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This statistical analysis plan (SAP) governs the analysis of the WEPACC factorial cluster 
randomized controlled WEPACC study. This SAP attempts to cover all points outlined in the 
CONSORT guidelines for reporting cluster randomized trials. (See Appendix) (Campbell 2010). 
 
This SAP will be updated regularly but will be finalized formally before any analysis of outcomes.  
 
Date of Finalization of SAP: September 13, 2022 
 
 
1. Questions of interest 
 
Stated formally, the primary question of interest is as follows. If a group of children were 
alternatively assigned to the following exposure groups (a= attended a school at which the 
specified intervention was in place AND was exposed to the specified child-level intervention, 
b=attended an intervention school but did not have access to the child-level intervention, c=did not 
attend an intervention school put received no child-level intervention, and d=did not attend an 
intervention school and received only usual care, then are there important differences in outcomes 
across the four groups? 
 
All outcomes for the primary analysis will be measured at the child level, but in some cases (see 
below) will be aggregated to the school level. 
 
 
2 Design 
 
 The overall design will stratify participating schools into at least 5 groups to enhance 
balance at baseline in school characteristics (size, location, charter status). Randomization of 
schools to the school-level intervention (S+) or usual practice (S-) will be stratified by these pre-
defined groups. At the time asthma patients present in the clinics and consent to participating, these 
patients will be randomized to navigator assistance (child-level intervention) (A+) or usual care (A-
), and that randomization will be stratified by school and clinic of recruitment. Allocation 
concealment will be preserved by randomly permuted block, and this approach will also preserve 
balance of intervention arms within schools over time. This randomization plan will produce a 2-
by-2 factorial design, partly clustered (by school). (Table 1) Schools and children are followed over 
time.  

The proposed design results in 6 groups of children. The cells 
a,b,c,d will permit comparison of any of the 3 combinations of 
school and child intervention (a,b,c) against the group that has 
neither(d). At the same time, it will permit marginal analysis of 
the effect of the school intervention (a+b vs c+d), and the 
marginal effect of the navigator intervention (a+c+e vs b+d+f). 
For each of the cells of interest, we collect baseline data on 

children and then follow schools and children over time. This design avoids contamination and 
interference through cluster randomization but benefits from added power of a longitudinal 
analysis. The factorial layout permits estimation (and testing) of interaction between the school and 

Table1  Child-level 
intervention 

  A+ A- 
School 
Level 

S+ a b 
S- c d 

 none e f 
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individual interventions. It also allows for use of data from children who are from nonparticipating 
schools.  
 
 
3 Randomization 
 
3.1 Randomization of Schools 
 
Schools were randomized in several waves to meet the evolving requirements of the study design. 
 
 
Randomization Wave 1 
 
For the cluster randomization of the 22 schools, we adopted the following approach. 
First, because two of the 22 schools were charter schools, we immediately paired them and 
randomly assigned one of the pair to the intervention and the other to control.  
 
Second, for the remaining 20 schools we implemented covariate constrained randomization to 
achieve balance on the three key covariates: enrollment size, facility index (%), and percent with 
attendance>- 95% of the time. These 3 covariates are all continuous. For that reason, conventional 
stratification becomes problematic because it requires categorizing these continuous factors.  
 
There is a fundamental contradiction between the realities of cluster randomized designs (few 
sites/clusters from which to sample) and the needs for balance in the resulting design (site pairings 
that lead to comparable groups of sites). For that reason, we used simulation methods as well 
described in the literature (Carter 2008; Nietert 2009; Ivers 2012; Moulton 2004; ) also as 
“restricted randomization” or “covariate balanced randomization”. This approach seeks to achieve 
balance for each of the specified characteristics of the clusters (schools).  
 
In each simulation we assigned the 20 schools at random into 2 groups. Then we tested the 
resulting groups for differences in group means of enrollment, facility score, and attendance. These 
were the pre-specified school characteristics needed to balance. We then compared these inter-
group differences in means to pre-set constraints. In our case we chose a mean difference constraint 
between schools groups of 10 students for enrollment, 3 for facility percent, and 3 for attendance 
percent. These constraints we regarded as narrow given the range of the distributions (See Table 
AX). With these constraints on means alone, however, we found in testing that the distributions 
could differ in range (and variance). For that reason, for both enrollment and for attendance, we 
added two more limits on the differences in ranges by school group: 50 for enrollment and 5 for 
attendance. Altogether, there were 5 constraints.  
 
In testing we found that the yield of balanced treatment allocations across schools was 3 in 1000. 
For that reason, we proceeded with 2000 simulations to be able to achieve at least one balance 
allocation of schools. From the resulting set of balanced allocations, we randomly selected one 
allocation of 20 schools into two groups.  
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We accomplished this simulation-based randomization with a custom-written program in Stata v 
15.1 after finding that published alternatives were too slow and insufficiently flexible for our dual 
task of achieving balanced means and ranges. The final version of randomization proceeded with a 
program seed to ensure reproducibility.  
 
Table AX1. School Characteristics for balancing. N=20 schools 
School  
Feature 

Mean  Median Min  Max 

Enrollment 463 487 242 644 
Attendance (% of students 95%+) 33 30 20 79 
Facility Condition Index % 38 39 <1 79 

 
Wave #2 Second Wave of Public Schools (November 2018) 
The second wave of public schools used the same approach as Wave #1. There were 8 public 
schools in this wave.  Using the same program and criteria as in the first wave, we used the same 
program (modified for only 8 schools) to arrive at 4 schools assigned to intervention and 4 assigned 
to controls.  
 
Wave #3 Charter School Randomization (February 2019) 
Owing to the small number of schools, the lack of data on facility condition, and the need to 
balance on several factors, we paired the 6 candidate schools and then when the pairs were formed, 
we randomized one school in each pair to intervention and the other to control. 
 
The primary criterion for pairing was % of days with 95% or greater attendance. That criterion led 
to the pairing of two of the 6 schools (high attendance). Of the four remaining schools, they were 
pair on the basis of facility condition and enrollment. Randomization assignment then was by pair. 
We generated 6 random numbers via a single program from a random uniform generator (using 
Stata v 15.1) and assigned in order two number to each of the 3 pairs. Once assigned number, each 
pair then had a school with a higher random number a school with a lower random number. The 
school with the higher random number became the intervention school in the pair. All decisions 
about pairing criteria and actual pairing based on those criteria were agreed upon at a meeting on 
02/21/2019.  Random numbers were generated on 02/22/2019.  
 
 
 
3.2 Randomization of children within Schools 
 
Randomization at the child level proceeded using randomly permuted blocks with vary block sizes, 
as implemented using the Stata program “ralloc” (Ryan 2000). This program used randomly 
permuted blocks with block sizes of 2 and 4. Randomization was stratified by school and by clinic 
within school. There were two waves of randomization. The first occurred with the first 
recruitment of schools and the second with the second wave of schools.  
 
 
 
3.3 Randomization of schools to implementation interviews 
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Of the 20 original public schools selected to participate – 18 school principals agreed to participate 
and two declined Overbrook Elementary and McMichael Elementary are both ineligible to 
participate in staff surveys. In addition, 3 charter schools were selected for convenience for 
preliminary work and test.  
 
