 of ADHD patients fail to show any beneficial response 25. Medications can be very unpopular with some
patients and their parents 2627 due to intolerance of side effects 2829 or parental concerns of misuse 3°-33 from a
high abuse potential 3°-32 34 and fears about growth and health risks 35 3¢, Only about half of ADHD-diagnosed
children 37 and adolescents 3% use medications. As such, at least half of ADHD patients could benefit from an
effective alternative, non-pharmacological treatment to help reduce the $143-266 billion annual estimated
economic burden of ADHD in the U.S. from healthcare costs, lost workforce productivity, and similar factors 39.
An effective alternative ideally would not be another temporary palliative, but instead offer sustained benefits.

Why Train Working Memory to Treat ADHD? Over the past decade, considerable effort has been poured
into studying a non-pharmacological cognitive training approach for ADHD that seeks to improve working
memory (WM) through weeks of continually challenging training sessions. Such approaches are based upon a
well-supported premise that intensive practice reliably induces long-term synaptic connectivity and brain
structure changes 4°-42 (i.e., experience-dependent ‘neuroplasticity’) in networks that underlie the specific ability
that has been trained 4351, A strong appeal of cognitive training is that it might offer enduring therapeutic benefits
for ADHD patients from neuroplastic changes — particularly if those changes occur early to optimize
neurodevelopmental trajectories into adulthood. The ultimate goal of these intervention development efforts has
always been to reduce ADHD symptom severity and associated clinical dysfunction. The premise of WM training
for ADHD rests on a reasonable conceptual foundation that links WM performance on brief WM information
storage tasks to attention abilities 405253, general aptitude (IQ 545, reasoning ability 57, or SAT performance 58),
and academic achievement 54 5864, Moreover, ADHD patients’ performance on some WM tasks predicts ‘real
world’ ADHD-like behaviors in non-ADHD persons ¢ %, e.g., multi-tasking ¢7- 68, mind wandering %, and
following directions 70 71, Meta-analyses of neuropsychological studies also show WM deficits are among the
most consistently found cognitive impairments in ADHD 7275, It has been proposed that WM training might work
by directly remediating WM-related ADHD brain dysfunction believed to be etiologically-significant for the
disorder 72 768 Not only is WM a proposed endophenotype for common genetic risk in ADHD 85 86 recent
studies have begun to demonstrate WM’s etiological importance by showing ADHD patients’ WM ability levels
mediate links between ADHD polygenic risk scores and ADHD symptom expression 8% 87 in ways not found for
other cognitive deficits 8. In the WM training earliest studies, pioneering approaches (e.g., Cogmed™) were
found not only to increase ADHD WM storage capacity on behavioral tests, but in non-ADHD also to alter grey
and white matter brain structure, dopaminergic function, and brain activity 8. Indeed, numerous fMRI studies of
young °-%4 and older adults °% %, and fMRI ' . 97 and EEG % functional connectivity studies done after WM
training show brain network 9-192 connectivity reconfiguration and strengthening within the frontoparietal system
engaged for WM, and with key WM-specialized regions in other parts of the brain. As such, there was great
excitement we ultimately might find these neural effects converged with evidence for WM-related brain
dysfunction that has been found in ADHD in over a dozen fMRI studies 103-106,

WM Storage Training Fails Expectations Nearly all ADHD WM training research to date has focused on
increasing WM storage capacity. These efforts have fallen short of expectations. On the one hand, qualitative
107-13 and meta-analytic 1417 reviews conclude WM training reliably improves ADHD WM capacity, with gains
that persist over time 8120, Disappointingly however, the evidence these WM capacity gains translate into
improved ADHD symptom severity or better functioning is marginal and inconsistent. The earliest clinical trials
found improved parent-, teacher-, or self-rated ADHD severity 53- 121125 or objectively-measured ADHD behavior
(e.g., actigraph-measured motor restlessness or classroom time-on-task 53-126), with some evidence that gains
might persist for months 53 123.125, However, this evidence came almost entirely from ‘open label’ trials where
expectancy effects typically inflate perception of clinical benefit. Subsequent, better-designed randomized
clinical trials (RCTs) have not strongly supported WM storage training efficacy in ADHD. While several RCTs
found WM training can produce modest clinical improvement, WM training groups typically do not outperform
active treatment control groups. A recent meta-analysis has concluded RCT blinding reduces the promising
effects seen in the earlier open label trials to clinically insignificant levels 127. Perplexingly, those RCTs often
failed to replicate the same small positive outcomes 107:125. 126,128 By and large, efforts to train other executive

3



abilities (e.g., response inhibition, sustained attention, etc.) (e.g., ' '%; see meta-analysis ''6), or to train several
executive abilities together 131, or to individualize training exercises to ADHD patients’ pre-existing executive
deficits 132 also have not held up against placebo control. Most reviewers of this literature have concluded WM
training still holds considerable promise in ADHD 108,109, 112,113, 115,117,133-138_ But they also make it clear new ideas
are needed for how to modify training to have stronger and more reliable benefits for ADHD symptoms. We
believe meaningful ADHD clinical improvement will require not only an entirely new cognitive training focus, but
also a neuroscience-informed research formulation that identifies brain-based training targets that have been
empirically shown to predict ADHD symptom expression.

Executive Working Memory This proposal builds on converging theory and evidence that ‘executive working
memory’ (EWM) likely represents a better context for ADHD WM training than WM storage capacity, with highly
specific brain-based training targets of clear relevance to ADHD. EWM describes cognitive operations that
account for what Baddeley’s seminal WM theory described as the ‘central executive’ — a system that controls
information flow within WM. Although early WM studies tended to conceptualize WM’s central executive as a
single construct, neuroscience evidence suggests that instead there likely are a small number of behaviorally
dissociable basic EWM operations supported by partially overlapping brain systems. Bledowski et al. 139 has
proposed some of these EWM operations promote flexibility of selective attention to WM contents (e.g.,
measured by tasks that require attention Shifting among information held briefly in WM or Updating WM
content with new information). Others lend stability to WM representations (e.g., Filtering any extraneous
distracting information during WM maintenance, or Suppression of proactive interference from uninformative
information during retrieval of information from WM) 40, These attention-based EWM basic operations emerge
directly from Cowan’s 54, Oberauer’s 4!, and Engle’s 42 143 current theories about WM’s central executive and
reflect a basic, well-supported dichotomy between maintenance vs. disengagement via selective attention
processes 44, Each of these EWM operations seem to be suitable candidates for cognitive training exercises. To
justify combining them all into a unified EWM training intervention, we examined their relationship to each other
in N=160 adults who completed online EWM tasks on Amazon’s mTurk internet worker platform 4% 146 and
whose data met rigorous sampling and data quality control criteria 47-14°. These participants completed the same
verbal and nonverbal versions of the EWM Updating, Shifting and Distractor Filtering/ Suppression tasks we
propose to use in this project (See Approach). Confirmatory factor analyses of EWM task accuracy found
acceptable model fit for both a 1-factor model where all EWM accuracy scores contributed to a single latent
EWM construct (i.e., GFI=.947, RMSEA=0.072), and a 4-factor model showing each type of EWM ability had
unique variance (GFI1=.971, RMSEA=.049, and a non-significant CMIN test p=.155). This combination of shared
and unique variance supports that they all fit underneath an umbrella EWM construct, but also that none of the
EWM operations could be considered redundant. As such, all seem to be viable candidates for EWM training
exercises.