Across the remaining schools, the goal was to select 2 more charter schools and 18 conventional 
public schools. To this end, we first assigned a random uniform (0,1) number to each school. Next, 
we ranked these random numbers within the charter schools and within the public schools. Third, 
we selected the 2 (charter) and the 18 schools (public) with the highest ranks (lowest rank 
numbers) for inclusion in the sample. This process was done by one of the statisticians, using a pre-
selected seed for the random number generator and with no contact with any of the schools nor any 
information about the schools other than their names.  
 
 
3.4 Allocation Concealment 
 
For the individual child level randomization, all randomization lists were generated by one of the 
statisticians and then delivered to the REDCap database designers. Upon each child recruitment, 
REDCap then produced the treatment assignment for the next child and for the school of the child’s 

attendance. All patients had to consent to the study (and sign consent forms) before the research 
coordinator could elicit from REDCap the treatment assignment for that child. By this method no 
one on the staff other than the database manager was aware of the next treatment assignment for 
the next child in the stratum of school*clinic.  
 
4 Data Collection and Management 

Data will be collected, accessed, and stored by the CHWs and study research team. Any paper 
forms will be stored in locked cabinets in the Community Asthma Prevention Program’s (CAPP) 

badge-only accessible suite. Data collected using REDCap is accessible only by the CHWs and 
research study staff. Designated school administrators (i.e., principal), the school nurse and the 
child’s primary care provider will only have access to participant health care information necessary 

to conduct asthma management in the schools and primary care office, but none of the research 
data collected by the CHWs and study staff. Information will be kept confidential under HIPPA 
guidelines and Institutional policies. Analysis will proceed on CHOP computers, either secure 
desktop machines or the CHOP virtual computing system based on VMWare, and all data will be 
stored on a CHOP server in directories created for this project. Access to each dataset with 
identifiers will be limited to the minimum necessary to accomplish the analytic tasks.  
 
 
 
5 Analysis – Primary 
 
 
5.1 Specific Aim 1. Compare the effectiveness of all combinations of clinic and school-
based interventions to improve asthma control and reduce symptom days.  
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We have selected a factorial design because of its enhanced statistical power and its ability to 
estimate contrasts of interest, even within the framework of a cluster randomized design. 
Chakraborty (2009). Collins (2014). The added complexity of a conventional within-school 
randomization (child-level intervention) crossed with cluster-randomization (school-level 
intervention) can be handled with the proposed model alternatives, each with a different set of 
assumptions, to demonstrate the robustness of the findings to model specification. (Peters 2003). 
Our statistical methods will also estimate variation across schools in the effect over time. 
(Fitzmaurice, Laird, & Ware, 2011; Gelman & Hill 2007; Hayes & Moulton, 2017).  

 
We propose and pre-specify three alternative approaches, each of which has been used in 
conventional cluster randomized design. Each approach has assumptions, strengths, and 
weaknesses. We intend to report the results of all three approaches, provided that models will 
converge to results, in order to assess robustness of findings to model choice. We do not consider 
use of the three approaches to be multiple comparisons. Rather, we consider the use of multiple 
approaches to assess this additional component of variability.  
 
5.1.1 Outcomes 
 
Outcome and their priority appear in Table 5.1.1 
 
Table 5.1.1 
 

Study Outcome- Listed 
in Order of Priority 

Measurement 
times 
(month) 0 

3 6 9 12 

Asthma 
(Asthma control 
questionnaire) 
PRIMARY 

X X X X X 

Asthma quality of life X    X 
Number of 
hospitalizations 

X    X 

Number of emergency 
department visits 

X    X 

On or off controller 
medication 

X    X 

Courses of oral steroids X    X 
Number of school 
absences 

X    X 

ICD-10 J45.XX 
Diagnosis-based 
encounters- to define 
relevant office, 
hospitalization, ED 
visits 

X    X 

 
School absences. Each child will have two semesters (one years) before and after the start of the 
intervention from which to calculate absences. Absenteeism data will ideally come from the 
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schools. If schools are unable to provide absenteeism data, self-reported data will be utilized. We 
propose to evaluate the reliability and completeness of school absences data before, and 
independently from, formal analysis of the association of this and other outcomes and treatment 
assignment.  
 
 
 
5.1.2 Measuring outcomes over time - irregular measurement times 
 
Longitudinal model 
 
Although the protocol calls for regular measurement times (Juniper’s Asthma Control 
Questionnaire is a validated survey and will be administered by the CHW at baseline, 3 months, 6 
months, 9 months and 12 months), in all likelihood these measurements will have the following 
characteristics. (1) They will not be administered at 3,6, 9 and 12 months. For some the schedule 
will lag. (2) Some children will miss one or more of these measurements.  
 
Although some RCTs assume that measurements occur at the protocol-defined time, even when 
they do not, there is no reason for, and we shall deliberately avoid, that ad hoc practice. 
 
We shall model the time of each measurement as the number of months (including factional 
amounts) from date of randomization.  Time we shall model flexibly with splines. [Here we can 
use cubic splines as needed). 
 
Choices for knots. We shall assume knots at time 3, 6 and 9 months, the intended dates of 
measurements.  
 
With time measured flexibly, and with a statistical model that includes time by treatment (4 level) 
interactions, the spline model will allow for estimate of differences (or ratios) of outcomes at any 
point along the time (x) axis by treatment group.  
 
 
Covariates -- selection and balancing 
 
In theory randomization at the child level should balance on observed and unobserved factors. 
With children spread over 36 schools, and with chance differences across school, imbalances in 
child characteristics are possible at the school level but are not likely at the treatment assignment 
level (the four cells a, b, c and d). In addition, dropout can undermine the balance achieved in 
theory and in practice by randomization.  
 
Key child-level covariates appear in Table 5.1.2. 
 
 
Table 5.1.2 Covariates – baseline descriptions  
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Child level factors 
Units of measurement or categories 

AGE 
Subgroups: 5-11; 12-13 
 

GENDER 
Male 
Female 

Body mass index 
 (weight in kg) 
 (height in cm) 
 

Collected and/or calculated by age-sex 
standardized percentile and/or z score. 
Both percentile and z will be used 
 

HOUSEHOLD CHARACTERISTICS (descriptive 
only) 

(1) Single Parent/Caregiver vs Multiple 
Caregivers  
(2) Number of Adults in household 
(3) Number of Children in Household 
 

Home environment 
Number of bedrooms  

Smoking 
Smokers or none in home 

Caregiver Education -- 
Highest level achieved by primary caregiver 

Less than HS 
HS+ 
Graduate Level 

Baseline Healthcare utilization  
 

Oral Steroid courses in the last year 
 
Use as continuous – But describe in categories 

None 
1 course 
2 courses 
3-5 courses 
>5 courses 

ED Visits in the last year 
 
Continuous – Describe in categories 

0, 1,2, 3+ 

Inpatient visits in the last year 
Continuous—Describe in categories 

0,1,2, 3+ 

 
 
Data on height and weight, and BMI, and BMIz, will be downloaded from EPIC.  BMI categories 
of interest are <85th percentile, 85th to 95th percentile, and 95% percentile or greater. Height is not 
done at each encounter. For that reason, height must be carried forward from the last available 
measurement time. This practice, though common, can result in a bias toward higher than actual 
BMI over time. Adjustments (e.g., interpolation) of height for measurement times between height 
measures is possible. If any interpolation of height, we shall do so without regard to measures of 
outcome.  
 
For that reason, we shall first examine balance across the 4 treatment groups in child-level 
characteristics. To that end, we shall use conventional balancing diagnostics, such as comparison of 
percentages of patients by categorical factors and by standardized differences for continuous 
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factors, and/or comparisons of distributions. All will be supplemented by graphical display. These 
diagnostics are programmed and explained in the R program “cobalt” (Greifer 2019).  
 
Treatment assignment model 
 
Covariates that do not demonstrate balance will be included in an initial multinomial logit model 
(with the 4 treatments as outcomes). Then using generalized propensity scores, we will develop 
inverse probability of treatment assignment weights. This approach will then result in estimates of 
average treatment effects in the response model. 
 
Response model—to estimate expected values over time 
 
The response model will be a weighted longitudinal model using splines for time and time by 
treatment interaction terms.  This model will result in the estimation of expected values at any 
given time post randomization for any of the four treatment categories.  
 

 
5.1.2 Patient-level analysis – mixed effects models 

 
First, linear mixed effects models with random intercepts and slopes for school, and fixed effects 
for the school-level intervention, time, and time-by-intervention interaction (the estimate of 
interest) will be applied. Likewise, the main effect for the child-level intervention and a 
time*intervention interaction term will be included in the model, and variation across multiple 
measurements on a child within a school will be accounted for by child-level random effects. This 
approach then becomes a three-level model with explicitly modeled random effects at the school 
and child levels. 

 
Synergy of the effect of the two interventions will be estimated by the 3-way interaction between 
time, the school-level intervention, and the child-level intervention along with all corresponding 
two-way interactions.  

 
Models will use numerical quadrature with least 12 quadrature points. Models with 16 quadrature 
points will be used to check sensitivity of results to numerical integration.  

 
This and other individual-patient-level methods can be more efficient (smaller confidence bounds) 
than cluster (school)-level models. (Hayes and Moulton, section 11.4.2)  

 
We shall exploit mixed effects models to estimate the degree of variation of effects across the 36 
schools, both the 18 intervention schools and the 18 control schools by estimating the random slope 
component of variance and asking whether the observed variation across schools is greater than 
that expected at random.  

 
5.1.3 Patient-level analysis – marginal models 
 
Second, marginal models using generalized estimating equations (Fitzmaurice 2011) will produce 
robust estimates that adjust for clustering at the school level. These methods tend to be robust for 
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non-continuous outcomes (non-identify link models) and those outcomes will likely apply to our 
outcomes of asthma control (possibly a log gamma model) and number of symptom days (possibly 
a log link Poisson or negative binomial model). In contrast to mixed effects models, marginal 
models do not rely on numerical integration. In addition to generalized estimating equations, quasi-
least squares regression (Shults and Hilbe, 2014) will also be implemented. Quasi-least squares 
regression is an approach for estimation of the correlation parameters that is in the framework of 
generalized estimating equations; it allows for application of correlation structures that were 
previously unavailable for generalized estimating equations and can sometimes be implemented 
when generalized estimating equations fails to converge.  

 
Marginal models tend to work poorly for designs with small numbers of clusters. In our case, the 
number of clusters (36) is relatively large. Nevertheless, we shall implement at least one method 
for adjusting for a number of clusters that is not large, as implemented in Stata’s program xtgeebcv 

program (Gallis 2019) and R’s program “saws” (Fay and Graubard 2001).  
 

5.1.4 School-level analysis -- randomization-test-based methods.  
 

Third, assumption-free, randomization-test-based (permutation test) methods that do not rely on 
assumptions of parametric models will also be applied. (Berger, 2000; Good, 2005; Small, 2008; 
Tang 2009; Rosenbaum 2002). (Also see Hayes and Moulton 2017)  

 
We will use conventional levels of statistical significance (p=0.05) for all pre-specified 
comparisons for these aims. We shall not apply Bonferroni corrections for estimates from different 
modeling methods that use the same specification.  

 
We shall report all results to confirm consistency of findings and their robustness to model 
specifications. Variability of the intervention effect across schools will reflect consistency of 
intervention effects and thus generalizability in new settings. Both mixed effects models and 
permutation-test methods (Lee 2012) will estimate variance components to support 
generalizability. This approach will also be used to account for change over time across schools, 
and to assess sustainability of the proposed interventions.  

 
 

5.2 Adjustments for sparse cells  
 
In the event that one or more schools fails to fill the cells a, b, c, d with at least one child, we shall 
make the following adjustments in the definition of strata (clusters). Any school that contains zero 
cells will be joined with the “nearest” school assigned to the same intervention group, where 

nearest is determined by the same school randomization factors. This pooling of schools will be 
done without knowledge of the outcomes. At that time, and for all analyses of child outcomes, the 
pooled schools will be treated as one for analysis. Implications for analysis of association of 
implementation and outcome will require discussion.  
 
If no children were recruited in any school, then that school will be dropped from the analysis.  
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If a school lacks a child in one of the two child-level randomization groups, then the school will be 
lumped with another school in the same treatment arm and in the same randomization stratum, or 
the closest stratum, and if there is more than one such school, then with the school that has the 
smallest number of recruited children.   
 
5.3 Missing data 
 
Missing data on covariates will be handled using formal multiple imputation as needed (Little 
2002; 1992; Molenberghs 2007). The proposed mixed effects models make limited assumptions of 
“missing at random” (MAR). To the extent that children are lost to follow-up, we shall include in 
our models covariates that are associated with the probability of dropout, to limit confounding by 
dropout. We anticipate no school withdrawals. The primary analysis will be “as randomized” (also 

called intention to treat). Reporting will follow the CONSORT guidelines for randomized studies 
and cluster randomized designs. (Altman 2012; Elbourne and Campbell 2001).  
 
 
5.4 Dropout and switching 
 
All analyses will follow the principles of “intention to treat” (as randomized) for both the school 

and child level randomizations (S+ vs S- and A+ vs A-). The following special rules apply for 
unusual situations. 
 
(1) Child dropout or loss to follow-up 
 
If a child leaves the study, his or her data will be captured and used until dropout. There will be no 
change in the A+ A- assignment. 
 
(2) Child remains in the study but leaves a named school 
 
If the child remains in the study but leaves a named school (cells a,b,c,d), she will be moved to the 
cells e or f as appropriate. This change in designation will not affect the contrast of A+ vs A- 
within a school designation. Data that accrues while the child is in cells a,b,c, or d will be linked to 
that school until the time of the switch for contrasts of S + vs S-.  
 
After a switch from a,b,c or d, to e or f, the child-level observation will apply to the e and f cells. 
 
(3) Child randomized while in e or f and moves into an enrolled school (cells a, b,c,d) then his or 
her follow-up is attributed to the e or f cell until the switch, and then to a,b,c or d cells thereafter. 
Both sets of longitudinal data can share the same baseline measures of outcome.  
 
If this switch occurs, the child will be recoded separately according to the “S” allocation.  
 
5.5 Original power estimates for planning purposes 
 
Power calculations are for planning purposes only. The following paragraph is historical 
information only.  
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The following description and table report power calculations as originally planned for the study 
design. Alternative power calculations for fewer patients appear later.  
 