Neurobiological Basis of EWM EWM operations have
been extensively studied with fMRI 51174, Meta-analysis of
EWM-specific fMRI studies @ (Fig. 1) find EWM
operations overlap with a core frontoparietal WM
representation network for information encoding, storage
and retrieval (Fig. 2) found by meta-analysis of literally Fig. 1: Nee et al. meta-analysis 4> of n=36 fMRI WM
hundreds of fMRI studies, but engage a more extensive set | Stidies showing activation during 4 different types
. . . of EWM tasks.
of brain regions throughout lateral/medial PFC and
parietal cortices. Current ‘state representation” WM
neural models describe how the core WM network is
integrated with these EWM-linked regions via selective
attention mechanisms that activate and integrate
information processed in distal regions. This engages :
information in an active form that can be manipulated and | Eig. 2: Frontoparietal domain-general ‘core’ WM
used to guide behavior (sometimes termed ‘primary ;’Jf;‘i‘:;ﬁg:;‘ieod in an ALE meta-analysis of 189
memory’ 12 175177).  Within this state representation ;
theoretical context, the so-called ‘working’ parts of WM are simply these various specific attention-based EWM
processes — Shifting, Updating, Filtering, and Suppression. D’Esposito and Postle 178 recently gave a cogent
summary of the considerable neurobiological evidence for how WM arises from such attention-related network
connectivity changes during EWM task performance. That is, functionally heterogeneous 79182, hierarchically-
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organized 83185 prefrontal cortex (PFC) regions engage sustained activation 80188 during WM that biases activity
in other PFC brain regions or other parts of the brain in a ‘top-down’ way 189191 via synchronized activation 192193
to support WM state representations for information manipulation. Two brain regions seem to be particularly

important for these EWM operations — caudal superior frontal sulcus (SFS) linked to feature prioritization

within WM 40, and a mid-lateral PFC region of the
inferior frontal junction (mid-latPFC), immediately
below and posterior to BA 9/46 linked to selecting among
competing contexts or rules. Meta-analysis shows that
SFS and mid-1atPFC are engaged for all EWM operations,
possibly because they are key nodes in ‘where’ and ‘what’
WM information selection systems 4°. We demonstrated
the importance of these regions in pilot Dynamic Causal
Modeling (DCM) 14195 analyses of EWM fMRI task data
that characterized causal relationships among EWM
task-engaged brain regions (Fig. 3). While extensive
details are not necessary to illustrate the key point, SFS
and mid-latPFC exert direct excitatory causal influences
on other prefrontal and posterior brain regions engaged
for EWM. Those influences also are strongly correlated
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Fig. 3A: Dynamic Causal Modeling results in n=15
adults during EWM Updating. GREEN dashed lines
show excitatory intrinsic causal influences; RED
inhibitory influences (Cohen’s d > .50).

Fig. 3B: Specific DCM matrix B modulatory
connections that are + or — correlated r > .35
(‘medium’ effect size) with Updating task % accuracy.
88% of connections involved mid-latPFC (IFJa) or
SFS (55b) parcels.

with behavioral accuracy. The position of SFS and mid-
latPFC near the top of EWM network hierarchy and their role as ubiquitously-engaged information processing
nodes for many types of EWM operations make them promising EWM training target candidates.

Support for EWM as a Training Focus in ADHD Here, we review neuropsychological and neuroimaging
evidence that supports EWM is meaningful in ADHD and that SFS and mid-latPFC EWM-related brain regions
have a plausible relationship to symptom expression. First, meta-analysis shows EWM deficits are by far the
strongest WM deficits in ADHD. Meta-analytic statistical comparison finds they EWM deficits are significantly
stronger than WM storage 72 in ADHD (p<.037 for verbal; p<.022 nonverbal). Moreover, if one re-arranges the
64 ADHD deficits Hedge’s g effect sizes from this meta-analysis 72, the simplest short-term storage tasks” have
an average g=0.54 (“medium” deficit), while low executive demands like reversing information before recall
g=0.72 (“large”). The greatest ADHD effect size impairments (average g=1.13; very “large”) were seen for very
high executive WM demands, such as switching attention among concurrently held information sets, etc. This
EWM effect size also is notably larger than any other cognitive impairment linked to ADHD (e.g., response
inhibition, set shifting, timing, etc. 74 196-198)_ So perhaps one reason prior ADHD WM storage training trials have
failed to benefit clinical symptoms is they have not targeted the most-impaired WM abilities that have the greatest
likelihood of being related to the brain dysfunction central to ADHD.

Second, fMRI EWM studies offer clear treatment
targets because they reliably converge on specific ADHD
brain _abnormalities. Functional MRI study reviews and
meta-analyses fail to precisely localize abnormalities in
ADHD brain regions activated by simple WM information
storage tasks 76 199,200 Close examination shows no two
ADHD fMRI WM storage studies 103196 have localized
ADHD abnormality to exactly the same brain region. In
contrast, fMRI studies consistently find evidence for
ADHD dysfunction in brain regions specialized for EWM
operations 201210, For instance in McCarthy et al.’s meta-
analysis 2* of 4 fMRI studies that used an N-Back WM task | for activation and connectivity. Maps thresholded
(which engages EWM operations on each trial — Shifting, | atd > 0.50 (“medium” effects).

Updating, and Suppression 2'2), ADHD hypofunction was reliably found in the same bilateral SFS and medial
PFCregions. To date, only 1 ADHD fMRI study has attempted to localize neural dysfunction to a specific, isolated
EWM operation (i.e., distractor filtering 1°¢). It also found findings consistent with our conceptual model — lower
ADHD intra-PFC functional connectivity, and blunted WM load-dependent activity increases in left ventrolateral
PFC, right insula and right medial PFC. Again, these are mostly regions implicated in EWM instead of the ‘core’
WM representation network. Fig. 4 shows pilot study results that bolster confidence that impaired ADHD
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Fig. 4. Comparison of non-ADHD (n=5) > ADHD
(n=5) executive WM fMRI Cohen’s d effect size maps
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activation in SFS, mid-latPFC and other EWM-linked brain regions is found during all EWM operations we
propose for the new intervention. (Note, this pilot study used fMRI analysis methods and a cortical atlas
developed by the Human Connectome Project (HCP) that refers to discrete brain regions as HCP atlas ‘parcels’.)
During WM Updating, ADHD had less activity in bilateral dIPFC parcel p9-46v and parcel PF (in the
supramarginal gyrus; SMG). ADHD had lower activation to parcel AAIC (insula) to recall probes on the WM
Suppression condition — an effect made more prominent in the presence of proactive interference. For
Distractor Filtering, ADHD had less activation of parcel 7PL (superior parietal lobule) and parcels in both dorsal
and ventral regions of bilateral PFC. Several bilateral dACC parcels were hypofunctional during Distractor
Filtering and Updating. ADHD functional connectivity estimated by graph theory-based methods 213216 was
weaker connectivity in parcel 55b (caudal SFS) in the Suppression task, parcel PGi (SMG) for Updating, and
tasks in SPL parcels 7PC and 7AL for Filtering.