All power estimates are based on custom programmed simulations. All power estimates represent 
changes over time in the primary outcomes (asthma control) in units of standard deviation of 
change. For translation into clinical terms, the minimally important difference (MID) for children 
on the Juniper’s Asthma Control Questionnaire is 0.5 standard deviation units, which equates to 0.4 

units on the questionnaire scale (for children ages 6 to 17 years). (Nguyen 2014). The power 
simulations assumed a modest degree of variation in outcomes across schools, which equates to 
clustering of children within schools. For an overall effect size of 0.5 standard deviation units, we 
assumed that individual schools would vary from no effect (0.0) to a large effect (1.0sd units). This 
degree of variation corresponds to a random cluster (school) effect of 0.025 sd units, and an 
intraclass correlation coefficient (ICC) of 0.06. With an average of 28 children per school, this 
variability equates to a design effect (variance inflation factor) of about 2.5. As the table shows, the 
contrasts for the navigator intervention are powerful to show even small effects, because they are 
within-cluster comparisons and therefore are influenced if at all only slightly by clustering of 
children within schools. Across school contrasts, of the effects of the school intervention, remain 
powerful for MID changes.  
 
Table Y. Power for contrasts of interest.  
Specific 
Aim 

Contrast Contrast 
(Table cell) 

Stipulated 
Effect size(sd) 

Estimated 
Power 

   A S A,S  
1a S+ v S- a,b vs c,d 0.5 0.5 0.1 0.90 
1a A+ v A- a,c vs b,d 0.25 0.25 0.1 0.95 
1b S+A+ v S-A+ a vs c 0.5 0.5 0.1 0.95 
1c S- A+ v S+A- b vs c 0.75 0.25 0.0 0.92 
1d S+A+ v S-A- a vs d 0.25 0.25 0.1 0.96 
 S- A+ v S-A- c vs d 0.35 0.5 0.0 0.90 
 S+A- v S-A- b vs d 0.5 0.5 0.1 0.90 
20% Subgroup      
2a S+ v S- a,b, vs c,d 0.5 0.6 0.1 0.83 
2a A+ v A- a,c vs b,d 0.5 0.6 0.1 0.88 
       

A=Navigator effect; S=School Effect; AS= interaction; “+” = , “-“ = control 
Cells e, f are not included in this table for simplicity and to be conservative. 
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6 Analysis of subgroups 
 
Specific Aim 2: Explore moderators and mechanisms of effectiveness of the asthma navigator 
and school-based asthma therapy interventions.  
 
6.1 Heterogeneity of treatment effect -- Effect modification (moderators) 
Effect modifiers are factors that reflect differences in the effect of the intervention across 
subgroups of children and/or schools. When taken together these child or school level factors can 
describe those children or schools that are predicted to do better or worse than the reference group 
of schools or children. “For a clinical trial that establishes treatment efficacy in its overall 

population, investigating consistency of treatment effects across subgroups is important for 
interpreting the efficacy findings and consequently for determining the appropriate population for 
treatment use.” (Alosh 2017) Effect modification is to be distinguished from program interaction, 
which in this factorial-design trial will estimate the degree to which the combination of child and 
school level interventions achieves synergy (or antagonism).  

 

As subgroup analysis is fraught with problems of multiple comparisons, we shall adhere to the 
following principles for analysis and reporting: pre-specification of subgroups of interest, focus on 
subgroups that are clinically important as suggested by prior research, and attention to 
considerations of statistical power for identifying subgroups.  

 

6.1.1 School level characteristics 

 

School characteristics appear in Table 6.1a. Because the number of factors when cross classified is 
large (3*3*4=36) relative to the total number of schools in the sample, effect modification by 
school will be based on post-hoc ordering of schools by their predicted level of improvement, 
standardized by child characteristics. With mixed effects models that include random intercepts 
and slopes for school, we propose to order each school in the intervention group by its “prediction” 

(the combination of expected value and random effects) at both baseline and at month 12. This 
ordering will (a) account for measurement error in the outcome of interest (the main outcome is 
asthma control), (b) adjust estimates by the number of observations at the child level over time, and 
(c) permit consideration of both the level at baseline and the trend over time of the degree of 
asthma control. By contrasting for each school the change over time in predicted asthma control 
levels for children enrolled in the study from that school, we can identify the schools with the most 
improvement and the least improvement. A description of the characteristics of the high (and low) 
performing schools will then support conclusion (and generate hypotheses) about school-level 
factors related to the success (or failure) of the intervention.  
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Table 6.1a 
School Subgroups  

 as candidate effect modifiers HYPOTHESIS 

 (1) FCI,  
(2) school absenteeism rate,  
(3) poverty level 

Children going to schools with poorer FCI, higher school absenteeism 
rate and greater # of households living below poverty level will 
demonstrate the least amount of improvement with school intervention 

(1) Climate,  
(2) leadership,  
(3) positive attitudes 

Schools will improve more from the intervention if at baseline they have 
more positive climate, stronger implementation leadership, and more 
positive attitudes towards evidence-based practice.  
 

(1) Charter vs Non-charter 
(2) < 500 students vs > 500 students 
(3) Facility score Index 
(4) Census tract 

H1: students who attend charter schools will achieve greater reduction of 
missed school days during the intervention  
H2: schools with lower FCI’s will have more asthma triggers which will 

lead reduced improvement in missed school days 
H3: improvement in school absences from the intervention will differ 
based on census tract of school (effect modification by census tract) 
 

 

Descriptive analysis of schools: 

 
Charter school performance remains of special interest. For other school characteristics, we will 
look at the schools in order of their performance and then describe any differences. Owing to the 
small number of children in some of the schools, the relatively small number of schools relative to 
the number of school characteristics of interest, this exercise in looking for effect modification by 
school must inevitably be entirely exploratory and descriptive.  

 

Statistical analysis of effect modification by charter school status.  

 

Nevertheless, the number of children recruited from charter schools as of 12/2019 has been 
substantial. For that reason, we shall revisit the feasibility of comparing charter vs non-charter 
schools formally once total counts of evaluable schools and children are complete. Decisions about 
feasibility will be made before considering outcomes. (12/21/2019) 

 

6.1.2 Patient level subgroups 

Owing to the number of children in the study, subgroups defined by child-level factors will have 
large sample sizes and more power to identify and estimate subgroups and treatment effects within 
those subgroups using statistical approaches. However, there are far too many patient-level factors 
to treat as levels to create subgroups. For that reason, we shall implement latent class analysis to 
group children into subclasses.  
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Table 6.1b. Child-level factors for identifying subgroups for exploring heterogeneity of treatment 
effects 
[These will be reduced to a small set of groups using latent class models.] 
 

Child-level variables 
that reflect 
subgroups 
 

Groups Alternative HYPOTHESIS CRF AND 
REFERENCES 

Child    

AGE Subgroups: 5-11; 12-13 
 

H1: Younger children will have 
better asthma control 
improvement from the 
interventions than older children. 

 

Sex Male 
Female 

 
H1: Sex will not affect 
improvement from the 
intervention.  
(dropped this Nov 2019) 

 

BASELINE 
ASTHMA 
CONTROL 

Well-controlled 
Not well controlled 

H1: patients with poor control at 
baseline will have more improved 
asthma control at 12 months as 
compared to patients who are 
well-controlled. 