Third, if the ultimate goal of ADHD WM training research is to reduce ADHD WM Maintenance Deficits
ADHD symptoms, we suggest the most suitable brain treatment targets i
are those with a convincing association with ADHD symptom expression.
Very often, only a subset of brain abnormalities found to be abnormal
within a given psychiatric diagnostic phenotype has a direct association
with the severity that disorder’'s symptom expression. In the largest study
of ADHD brain structure abnormalities ever undertaken (N=2,246 ADHD w"ﬁr,ammg Eﬂems m A
patients), the ENIGMA consortium found throughout all cortex that only a
superior frontal gyrus region (r=-0.19, p=0.01) (i.e., encompassing our @4/ CW
proposed SFS target) and rostral cingulate (=-0.18, p=0.03) surface area //J
measurements were associated with ADHD Hyperactive/Impulsive
symptom severity.  Surprisingly few published ADHD fMRI studies Brain Changes Inattention
examined brain activity correlations with symptom severity in post hoc \ :
analyses (only 6 of >6 dozen reports we reviewed). Nevertheless, there
is piecemeal evidence that links ADHD symptom severity to lateral PFC.
One study found a correlation between symptom severity and right lateral
PFC activation during WM for emotional stimuli 2°7. Another found a link
between lower ADHD symptoms and methylphenidate-induced
normalization of Stroop task-elicited left dIPFC activity 2'7. Another type
of evidence for a link between WM change and ADHD symptom change
recently was found in a prospective study that showed normative
improvements in ADHD patients’ WM ability from childhood to early |Tg. 5. WM Training effects on WM
adolescence directly predicted lower ADHD symptoms in patients 2'® . | Maintenance (whole brain p<.05
This was a specific relationship, as similar developmental gains in [ corrected). Data from 3.
response inhibition and sustained attention ability did not predict symptom levels. All these indications are
suggestive, but admittedly limited. However, even stronger evidence exists linking ADHD symptom reductions
to activity changes in our specific proposed EWM-related brain targets. In our recent R21HD061915 study, we
examined the effect of 5 weeks of Cogmed™ WM storage training on ADHD adolescent brain activation elicited
by a WM fMRI probe 03, After training, ADHD PFC activity elicited during WM storage improved to non-
impaired levels (Fig. 5). However, those WM storage-related neural gains did not predict clinical improvement.
Instead, when meaningful clinical improvement was seen (in 61% of the ADHD sample), symptom reductions
correlated with increased activity in brain regions known to be functionally specialized for EWM 139 (e.g., bilateral
SFS, ventrolateral PFC, pre-SMA, and IPL/SMG and SPL parietal lobe regions). These findings not only provide
clues as to why WM storage training fails to reduce ADHD symptoms (i.e., it targets the wrong brain regions), it
offers a strong indication that EWM brain region change underlies ADHD symptom remission. Because
Cogmed™ exercises have minor executive demands, our observations likely resulted from an unintended,
coincidental strengthening of EWM-related neural circuits despite Cogmed™ targeting of WM




storage. Interestingly, our findings showed only the ADHD Pilot Data N=7 Training Effects
caudal SFS gains correlated with improvements in both .

Hyperactive/Impulsive and Inattentive symptoms, WM Shifting A ) ‘*«Q\\' (
suggesting it might have relatively greater therapeutic (g - /
potential than other regions. - —

Finally, we conducted a proof-of-concept pilot study to WM Updating
show EWM training alters ADHD activity and functional

connectivity in the proposed brain treatment targets. N=7 - A~
\ A
ODE

ADHD-diagnosed adolescents drilled on all EWM . W Distractor:

. . . . Filtering/Suppression
operations in exercises over a brief, 2-week course of
practice (6 sessions). Fig. 6 depicts widespread increased 5 6. ADHD brain regions that increased their
brain functional connectivity to the right SFS parcel in | functional connectivity with right Superior Frontal
different EWM task contexts after EWM practice. Both | Sulcus _(SfS%tH%PE‘vsveﬁdt’rganr_c:gl S[essssl?(]) n(;)ult/}ial;aglailé
‘large’ and ‘very large’ effect size connectivity increases | turquoise) after . raint 1ons.
were seen, within ‘core’ WM and EWM-specialized Bl desitnidel Sl il il ca)t
regions, as well as with other brain regions. Interestingly, different connectivity changes were seen when brain
function was elicited by different EWM tasks, consistent with WM state representation theories that the key SFS
and mid-latPFC regions will dynamically reconfigure their connectivity strength for different EWM demands.
Therefore, we are likely to have the most widespread effect on EWM neural network function if we include all 4
different EWM operations as training exercises. Although this is strong evidence of these regions’ malleability
and responsiveness to EWM practice, the next step of this research is to give patients a typical course of WM
training (e.g., 20-25 sessions over 5 weeks) to assess the extent of brain target engagement with fMRI analyses
of activation and network connectivity. In this pilot, behavioral gains were not expected because participants
only performed rote practice. Actual EWM training will adaptively increase task difficulty and include intervention
design elements that ensure engagement and motivation. These are essential ingredients generally believed
necessary to alter behavioral performance 43.

Synthesis and Potential Impact There generally is increasing enthusiasm and optimism for using cognitive
training to treat psychiatric disorders as more and more studies discover its principles of application, and
document its ability to re-sculpt brain networks through experience-dependent neuroplasticity 2'°. Although the
basic premise underlying some sort of WM training in ADHD still seems sound, a WM storage training behavioral
target has been proven ineffective. Broadly speaking, it makes sense that any link between WM and ADHD-
related behavioral impairment is likely to be more greatly related to patients’ ability to effectively use the
information represented in WM in the service of cognition and behavioral control instead of merely how much
information can be temporarily held in WM. Guided by a careful synthesis of neuroscience evidence from the
past decade, this proposal argues for new EWM-focused exercises as a vehicle for modifying specific new brain-
based targets. To recap, we conceptualize EWM impairments as the behavioral manifestation of a dimensional,
RDoC-like 220224 neurobiological abnormality in patients diagnosed with ADHD. Although not all ADHD patients
show every cognitive impairment that has been linked to the diagnostic phenotype 64 77.225-228 E\WWM tests have
the strongest effect size of any cognitive impairment in ADHD. This suggests EWM impairments are more
important, or perhaps expressed in a greater proportion of ADHD patients than WM storage or other executive
deficits. Cognitive neuroscience neuroimaging studies point to SFS and mid-latPFC as ubiquitously important
for all EWM operations; they direct the dynamic reconfiguration of EWM neural network function when accessing
or protecting information held in mind to direct behavior that predict EWM task accuracy. Clinical neuroscience
studies also show these regions have abnormal activation in ADHD during EWM task performance and are linked
to ADHD symptom expression. As such, these two regions represent potential intervention targets whose
engagement likely have a stronger potential to produce ADHD symptom severity or functional level
improvements that have been so elusive in prior WM storage training research (e.g., Cogmed™). We contend
brain-based training targets ultimately will prove better than behavioral performance-based targets because they
are more proximal to putative disease mechanism. In this context, EWM behavioral change remains an important
focus of cognitive training interventions, but primarily for interpretive reasons (i.e., to ensure training exercises
have the intended effect). Furthermore, our consideration of EWM brain region inter-connectivity to evaluate
target engagement is consistent with the most recent ADHD neurobiological models of the disorder stemming
from neural network connectivity abnormalities 229237, It also is noteworthy that success here is potentially
relevant for other disorders whose putative etiology is linked to WM (e.g., schizophrenia and bipolar illness 23
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240 TBI 241, MS 242, stroke 24%). A successful target engagement demonstration here might open new therapeutic
avenues for any disorder that shares diagnostically cross-cutting abnormalities in EWM abilities.