 

ED visits (prior year 
at baseline) 0,1, 2 3+   

Inpatient visits (prior 
year at baseline) 0,1,2,3+   

Oral steroids 
COURSES IN PAST 
YEAR (at baseline) 

0,1,2, 
3-5, 6+ 
 

H1: patients with more than 3 
prednisone in the previous year 
will have better response to the 
intervention for asthma control at 
12 months. 
 
 
 

 

Home and caregivers    

HOUSEHOLD 
CHARACTERISTICS 

(1) Single 
Parent/Caregiver 
vs Multiple 
Caregivers 

(2) Rent vs. Own  

 

 
 
 

 

Primary Caregiver- 
HIGHEST LEVEL 
achieved 

Less than HS 
HS+ 
Graduate Level 

H1: children of primary caregiver 
with less education will have 
poorer improvement asthma 
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control than those with more 
education 
 
 

Triggers at home    

TRIGGER 
EXPOSURES AT 
HOME 

0 exposures 
1, 2, 3+ exposures 
 

H1: Children with 3+ asthma 
triggers in their bedroom at 
baseline will be less susceptible 
to improvement over time from 
the intervention.  
 

 

HOME OWNERSHIP 
STATUS 

Own  
Rent 

H1: There will be a difference in 
reduction of asthma triggers from 
the intervention by the status of 
home ownership 

 

Neighborhood and 
environment    

NEIGHBORHOOD 
CHARACTERISTICS 

L & I violations 
 
Childhood Opportunity 
Index 

H1: children who live in 
neighborhoods with higher L& I 
violations will have more 
symptoms and will improve less 
from the intervention. 
H2: children who live in 
neighborhoods with lower 
opportunities will have fewer 
reductions from the intervention 
of missed school days and 
symptoms 
 
 
 
 
 

 

 
 
6.1.2.1 Record linkage for patient’s home address and ADI 12-digit FIPS code 
 
Effective Spring 2020, CHOP EPIC system will geocode all patient’s addresses into 12-digit FIPS 
codes. These codes will be downloaded from EPIC for each patient for the patient’s address at the 

time of enrollment. Following changes in address will be too complex, and for that reason the 
address at the time of enrollment will be used. Record linkage with the ADI will proceed based on 
the 12-digit FIPS codes in EPIC and the ADI database.  
 
Using this information, we will use the ADI index as a proxy for the neighborhood characteristics 
listed in Table 6.1b.  
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Patient utilization at baseline: Value in looking at by severity of exacerbation as the relevant 
outcome that is subject to modification. Whether to hospitalize a patient or to go to the emergency 
department are often judgment calls and therefore might be vary with the same level of 
exacerbation. Nevertheless, although baseline utilization might modify the effect of the 
intervention, the direction of that modification is uncertain. This analysis is therefore hypothesis 
generating.  
 
We will reserve looking at outcomes until we have settled on candidate effect modifiers and using 
(or developing) indexes or summary measures.  
 
We shall investigate treatment effect heterogeneity by using carefully pre-specified factors 
measured at baseline. Post baseline factors that might affect outcomes will fall under the topic of 
“mediation” (see below) and will be handled differently.  

Because these key potential effect modifiers vary within the unit of randomization (school), these 
contrasts are essentially within-cluster comparisons with good statistical power (see below). Effect 
modification (moderation) can be estimated using the mixed effects and longitudinal models 
outlined previously without additional complexity. In all cases, effect modifiers (moderators) will 
be specified before the start of analysis to address concerns about multiple comparisons.  

As of this writing, guidelines remain for publication on proper characterization of subgroups and 
the analysis of effects by subgroup. In brief, the following principles apply.  

 

6.1.2.2 Estimating effect modification – scale dependency of interactions 
Models for outcomes might be both additive (for asthma control) and multiplicative, as for use of 
log link generalized linear models. The contrasts of interest for permutation-test-based methods 
might also be additive (differences across the four treatment groups of differences in expected 
values over time).  

 

Interaction (and effect modification) are scale dependent. A multiplicative model (log link) that has 
no interaction can give use to results that show effect modification on the additive scale. For that 
reason, we define “effect modification” to be on the additive scale for the key endpoints of change 

in asthma control scores and number of days of symptoms. 

Estimation will follow the same principles and procedures as for the main analysis. Longitudinal 
data analysis models with splines for time will allow for estimation of expected values at time of 
randomization and at any time post randomization. For a single subgroup, the effect of the 
intervention (4 levels) can be compared by estimating eight expected values: four at time 0 and 
four at the endpoint time of interest. Contrasts across levels of the intervention and over time are 
estimated by subtraction.  

 

6.1.3 Estimating confidence bounds for subgroups of interest 
For ease in implementation and clarity of reporting, all confidence intervals will be estimated by 
bootstrap resampling (at the level of the school), stratified by school level treatment to maintain 
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constant the number of schools in each treatment category (eighteen).  Resampling for longitudinal 
models will be done with 399 or 999 (if computational limits allow) samples to estimate percentile 
confidence bounds. (The 399th and 999th order statistics correspond to the 2.5th and 97.5th percentile 
bounds that form a 95% confidence interval). School level resampling will preserve the clustering 
and avoid overstating statistical significance.  

 

For estimating confidence bounds to compare two subgroups will require a minimum of 16 
expected values: four at time 0 and four at the endpoint time of interest for each of two subgroups.  

 

6.1.4 Data reduction through use of latent class methods 
Each of the patient level factors can be combined into latent classes to arrive at a tractable number 
of levels for use in estimating heterogeneity of treatment effect. (Lanza 2013).  

Examples appear in Zhang (2018) on defining subgroups with different clinical outcomes.   

 

6.1.5 Statistical software considerations 
 
Methods for longitudinal analysis apply equally well to comparison of subgroups and to assess 
heterogeneity of treatment effects. Latent class analysis is available in SAS and more recently in 
Stata v15 et seq in “gsem”, a program that will allow for different types of variables using to create 

latent classes. Python may also be used in sensitivity or primary analyses (Couronne, Vidailhet, 
Corvol et al. 2019). 

 
 
6.1.6 Statistical Power for effect modification: 
 
Owing to the absence of software for testing interaction effects, these estimates are based on our 
simulations conducted during the study design phase using Stata v 14.1. For a subgroup as small as 
20% of the expected students (n=600) or 120 children, our design has 88% power to detect the 
effect of the navigator and 83% power to detect the effect of school for effect sizes of 0.5 for 
navigator, 0.6 for school, and a small interaction of 0.1.  
 
This preliminary estimate does not anticipate issue of multiple comparisons. To the extent that the 
study reports differences in outcomes by baseline groups, simple Bonferroni corrections will apply. 
 
6.2 Mediators and mechanisms -- Specific Aim 2b  
Specific Aim 2b. We will investigate mechanisms- linkage of communications between all sectors, 
environmental (school and home) remediation steps, daily participation in SBAT, care coordination 
contacts achieved, correct MDI technique.  A schematic of the mechanisms appears in Figure 6a 

Figure 6a. Conceptual Framework 
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The intervention will in theory improve school, primary care provider, and home targets via the 
mechanisms: PFT, exposure to triggers, adherence to medications, self-management knowledge, 
and connection to resources.  
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6.2.1 Goals of mediation analysis 
 

Mediation analysis can help to understand the etiology and mechanisms of change that give rise to 
the observed improvements from the intervention. It can also support measurement of direct effects 
of the intervention (on outcome without having an effect on the mediator) and indirect effects of the 
intervention (which produce outcomes through the mediating factor). (MacKinnon 2007)             A 
key constraint for longitudinal designs is that candidate “mediators” should follow the sequence in 

time of exposure→mediator→outcome. If a candidate “mediator” occurs or could occur after the 

measured outcome, we will not consider that candidate. If the candidate mediator occurs 
contemporaneously with the outcome, and if its measurement is of interest, we shall consider it as 
“surrogate outcome”.  

 

6.2.2 School-level factors 

The Consolidated Framework for Implementation Research (CFIR) 

CFIR is an effort to synthesize the frameworks in implementation science. The five major domains 
that comprise the CFIR include:  

(1) intervention characteristics (i.e., the features of an intervention such as School Based Asthma 
Therapy; SBAT);  

(2) outer setting (i.e., the economic, political, and social context within which a school exists);  

(3) inner setting (i.e., the organizational setting - school);  

(4) characteristics of individuals involved in implementation (e.g., nurses, teachers); and  

(5) the implementation process. In our specific example, at the nurse level, low self-efficacy or lack 
of knowledge about best practices for managing asthma in schools may contribute to low 
implementation of best practices. At the inner setting, challenges regarding availability of resources 
(e.g., forms related to asthma treatment, asthma medication) and organizational support (e.g., 
support from front-desk staff and management) may be present. Outer setting barriers may include 
lack of uniform policies to support implementation. Intervention characteristics such as ease of use 
are also relevant 
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6.2.3 Candidate mediation measures  
 
 
Table 6.2.3 
 

Mediating Factors HYPOTHESES 
Associated Variables and 

Instruments for Mediating Factors 

Patient-level factors  
 

SELF-
MANAGEMENT 
KNOWLEDGE 

H1: The intervention will lead to 
improved caregiver self-management, 
which in turn will lead to improved 
child outcomes.  

Asthma Knowledge Quiz Score (pre- 
and post-intervention) 

                    SELF-
EFFICACY 

H1: The intervention will increase 
caregivers’ self-efficacy, which will 
then lead to better child outcomes  

Child Risk Assessment Tool 

ADHERENCE 

H1: The intervention will lead to 
greater chances of a child’s receiving 

controller medications at least 80% of 
school days, which in turn will lead to 
better outcomes 

SBAT Weekly Progress Form 

CONNECTION TO 
RESOURCES 

H1: The intervention will lead to more 
families making connections with 
resources, which in turn will le      d to 
better outcomes.  

Baseline Visit Checklist; Home Visit 
Follow-Up Checklist; Follow-Up Visit 
Checklist 3, 6, Months; 12-Month 
Follow-Up Checklist 

  
 

Asthma TRIGGERS 

H1: The intervention will reduce the 
number of triggers in childrens’ 

bedrooms, leading to improved child 
outcomes  

Initial Home Environmental 
Assessment; Follow-Up Home 
Environmental Assessment 

Pulmonary Function 
Tests (PFTs) 

H1: Children in the A+S+ will have 
improved PFT’s, which will lead to 

better child outcomes. 

Measured by spirometry every 3 
months. 

CARE 
COORDINATION 
GOALS 

H1: The intervention will lead to more 
families who reach 80% care 
coordination goals, which will lead to 
better child outcomes.  

Caregiver Goal Tracking Tool 
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Mediating factors,  

continued) 
HYPOTHESES 

Associated levels for Mediating 
factors 

School level factors  
 

IMPROVED 
KNOWLEDGE 

The school intervention will lead to 
improved knowledge of FOR 
SCHOOL STAFF (SCHOOL 
ADMINISTRATION 
EDUCATION) AND STUDENTS 
(OPEN AIRWAYS), and then to 
better child outcomes. 

Asthma 101 pre- and post-test 
scores 
OAS pre- and post-test scores 

ADHERENCE  

The school intervention will 
improve the quality of School Based 
Asthma Therapy, and in turn to 
better child outcomes.  

Number of days school open 

COMPLETED MED1 
FORMS 

The school intervention will lead to 
more ACCURATE 
PRESCRIPTIONS IN SCHOOL 
and in turn to better outcomes. 

School Nurse Baseline Checklist; 
School Nurse Follow-Up Checklist 

IMPROVED 
PRIMARY CARE-
SCHOOL 
COMMUNICATION 

The school intervention will lead to 
improve communication between 
school and primary care clinicians 
(HOW MEASURED?) and then to 
better child outcomes.  

School Nurse Baseline Checklist; 
School Nurse Follow-Up Checklist 

 
6.2.4 Mediation models 
 

This aim explores potential mediating variables (M) on the effect of the intervention (A=navigator; 
S=School) on student/patient outcomes (Y) with a goal of understanding which components of the 
intervention, and one or more dimensions of the intervention, proves to be ineffective, then the 
mediation can help to identify the reasons. Mediation analysis requires many and much stronger 
assumptions. We shall follow the counterfactual approach (Valeri 2013) to mediation to take 
advantage of recent statistical developments in causal inference (Lynch 2008; MacKinnon 2007; 
Bind 2016; Ten Have and Joffe 2012; Imai Keele and Tingley 2010; Preacher 2015; VanderWeele 
2015; VanderWeele 2016). Because children are not randomized to levels of M, and to avoid the 
resulting potential bias, we will adopt two approaches: (1) Marginal structural models, in which 
mediator variables are modeled as functions of baseline covariates, have been developed for 
parametric estimation of direct and indirect effects without the severe assumptions of prior 
methods (Preacher 2011; Petersen 2006; Sobel 2008; VanderWeele 2009); (2) Simulation-based 
methods (Imai 2010) offer practical alternatives. These methods apply to clustered designs as well 
as traditional randomized designs (Stapleton, 2015; Ten Have, 2004; VanderWeele 2010). Using 
the nomenclature of recent reviews, the school intervention of our factorial design is 2-1-1, in 
which the intervention applies at level 2 (schools) and mediators and outcomes are measured at 
level 1 (child; Talloen 2016). Using these methods, we can decompose total intervention effect into 
the two components: natural direct effect (NDE= the effect of the intervention on child outcomes 
not mediated), and the natural indirect effect (NIE= the component of the intervention that seems to 
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proceed through the measured mechanisms). As such, Total effect = NDE+ NIE (Peterson 2006; 
VanderWeele 2015). Within this framework, we can also estimate effects of multiple correlated 
mediators ((VanderWeele and Vansteelandt 2014) 

 

6.2.5 Assumptions behind mediation models 
 

Six assumptions must be satisfied for causal inferences for mediation and unbiased 
estimation of direct and indirect effects: (1) no A→Y and (2) no A→M confounding. These two 
assumptions will be met via design (randomization) and careful control of child-level covariates. 
Additional assumptions include: (3) no M→ Y confounding, and (4) no M→Y confounder that is 
affected by A (exposure). Although these last two assumptions are not required for estimates of 
overall effects of the intervention (A→ Y), they are essential for estimating direct/indirect effects 
even with randomized A and S. For that reason, our design will collect data on possible 
confounders: grade level, child gender, and comorbidities  

Two additional assumptions are noninterference at both the individual and school levels 
(also called no spillover effects). To limit noninterference at the school level (assumption 5: 
intervention at one school cannot influence the outcome at another (Sobel 2006)), we shall instruct 
each school to work alone and not to contact or share ideas with other schools. Noninterference at 
the child level (assumption 6) will require that children not share with each other their interactions 
with and information from navigators to lead to interference in the M→ Y relationship. Thus, we 
anticipate good compliance with key assumptions for unbiased mediation analysis.  