The R61/R33 phased grant mechanism for efficient experimental therapeutics development is ideal for the
current stage of this research. The obvious next step is to repackage the EWM probes used in prior neuroscience
research into a multi-week, intensive drilling format commonly used to maximize participant engagement and to
continually challenge EWM ability. Two carefully designed clinical trials will let us determine if the SFS and mid-
latPFC targets are indeed engaged by EWM training, to replicate findings, and assess if target engagement has
clinical relevance — all necessary to support future clinical efficacy testing. There should be optimism for success
because a small handful of EWM training trials already have shown some success in both ADHD 244245 and non-
ADHD samples 9% 136.246-249 " gt |east at the behavioral performance level. Those studies trained comparable
EWM operations to what we propose to study here. But they typically did not ensure training on all possible
EWM operations linked to the proposed SFS/mid-latPFC brain targets. Moreover, we focus here on both brain
and behavioral levels. The R33 will examine a larger replication sample. It will test ‘near-transfer’ generalization,
and consider training delivery and patient characteristics as potential outcome moderators (e.g., pre-existing WM
impairments vs. strengths, sex, age, ADHD subtype, etc.). These analyses will ensure target engagement
evidence meets all theoretical expectations and is robust to the likeliest potential confounds. By the end of this
R61/R33 project, we either will know to abandon this proposed new line of inquiry, or we will be positioned to
conduct one of several possible ‘next step’ studies. Ideally, we expect to be ready to propose a well-informed
preliminary clinical efficacy trial. Alternatively, we may learn we need to optimize the intervention delivery based
upon the results of some proposed R61/R33 supplemental analyses that will determine if target engagement is
moderated by the pace of EWM gains, exposure to training (i.e., ‘dose’), or patient characteristics.

Innovation The primary study proposal innovations are the new EWM treatment target and its primary focus
on neurobiological targets presumably closer to ADHD etiology. Despite strongly converging evidence, none of
these EWM operations have been explored in depth in ADHD at the brain level, either in ADHD itself or within a
cognitive training context. Another important novel feature is our successfully-piloted remotely-supervised ‘at
home’ EWM training that effectively substitutes for in-person appointments. Not only should this delivery
approach greatly enhance protocol adherence and retention, it provides a potentially paradigm-shifting option
for a way to deliver personalized cognitive training that should prove to be more practical for typical families in
future efficacy trials. There also are many advantageous clinical trial design elements and analyses we describe
in the Approach that were not used in most prior ADHD WM training trials. These should overcome common
clinical trial pitfalls to help ensure the most definitive possible answers to our target engagement hypotheses.

APPROACH - Methodology in the R33 Project Phase

Participants ADHD participants in the R33 (n=90) trial will be representative of adolescents with a primary
diagnosis of DSM 5 ADHD who have common minor secondary psychopathology (see the Eligibility Criteria
section). The R33 also will recruit n=40 demographically-equivalent non-ADHD participants for a useful
comparison of ADHD EWM performance and brain function against a typical normative sample. We focus on
adolescent ADHD rather than children in part to avoid pre-pubertal neural differences and to continue our prior
ADHD fMRI research (all of which focuses on teens). But also, adolescence represents an ideal developmental
period for neuroplasticity-based interventions. It has been well-established that post-pubertal neural system
changes mostly involve experience-dependent refinements to a largely-established ‘adult-like’ brain organization
(see our recent adolescent network connectivity review 25°). We are experienced from nearly a dozen current and
recent Rois with large N recruitment for fMRI studies of adolescents. As in our recent R21HD061915 and
Ro1MHo080956 ADHD fMRI studies, ADHD participants will be recruited from both clinical and community
resources. ADHD is ~4 times more common in boys 25!, but we will over-sample ADHD females to assess sex
effects on outcome, as per NOT-OD-15-102 (> !5 will be female). A Note on ADHD Medications: All ‘in person’
visits for ADHD fMRI/neurocognitive evaluations will require a 24-hour medication washout if patient
symptoms are managed with typical, short half-life psychostimulants. This is a common, widely-accepted
research practice to ensure test results cannot be attributed to the temporary, palliative effects of those drugs on
the brain on assessment days (see Eligibility Criteria section for detailed discussion of the issues involved and
list of permitted medications).




Clinical Assessment This Table 1. Clinical Assessment (R61/R33)

evaluation will fully assess all the Task Name Domain Min
study exclusion criteria and quantify =~ K-SADS-5 252 ‘ DSM Axis I diagnosis ~ 30-120
ADHD symptom severity and Child Behavior Checklist (CBCL) 253 Psychiatric/problem behavior 10

Conners 3 (P/S) 254 ADHD symptom severity 20

functlopal . ability. Table_ 1 lists Weiss Func Impair Rating Scale (P/S) 255 Psychosocial function 5
evaluation instruments, noting when  * Inven. of Parent and Peer Attach. (P/S) 256 Social relationship quality 10
multiple respondents will provide * Wide Range Achievement Test-5 Academic Achievement 45
Subjective ratings. All measures are Beck Depression Inventory IT 257 Depression severity 5
) T . . 258 .

validated for adolescents. As per K- Mgltldlmen. Anxiety Dl.sorde_r Scale 2 Anxiety 5

oo Olin Health Care Questionnaire Health and substance use 10
.SADS'.5 guldejhne.s, Couatera.l parer}t Adol Alcohol/Drug Involv. Scale (AADIS) 252 Alcohol/Drug involvement 5
interview will inform dlagnOSIS Fagerstrom (FTND) 260 Smoking status/nicotine use 1
decisions. Diagnostic interviews will ~ Petersen Physical Develop. Scale 261 Pubertal status 5

be performed by clinically-trained _* Clinical severity measures to assess functional impairment; P — Parent, S — Self
postdoctoral staff supervised in a weekly diagnosis consensus meeting by PI Stevens (a licensed clinical
psychologist with >16 years’ experience supervising K-SADS interviews for NIH-funded studies). Staff
interviewing training will include 10 “modeled” interviews, direct observation of the first 10 interviews, and
quarterly review of all interview videotapes by other clinically-trained research staff to control for assessment
‘drift’. We also will assess participants’ age, race/ethnicity, education level, handedness 262, and socioeconomic
status 203, Parents will detail family psychiatric history 264 and confirm child’s medical history. These clinical
evaluations usually last between 2 - 3 hours.

Neurocognitive Assessment Cognitive testing will Table 2. Cognitive Tests (R61/R33)
exclude WAST FSIQ 27t <80. It also will detail common Domain/Task Name Ref Reliability Min
WM processes, assess EWM tests of ‘near transfer’ to Working Memory Capacity

. s s . WISC-1IV Letter-Number Sequencing 265 .90 15
test the generalizability of EWM training outside of  {/1co v (Integrated) Spatial Span 265 9. 81 .

trained tas_k.s,' and test ‘far j[rans.fer’ of training effe:cts WISC-IV Digit Span %5 80-.83 5
to other abilities often impaired in ADHD. Table 2 lists EWM ‘Near Transfer’ Tests
tests along with their test-retest reliability. Cognitive  Shifting — Refresh/Repeat Task o n/a 12
testing will require ~2 hours. Co-I Dr. Hawkins will ~ Updating - Spatial Updating Task n/a 14
. taff  traini d it testi Filtering — Attend-lgnore Task 172 n/a 4
Supervise  sta ralning — an cogniive  tesung gy ppression — Intr. Resistance Task 160 n/a 12
procedures throughout the project. Executive/Other Abilities
MRI Assessment Overview MRI data will be CPT-II Omiss1.on.s (Sustain. Atteptlon) 227 .84 15
llected using a Siemens 3T Skyra. Subjects will wear CPT-II Commissions (Resp. Inhib.) e 65 .
co e ) , R yra. ) g ) CogState Detection (Process Speed) 268 .92 2
hospltgl scrubs’ to mlnlmlze.the chapce of 1ptroduc1ng CogState Set Shifting Task (Shifting) 268 n/a 5
metal into the MRI. They will provide a urine sample = Temporal Estimation Task (Timing) 269 n/a 6
before MRI to test for drug metabolites, and pregnancy __Stroop Color/Word (Cog Control) 270 0.97 6

in females. Positive drug results could defer MR data collection and will be noted for post hoc analyses.
Caffeine/nicotine intake and cigarette smoking will be as normal to prevent acute withdrawal effects on brain
activity, but restricted to >1 hour prior to MRI to avoid well-documented neural effects of recent use.

fMRI Paradigms There are two important differences between the fMRI tasks that will assess EWM ability
before and after training and the EWM training exercises. First, 4 separate tasks will be used during training to
isolate each EWM operation, whereas fMRI uses 3 because WM Distractor Filtering and WM Suppression can
be efficiently combined into a single paradigm. WM Updating and WM Shifting cannot be evaluated by fMRI
simultaneously because each operates differently on the stimuli set held in WM. In contrast, EWM stability
operations can be assessed in using the same trials because the EWM operations take place after WM short-term
maintenance 272. By combining them for fMRI, we lessen the fMRI scanning time burden. Second, to avoid
stimulus familiarity confounds the fMRI tasks will use stimuli sets never seen during EWM training (different
counter-balanced sets between pre-/post-training MRI scans). Because SFS and mid-latPFC engagement has
proven by meta-analysis to be largely domain-general '4°, we include both verbal and nonverbal versions of each
task with the expectation they will be collapsed for stable measurements. The



visuospatial versions will use fractal images that are not easily encoded Memory Set
verbally. All were constructed with adequate delays for WM maintenance,
but not so long to raise concerns over different WM decay times or possible ﬁﬁ
use of undirected rehearsal strategies. Because it is crucial we avoid
exceeding typical WM storage span (which could result in our study testing
WM storage capacity more than EWM), no exercise uses more than 4 stimuli
at a time (i.e., this is the well-replicated limit of the primary memory span 54).

Task visual layout and pacing are similar so any cross-task differences can be
confidently attributed to the EWM operations themselves.

WM Updating This task measures replacement of items in WM. It is based
upon Murty et al. 273, simplified to 2 conditions. Each trial begins with 4
stimuli presented for 4 sec, followed by 2 to 4 successive presentations (2 sec
each) of an asterisk as placeholder or a new stimulus in each position (Fig.
7). For asterisks, participants are instructed to retain the previously viewed
stimulus in WM, but to update the contents of WM for any new stimulus.
During a final 3 sec response phase, participants indicate if the presented
stimuli match the contents of WM (half the probes are correct/half
incorrect). For fMRI, the primary contrast of interest is Updating >

(4 sec)

MAINTENANCE UPDATING

(3 sec)

Maintenance. Each of two fMRI runs (verbal or visuospatial) has 20 “Correct or Incorrect?”
Maintenance and 20 Updating trials. Each run=11:39 min (23:18 total). Fig 7. WM Updating Task trial.
WM Shifting This task measures the ability to refocus selective attention to | Memory

different stimuli held concurrently in WM without altering WM contents. Set Delay Probe

Each trial (Fig. 8) begins with 4 stimuli (verbal or visuospatial) for 4 sec, then

a 6 sec delay with no stimuli. In a 4 sec probe phase, one location is |‘ s Suse
highlighted and subjects are cued to respond to different Yes/No questions Alive?
about item content (i.e., randomly chosen to ensure participants do not just (4 sec) (6 sec) (8 sec)
encode answers instead of stimuli). For verbal — “Alive?” vs. “3 Letters?” For | Fig 8. WM Shifting Task Trial.
visuospatial — “Color?” vs. “Fills Screen?”). For Control trials, subjects are

prompted to hit a randomly-chosen button. For fMRI, the contrast of most interest is Shift > Control. Each of
two fMRI runs (verbal or visuospatial) has 12 Control and 12 Shift trials. Each run=7:10 min (14:20 total).

WM Distractor _Filtering/Interference Suppression This Probe

task assesses brain function engaged to a) suppress/inhibit Memory ~Pre- Instruction Post | i | vAUD (50%)
irrelevant, distractor information from WM and b) suppress = e T e/

proactive interference during WM retrieval 272. Participants e ||+ o e [ LuRe(2s%)

are asked to retain a 4-item memory set in WM (Fig. 9). For T e poe
the verbal task, two stimuli are shown in red, two blue. Our
visuospatial version has a comparable format, except
instructions are to retain the two top or bottom stimuli.
After a PreCue retention-interval, a 2 sec Cue instructs participants to retain in WM only items of that color (i.e.,
50% red or 50% blue) throughout a PostCue WM retention-interval. A probe word requires an affirmative
dominant-hand response if it matches either of the items retained in WM (e.g., POOL and TILL). On 50% of
trials the probe matches one of the items that should be in WM (Valid probes), on 25% the probe matches one of
the items that should have been inhibited from WM (Lure probes), and on the remaining 25% of the trials the
probe does not match any WM items (Control). For fMRI, the contrasts of interest for this study are PreCue >
PostCue (efficacy of suppression) and Lure > Control probe (resolution of proactive interference). Each fMRI
run=5:28 min (21:52 total).