 
6.2.6 Sensitivity analyses  
 
 Sensitivity analyses are absolutely essential for mediation analysis to assess the possible 
effects of confounding and interference. (1) For estimating the A→Y intervention effect, we shall 
use simulations to estimate how influential a confounder would need to be to produce a true A→Y 
association of zero, or to lead to a confidence interval that includes the null (non-significant result). 
(2) To examine sensitivity to violations of assumptions #3, #4 (no M→Y confounding) we shall 
assess how strong an unobserved confounder (or confounders) would need to be in order to: (a) 
eliminate (reduce to zero) the estimate for a direct effect, and (b) render non-significant that 
estimate. Methods are described by Imai (Statistical Sci 2010), VanderWeele (2016), VanderWeele 
(2015) and Ding (2016a; 2016b). Our team of investigators will continuously monitor emerging 
statistical methodological on mediation in complex randomized designs.  

 

6.2.7 Statistical software 
 

Statistical software for mediation continues to develop. Standard packages for both estimation and 
for sensitivity analyses are now available in Stata v 14.1 (Hicks 2011) and R (Tingley 2015; 2014) 
for the implementation of the methods of Imai (2010). Extensive macros in SAS for parametric 
methods are implemented by Ding and VanderWeele (2016). Stata’s “gformula” package also 
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estimates natural direct and indirect effects (Daniel 2011) via simulations and this approach 
continues to find applications for mediation analysis (Wang 2015). The R package program 
‘medflex’ supports mediation analysis to estimate natural effects. (Steen 2015)  

  To determine whether implementation fidelity and participant engagement are associated 
with outcomes, we propose to describe the impact of these factors on the outcomes in the 
intervention schools, with special attention to variation in outcomes across schools. These 
associations will not benefit from randomization (fidelity and engagement are post randomization 
interim process endpoints). For that reason, our assessments will be largely descriptive and 
qualitative, and will include follow-up contacts with the schools where school-level outcomes do 
not coincide with measured fidelity and engagement.  

 

6.2.8 Qualitative methods for mediation 

 
 Our Implementation Aim specifies: Specific Aim 3: Use mixed methods to explore 
implementation determinants and outcomes in the school intervention that promote effectiveness, 
fidelity and sustainability. We use the CFIR to guide our implementation determinants of interest 
which we are measuring both quantitatively and qualitatively. With regard to quantitative 
measurement, we are collecting school climate, leadership, and attitudes towards SBAT which are 
all determinants within the CFIR framework during implementation and sustainment. We also used 
the CFIR to inform our interview guides in querying around barriers and facilitators to 
implementation.  
 
 
6.3 Statistical power for mediation analysis 
 
The original study design included the following power calculations: 
 

For this Aim, we rely on two programs contributed to the R statistical package. We again assumed 
600 evaluable patients across 23 schools, and a design effect of about 2.5. In brief, David Kenny’s 

program “PowMedR” (Kenny 2014) suggests that power is adequate to detect an effect size (in 
terms of standard deviations) of 0.25 sd for both the effect of the navigator intervention (A) on the 
mediator (M) and the effect of M given A on Y (conditional effect of M on outcome). Likewise, for 
the effects of school (S), with a design effect (variance inflation) of 2.5 (see estimate above based 
on ICC), power remains adequate for detecting an effect size of 0.5, which is the minimal 
important difference for asthma control For confirmation, the R package “medssp” (VIttinghoff 

2015) suggests adequate power (greater than 0.8) to detect effect sizes of 0.25 jointly and 
separately for both the association of A (navigator) and M (effect of intervention M) and the effect 
of M on Y, and to detect effect sizes of 0.6 for the association of S (school based intervention) and 
M, the difference owing to the large design effect (variance inflation) arising from the clustered 
randomization of schools.  
 
These calculations do not consider the impact of multiple comparisons and the change in the 
critical alpha level for these estimates. Power will quickly degrade with more than a few candidate 
mediators (updated 07/16/2019) 
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7. Analysis for implementation  
 
See Penn IRB. (IRP PROTOCOL#: 830021. Adoption and Implementation of West Philadelphia 
Asthma Care Implementation Plan) 
 
 
8. Power Calculations - revised 04/2019 
 
Primary outcomes 
 
Initial designs included formal statistical power calculations. Based on initial recruitment rates, the 
initial power calculation (for design and planning purposes) has been replaced by the following 
update (dtd 04/14/2019). Power calculations were done for planning purposes only, and they are 
here for historical record keeping purposes only. They are not appropriate once the study has been 
done. What happens if the number of children to be recruited falls below originally planned?   
.  

The proposed design results in 6 groups of children. The cells 
a,b,c,d will permit comparison of any of the 3 combinations of 
school (S+) and child (A+) interventions (a,b,c) against the 
group that has neither(d). At the same time, it will permit 
marginal analysis of the effect of the school intervention (a+b 
vs c+d), and the marginal effect of the navigator intervention 
(a+c+e vs b+d+f).  
 

For each of the cells of interest, we collect baseline data on children and then follow schools and 
children over time. This design avoids contamination and interference through cluster 
randomization, but benefits from added power of a longitudinal analysis. The factorial layout 
permits estimation (and testing) of interaction between the school and individual interventions. It 
also allows for use of data from children who are from nonparticipating schools.  
 
This report focuses on the project power of a somewhat lower number of recruits in the 4 cells: 
a,b,c, and d, with a current projection of about 100 per cell (children) as contrasted with the prior 
expectations of 150 per cell . The design has also changed in that we now have more sites 
(expected 36 sites, with 18 in S+ and 18 in S-, the school-level intervention and controls.  
 
As before, we could not rely on commercial power programs because of the complexity of the 
design – a convention randomization scheme crossed with a cluster randomized trial (school 
intervention). For that reason, we again report the results of simulation of the expected power given 
a stipulated "effect size" for the treatments (A+ and S+) at the child and school levels. 
 
Another reason for the simulations is that we are interested in particular contrasts of interest in the 
effects of S+ and A+ 
 
Reviewing the prior assumptions from 2016 design. 
 

Factorial 
design 
 

 Child-level 
Intervention 

  A+ A- 
School 
Level 

S+ a b 
S- c d 

 none e f 
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Earlier power calcs were done by ARL by simulation, which posed a 2 by 2 factorial design with 
A=patient level and S=school level intervention. Estimates assumed a continuous outcome (such as 
asthma control) and improvement over time (to simplify the longitudinal data design). 
 
We assumed factorial terms of A and S main effects and A*S interaction. 
The main effects of A and S take into account that any interaction will affect the main effects. If 
the interaction is synergistic, then the “main effects” will be larger than just the A term or the S 

term alone.  Main effects in this context are the marginal effects (of A and S), and these marginal 
effects are larger if there is a synergistic interaction (if the interaction is negative, then of course, 
the marginal effects are smaller). 
 