Stimulus Delivery/Response Recording E-Prime (Psychology Software Tools, Inc.) will implement fMRI
tasks. Stimuli will be projected via a 3200 ANSI lumens system onto a screen behind the patients head in MRI.
Participants view this screen using a mirror on the head coil. An MR-compatible 5-button fiber optic response
device (Current Designs, Inc.) will acquire behavioral responses. Each fMRI task is programmed to track
accuracy and RT for conditions of interest for offline analysis. Participants communicate with staff during MRI
using an MR-compatible auditory sound system delivered by 30 dB sound-attenuating headphones.

MRI Sequences fMRI gradient EPI (TR/TE 900/35 msec, flip 60°, multi-band AF=7). Fieldmaps (TR/TE
8400/62 msec, flip 80°, AF=1, 0:25 min, run twice with reversed A>>P phase encoding) (EPI/fieldmap
10

9 wear | CONTROL (25%)

(2 see)

Fig 9. Layout of a Suppression WM Task trial.




sequences have 2.1 mm isotropic voxels, 70 interleaved slices, 228 mm FOV). T1-weighted (3D MPRAGE,
TR/TE/TI=2400/2.07/1000 msec, flip 8°, FOV=256x256mm, 0.8 mm isotropic vox; 7:02 min). T2-weighted
(TR/TE=3200/565, FOV=256x256, 0.8 mm isotropic vox; 6:45 min). Images will be Radiologist-assessed to be
free of macroscopic pathology. Daily MR stability/QA will ensure equal scan quality throughout the project.

HCP Pipeline MRI Processing We have experience with Human Connectome Project (HCP) 274 pre-
processing pipelines 275 from several prior and ongoing large Ro1 MRI studies. They provide highly-accurate,
structural image-guided brain atlas normalization for fMRI data. T1/T2 images will be ACPC-oriented, brain
extracted, B, inhomogeneity-corrected, mutually co-registered, distortion fieldmap-corrected, and finally
MNI152 atlas-registered using FSL FLIRT+nonlinear FNIRT algorithms 276. FreeSurfer-based 277 registration,
skull-stripping, and pial extraction on 1imm downsampled T1/T2 data will create structural volume/cortical
ribbon files. After fMRI EPI data is motion-corrected, it will be registered to FreeSurfer output, resampled to
atlas space, intensity normalized, smoothed (cortical ribbon surface mapping data @2mm FWHM), and written
as timeseries in CIFTI format for analysis. All fMRI analyses will examine brain regions localized to the cortical
subdivisions identified by the recently released HCP multimodal-derived map of 180 cortical parcels 278. We
emphasize this point, as this atlas represents the highest-resolution cortical atlas to date, including 97 new
regions. It divides conventionally-recognized structures into numerous sub-regions defined by uniquely
demarcated boundaries constructed using each brain’s functional connectivity and myeloarchitecture. We also
will use a recently-developed sub-cortical/cerebellar map that reveals 358 highly-organized parcels that align
with these new cortical regions 279. Together, these atlases represent the cutting-edge in brain localization.

MRI and Head Motion Total MRI session time is 1h 10 min, of which 50 min involves fMRI data collection.
Although this scan duration can be challenging for adolescents who are prone to fidget (especially unmedicated
ADHD participants), we have ample experience scanning ADHD teens (Ro1MH080956, R21HD061915,
K23MHO070036) and non-ADHD teens for these scan lengths. A mock scanner will acclimate subjects.
Framewise Integrated Real-Time MRI Monitoring (FIRMM; www.firmm.io 28°) will prompt staff to discontinue
obviously unusable scans (i.e., data with movement >1 2.1 mm voxel); these will be replaced with parallel task
versions in the same session. This will be more time/cost-efficient than a 2m scan. If needed, substitute scans
at a proximal session will be done to avoid discarding an entire dataset. Minor head motion or sharp spikes will
be addressed using ICA-FIX 28t 282" which isolates/de-noises such signal artifacts and regresses linearly-
detrended motion parameters from the HCP-processed timeseries. We have learned in 15+ years of pediatric
fMRI experience >90% of adolescent non-ADHD and >80% of ADHD fMRI data meets QC criteria, while roughly
10% of ADHD ultimately can be replaced by a second scan session with careful participant re-training.

Conventional fMRI Analyses Single-subject activation will be quantified with FSL FEAT with FMRIB’s
Improved Linear Model, using geodesic Gaussian algorithms to estimate autocorrelation and smooth surface-
based fMRI data. Explanatory Variables (EVs) will use a double-gamma HRF convolution to translate event
onsets in conditions-of-interest into regressors to be fit to the BOLD timeseries. EV contrasts (against other
conditions) will create activation maps. Task performance will be considered by 1) separately modeling correct
vs. incorrect events, then collapsing across them if SFS/mid-latPFC measurements are unaffected by accuracy,
and 2) examining the effect of accuracy for post hoc analyses at the group-level.

Functional Connectivity Analyses Graph theory (GT) offers a diverse variety of useful and informative
network metrics. In GT, networks are mathematical representations of real-world complex systems. GT metrics
parameterize these systems to describe relationships among fMRI-measured region activity profiles 283.284, GT
metrics range from those that simply quantify how integrated a single brain region is with others in a network or
sub-network, to others that capture more complex properties of network structure, integration, segregation, or
resilience to insult 25. Although it is possible to examine thousands of connections among SFS, mid-latPC and
other relevant brain network regions, GT also can focus hypothesis-testing on individual brain regions to reduce
multiple comparisons demands. Our primary functional connectivity metric will be ‘weighted-degree,” which
quantifies the number of edges (connections) to a any network node of interest, weighted by their association
strength. In this way, we will have a single value per participant for SFS and mid-latPFC parcels that represents
nodal functional connectivity strength. When preparing data, we will follow detailed published recommendations
to mitigate any head motion signal artifacts 285 286 on fMRI timeseries data. Because ICA-FIX already will have
been applied and motion parameters regressed from the data from HCP processing, we additionally will regress
white matter, CSF and global signal from the data, then apply a 0.8 Hz low-pass filter. The residualized
timeseries will use partial correlation to form adjacency matrices 2%7. Un-thresholded, full adjacency matrices
will avoid the arbitrariness of threshold selection and loss of information when binarizing connections.
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EWM Training Trial Methodology Considerations Although the primary purpose of the R61 and R33
trials is a to assess target engagement, not clinical efficacy, the major criticisms of prior ADHD WM training
efficacy trials noted in reviews of the available literature 109 112, 113, 115, 134-137 provide design considerations that are
germane to any cognitive training trial. These issues are summarized in Table 1, along with our innovations to
avoid the same limitations to enhance this project’s methodological rigor and potential reproducibility.

Table 3. Methodological Criticisms of Previous WM Training Clinical Trial Design or Interpretation

Issue Solution

Active placebos in RCTs also can produce clinical improvement, Use a carefully-chosen placebo arm, and supplement with other
possibly undermining clear understanding of WM training efficacy methods for ensuring any gains after EWM training are valid

RCTs do not examine how treatment compliance affects outcome  CACE analysis of the effect of compliance on WM outcome metrics

Ensure stimuli used for training are not used for pre- and post-
training fMRI assessment; for all WM neuropsych tests used for
assessment, choose those with reliable parallel forms

EWM test performance at trial outcome might be contaminated by
practice effects

Near- and far-transfer inconsistently evaluated Include commonly-used tests for comparability across studies

Not all previous studies evaluated psychiatric comorbidity (e.g., Conduct full diagnostic interview and assess possible academic
CD/ODD), ADHD DSM-IV clinical subtype, or LD disparity with IQ; evaluate outcome moderation effects statistically
The medication status of ADHD participants has been inconsistent Limit to unmedicated ADHD and those on stable, short-acting

and often un-evaluated across studies psychostimulants; use 24 hour “washout”; assess moderator effect
Not clear to what extent age influences one’s ability to benefit from Avoid pre-pubertal children to circumvent major developmental
executive WM training; possible pubertal confounds confounds; examine age (or time since puberty onset) moderation
Previous studies typically ignored any effects that individual We will randomly assign participants to active/placebo treatment
differences in pre-training WM ability might have on outcome and examine the role of pre-training EWM ability on outcome

Placebo Condition The strongest criticisms of prior ADHD WM training RCTs are the absence of placebo
control, as results could be driven by expectancy effects. Although neural and neurocognitive measures of target
engagement that are the focus of this project are less vulnerable to expectancy, we chose to add a placebo training
group to both R61 and R33 for methodological rigor and to enhance the certainty of causality inferences. Choice
of placebo for WM training trials is challenging because some previously-used WM ‘active placebos’ have
changed brain function 288, We will use Mahjong and Bejeweled tile games for the placebo condition. These
deliver an equivalent ‘training time’ exposure, are compatible with remote monitoring, the game elements can
be presented as a feasible treatment to preserve the blind, and we provide the same coaching experience. We
only will use these tile ganes for placebo exercises as they have low EWM demands 196197,

Executive WM Training Sessions Each ~50 min EWM training session will include sixteen 3 min EWM
exercises (counter-balancing the order of EWM task types and verbal vs. nonverbal versions). To avoid stimulus
familiarity effects, the stimulus set for all exercises will be unique each training day, drawn randomly from a
large pool. Importantly, EWM training task difficulty will be adaptively increased across the 5 weeks of training
based on session-to-session performance. Day 1 EWM training will begin with relatively easy 2-item memory
sets. These will quickly ramp up to 4-item stimuli sets across the first 2-3 sessions as each participant attains
80% accuracy for each 3 min exercise. After this familiarization/confidence-building period across the 5 Week
1 sessions, EWM task difficulty manipulations will begin using an adaptive staircase design. Each EWM exercise
will manipulate difficulty in different ways. For WM Updating, the number of updates per trial will increase
from 1 to 4. If a participant achieves proficiency when challenged by 4 WM updates, the speed of each update
will be shortened by 100 msec until behavioral gains plateau or a minimum of a 1 sec response window. For WM
Shifting, the number of shifts per trial will be increased from 1-4, then duration of each response window
successfully shortened by 100 msec. For WM Distractor Filtering, the number of possible colors used for
directed forgetting will be increased from 2 to 4, then response window shortened by 100 msec. For WM
Suppression, more proactive interference probes will be given at once (from 1 to a max of 4), then 100 msec
response window will decreases once consistent optimal performance on 4 probes is attained. Patient differences
between stimulus manipulation difficulty level and fastest response window size will provide improvement
indices to characterize each subject. All adjustments will be based on running weighted averages of trial accuracy
and reaction time, continually saved/updated by the E-Prime stimulus presentation software.
Engagement/Motivation Cognitive training gain are believed to be optimized when patients approach trials with
consistent high motivation 3. We have incorporated social and minor financial incentives for engagement (rapid
response time consistency) and improvements in each session. It is hoped this also will partially reduce boredom.
The coach also will assess participants’ subjectively-rated motivation on a 10-point Likert scale.
Remotely-Supervised EWM Training Our EWM training delivery is designed to maximize compliance. For
a typical family with late middle- or high-school age children who have many, often-conflicting priorities, visits
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to the Olin NRC 4 times a week for 5 weeks will impossibly compromise study feasibility. Consistent with
guidelines we have proposed for other forms of remotely-supervised interventions 29% 292, WM training will be
done ‘at home’ on a study-provided Lenovo TP X1 Tablet with a cellular modem and Verizon data plan. Tablets
will run GoToAssist’s ‘RemoteDesktop’ software so Olin NRC staff can remotely administer EWM practice
sessions. Study staff can remotely start the session (even when the tablet is powered down), initiate Skype
videoconferencing for a ‘virtual presence’ during training, and load pre-configured E-Prime EWM task training
exercises. Training behavioral data are transferred daily to Olin NRC servers for archiving via FTP. Each tablet
is password-locked and will run Absolute software that provides GPS location and the ability to erase all data in
case of loss or theft. We successfully used these procedures for our n=7 EWM training ADHD pilot study. This,
and our other success with supervised ADHD WM training 03, validates the feasibility of the novel training
delivery approach. Coaching During each session, a project staff member will interact with each participant
through this virtual connection. As in other types of WM training, such a ‘coach’ works closely with families to
help problem-solve unanticipated barriers to regular practice.

R61 and R33 Hypothesis-Testing General Comments Missing data bias tests will use Little’s multivariate
test, as well as univariate counterparts 293. Missing data will be dealt with using Full Information Maximum
Likelihood algorithms 294 or pattern mixture modeling, as appropriate 29. Outlier and specification error
diagnostics will be examined. All data will be examined to ensure they meet statistical test assumptions. If not,
we will use robust estimators based either on Huber-White estimation, bootstrapping, or methods described in
Wilcox 29. Group fMRI analyses will use PALM 297 — a CIFTI data format-compatible analysis tool that applies
threshold-free cluster enhancement for surface-based fMRI analysis and multiple comparisons corrections with
permutation-based inference. All group analyses will use age as a covariate to account for any maturational
differences. We will examine sex differences as per NOT-OD-15-102.

R33 Goals The 3-year R33 study will seek to replicate R61 target engagement evidence in a larger sample,
using analyses robust to factors that potentially might mitigate outcomes. It also will determine if EWM training
target engagement can be linked to clinically-relevant behavioral change. We do not intend the R33 to be a
formal efficacy test; it is intended only to inform a decision about the potential of an EWM training intervention
for a subsequent efficacy trial testing. Secondary goals are to inform the design of possible future efficacy
studies by a) learning if ADHD EWM gains represent resolution of brain function deficits compared to non-ADHD,
assessed by recruiting a demographically-matched n=40 non-ADHD comparison adolescent sample who will
undergo 2 evaluations, also ~5 weeks apart, b) determining whether EWM galns generallze to non-

trained EWM tasks, c) examining the effect of intervention non-adherence = Assessed for
on target engagement, and d) identifying ADHD characteristics that might [ eligibility (N=150)
- ; . : £ T
moderate EWM training outcomes which could influence the design of 3 —
. i andaomize
subsequent efficacy research. £ (n=90)
. J |
Gene Banking We envision a need to have whole-genome data in this richly g E:M Ac:ve
phenotyped dataset to answer emerging questions. Saliva sampling costs were B Training Placebo
(%)
budgeted and samples will be stored at Olin for future use. S (n=45) (n=45)
-
. . . o) ¥ 4
R33 Trial Methodology The R33 will use the same R61 EWM training | = &l [Groiees Completers
intervention. As such, it will have the same randomization, coaching, g 8| | for Analysis for Analysis
discontinuation rules, allocation concealment, 5-week baseline/endpoint ._,,E (n=36) (n=36)
assessment timeframe, target ‘dose’ of 20-25 EWM training or ‘sham | A= _
Fig 11. R33 CONSORT diagram

training’ placebo sessions, and www.clinicaltrials.gov registration. After 20%
expected attrition, there should be 36 ADHD ‘completers’ in each arm (Fig. 11). Unlike the R61, the R33 also
will examine a primary clinical endpoint (ADHD symptom severity) and secondary outcomes (3 psychosocial
function assessment measurements; see Table 1). The R33 also will formally evaluate Training Non-Adherence
using CACE analyses of compliance effects 3° on target engagement. We define ‘protocol non-adherence’ as
<80% session completion, with the goal of at least 20 sessions by an endpoint 5 weeks after trial start. Any
change to a participant’s type/dose of medications or adding another form of treatment (e.g., neurofeedback,
etc.) also will be non-compliance. ‘Procedural non-adherence’ is defined as poor quality engagement, as rated
both subjectively and objectively by the training coach via virtual observation of each session (see appended
Intervention Manual).
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R33 Hypothesis-Testing We remind reviewers PHS-CT supplement Section 4 contains the detailed
hypothesis-testing plan, including several important supplemental analyses to greatly enhance study impact.

R33 Power Analysis Power for this study’s ANCOVA
analyses of treatment outcome is primarily impacted by
three factors — 1) sample size, 2) effect size d, and 3) the
strength of association R? between the dependent variable
and any model covariates. Figure 12 shows ANCOVA
power analysis estimates for the expected 81 of 90 R33
completers. We see power will be at or greater than 80%
for Cohen’s d > 0.57 effect sizes for any ANCOVA test
where the R? for the covariate terms alone falls above
0.16. These anticipated R? values we tested are realistic.
Quantile analysis found a convincing majority (85%) of the
R? distribution values across all the R61 trial’s functional
connectivity ANCOVA models were well above 0.16. In
sum, the R33 design is adequately powered for a credible
replication study. Its power will suffice to confirm R61
findings even if the new R33 ADHD sample shows the

same result at a slightly lower effect size magnitude. ------“
Alternatively, we could decrease a to .01 for any specific -
brain connectivity replication test while maintaining e —
sensitivity to a comparable d = 0.68 effect size magnitude
(i.e., approximately the same as the smallest effects reported in the R61).

R33 Impact on Decision to Continue Research The R33 phase results will inform a decision about
whether the intervention shows potential for improving clinical outcomes. A large-scale efficacy trial will be
recommended only if a) R61 behavioral and biological target engagement evidence is replicated in the new R33
ADHD sample, and b) if there is evidence for a meaningful association between EWM training-induced target
engagement and credible ADHD clinical changes over the brief 5-week R33 trial. The magnitude of any clinical
changes (great or small) also will be instructive in deciding whether or not this intervention development research
should advance in future studies to efficacy testing. Moreover, the specific endpoints that show improvement
will be the focus of any subsequent RCT proposal. Secondary R33 analyses will confirm the remotely-supervised
EWM training approach has the anticipated acceptability, tolerability, and retention.

Key Study Design Choices to Maximize Robust Results

1) Sample Sizes — Careful statistical power analyses were done to support adequate sampling for confidence that
both R61 and R33 phase results would provide a definitive Yes/No answers about target engagement.

2) Use of Placebo Control — Both R61 and R33 include random assignment to placebo for strongest inference
possible about whether target engagement is due to the intervention. Moreover, the behavioral and neural
targets are objective and likely robust to any expectancy effects seen in prior research.

3) How To Handle ADHD WM Deficits — Pre-existing cognitive ability has an equivocal relationship to training-
related cognitive gains 3°1-393 and there is no published guidance as to what effect ADHD deficits might have
on training outcomes. As such, our R33 will ensure any evidence for target engagement is robust to sample
variability in pre-training EWM ability levels.

4) Other ADHD Clinical Heterogeneity — There are many ADHD clinical characteristics (co-morbidities,
medication histories, etc.) and suspected etiological biomarkers (including variable WM expression) that
might influence EWM target engagement. If the R61/R33 is successful, supplemental analyses will begin to
assess possible moderation effects to inform future sampling plans and research design.

5) EWM Tasks for Training vs. Brain Target Assessment? — The only way to be confident neural target
engagement reflects EWM training effects is to use the exact same tasks for both fMRI and training. However,
it remains important to show EWM is training actual ‘ability’ and not just maximizing specific task performance.
As such, we will examine ‘near transfer’ of training gains to 4 non-trained EWM Shifting, Updating, Distractor
Filtering and Suppression tests (Table 2). We also will conduct exploratory ‘far transfer’ analyses of simple
WM short-term storage and any training effects on other executive function 304-3% tgsks.

6) Interpretation of EWM Training Effects — We will compare ADHD training effects to data from non-ADHD
participants to better understand trial outcomes. We are open to the possibility that brain changes either
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resolve abnormalities, or alternatively that they build upon intact neural systems to enhance ability, thereby
‘compensating’ for other deficits. Either underlying mechanism would support future efficacy research.

7) Theoretical Advances — PHS-CT Section 4 describes several supplemental analyses using pooled R61 and
R33 trial outcome data that might refine our conceptual model of how the EWM intervention works.

Other Study Design Features For Rigor/Reproducibility This R61/R33 provides a built-in replication
by design. We use strong RCT design principles and we avoid many methodological pitfalls of prior ADHD WM
training RCTs. We base sampling attrition estimates on direct experience to ensure our final sample size will be
adequate; statistical power was carefully confirmed for our planned hypothesis-testing, using conservative
estimates. Only a small handful of treatment targets will be tested for engagement, requiring a very specific,
narrow path towards study milestone achievement. The R61 and R33 use the same intervention to ensure
continuity between the two study phases. Protocol compliance will be closely monitored and its effects on target
engagement will be formally evaluated in the R33 analysis plan. Clinical and cognitive tests have high test-retest
reliability and are validated for adolescents. We use well-validated, piloted fMRI tasks with rigorous QC
procedures to obtain high-quality, movement free MRI data. HCP methods offer the most accurate localization
of brain function. We avoid the interpretive confounds of assessing ADHD patients’ EWM ability when they are
medicated. Data will be made available in NDA repositories so other investigators will be free to re-examine our
results, or extend findings with new analyses.
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