We assume a design effect for the S+ S- effect (cluster randomized, and now 36 clusters (18+ 18)). 
If we assume effect size variation across sites (schools) of 0.0 to 0.5, then sd of random intercept is 
about 0.125. That would mean that if sigmasq= 1.0, then sigmasq(b) = 0.125*0.125. =0.016. If we 
assume that the variation in effect size is broader (0 to 1.0), then sd= 0.25 and sigmasq(b) = 0.25* 
0.25 = 0.0625. We used this broader assumption. Then ICC = 0.0625/(1.0625) = 0.06 and DEFF= 
1+0.06*11 (assuming cluster size = 12) = 1+0.66= 1.66.  
 
 
Plan is as follows. 
 
Using program from Oct 2016, recreate power with 36 sites and 12 patients per site (n=432 
overall). Results appear in the Table below.  
 
 
Power for contrasts of interest. Effect sizes are in terms of Cohen's d nomenclature and represents 
the fraction of standard deviations of change over time.  
Contrast Contrast 

(Table cell) 
Stipulated 
Effect size(sd) 

Power 
(n=600) 

Power 
(n=432) 

  A S A,S   
S+ v S- a,b vs c,d 0.35 0.5 0.0 0.96 0.97 
A+ v A- a,c vs b,d 0.35 0.5 0.0 0.99 0.95 
S+A+ v S-A+ a vs c 0.35 0.5 0.0 0.89 0.88 
S+A+ v S+A- a vs b 0.35 0.5 0.0 0.87 0.75 
S- A+ v S-A- c vs d 0.35 0.5 0.0 0.85 0.71 
S+,A- v S-A- b vs d 0.35 0.5 0.0 0.89 0.83 
       
  A S A,S   
S+ v S- a,b vs c,d 0.35 0.5 0.25 0.99 0.99 
A+ v A- a,c vs b,d 0.35 0.5 0.25 0.99 0.99 
S+A+ v S-A+ a vs c 0.35 0.5 0.25 0.99 0.99 
S+A+ v S+A- a vs b 0.35 0.5 0.25 0.99 0.99 
S- A+ v S-A- c vs d 0.35 0.5 0.25 0.85 0.71 
S+,A- v S-A- b vs d 0.35 0.5 0.25 0.89 0.83 
       

A=Navigator effect; S=School Effect; AS= interaction; “+” = , “-“ = control 
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Cells e, f are not included in this table for simplicity and to be conservative. 
 
Power to detect main effects 
 
Power remains at acceptable levels for estimating the main effects and for some of the contrasts. 
Power is reduced, as one would expect, for contrasts that depend on the number of children 
enrolled. Power is not changed for the contrasts of the school effect, likely because of the increase 
in the number of schools enrolled and randomized. If there is an interaction (synergy) of School 
and Child interventions, power to show main effects (school or child interventions) will increase as 
will power in which the S+A+ cell is one of the contrasted cells.  
 
Power to detect school*clinical synergy 
 
Power is diminished and does not approach conventional levels to demonstrate an interaction (a 
formal statistical tests of synergy) of school and child interventions, unless the synergy is 
substantial (not show), but that contrast might not be of clinical interest.   
 
Sparse data considerations.  
 
In addition, power will be reduced if some schools enroll insufficient children to be able to make a 
contrast within school over time or across child treatment groups, or if a school enrolls no one. 
 
 
9. Ancillary and unresolved issues  
 
Our overall goal is estimation of the effects of the intervention, and the quantification of mediation, 
where applicable.  To address conventional requests for tests of statistical significance, we will 
need to plan for statistical testing.  
 
9.1 Multiple comparisons  
 
 Adjustments in critical levels for determining “statistical significance” when requested will 

follow these principles. 
 
 (a) If the contrast of interest is a primary or secondary outcome and pre-specified as 
such, we will make no adjustment 
 
 (b) All ad hoc, post SAP analyses and contrasts will be exploratory and hypothesis 
generating. 
 
 (c) All analyses for effect modification and mediation will consider the number of 
comparisons and make adjustments using simple Bonferroni correction for critical p-values.  
 
9.2 Statistical power 
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It is very likely that all attempts to demonstrate heterogeneity of treatment effect and/or mediation 
will fail owing to inadequate numbers of patients spread over a large number of schools.  
 
10. Update to Data Analysis Plan: Impact of Pandemic Restrictions. Presented to and approved by 
Data Safety Monitoring Board (DSMB) on 6/29/2021: 
 
The original statistical analysis plan (SAP) includes the fitting of longitudinal models to evaluate 
the impact of study interventions on primary and secondary outcomes in models that model time as 
months from randomization, with splines (knots at 0, 3, 6, 9 and 12 months) and time by treatment 
interaction terms. Mixed-effects and population-averaged (GEE) models will be fitted. 
 
The initial analyses will be conducted as planned. Sensitivity analyses will then be performed to 
evaluate the impact of pandemic restrictions (pre and post*, where *Post = Time Period after March 
14, 2020). 
 
Longitudinal models for the main analyses will be modified to include an indicator variable for 
post COVID-19 phase* with time by post Covid-19 interaction and time by post COVID-19 by 
intervention interaction terms. In these models, post Covid-19 phase will be included as a time 
varying covariate within individuals. 
 
Post pandemic restrictions by time by intervention interaction terms: If significant, the impact 
of an intervention at a particular time point (e.g., at 3 months post-randomization) depends on post 
pandemic status (relative to pre). 
Post pandemic restrictions by time terms: If significant, the expected value of the outcome at a 
particular time point depends on post pandemic status (relative to pre). 
 
Post pandemic restrictions indicator variable: If significant, the expected value of the outcome 
variables depends on post pandemic status (relative to pre). 
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Appendix: CONSORT Checklist for cluster randomized studies 
 
The following two tables include items for reporting results from cluster randomized trials. With 
any update in the CONSORT checklist, this SAP will be amended.  
 
Table 1: CONSORT 2010 checklist of information to include when reporting a cluster 

randomized trial  
Section/Topic Item 

No 
Standard Checklist item Extension for cluster 

designs 
Page 
No * 

Title and abstract   
1a Identification as a randomised 

trial in the title 
Identification as a cluster 
randomised trial in the title 

 

1b Structured summary of trial 
design, methods, results, and 
conclusions (for specific 
guidance see CONSORT for 
abstracts)i,ii 

See table 2  

Introduction  
Background and 
objectives 

2a Scientific background and 
explanation of rationale 

Rationale for using a cluster design  

2b Specific objectives or 
hypotheses 

Whether objectives pertain to the 
cluster level, the individual 
participant level or both 

 

Methods  
Trial design 3a Description of trial design 

(such as parallel, factorial) 
including allocation ratio 

Definition of cluster and description 
of how the design features apply to 
the clusters 

 

3b Important changes to methods 
after trial commencement 
(such as eligibility criteria), 
with reasons 

 
 

Participants 4a Eligibility criteria for 
participants 

Eligibility criteria for clusters   

4b Settings and locations where 
the data were collected 

 
 

Interventions 5 The interventions for each 
group with sufficient details to 
allow replication, including 
how and when they were 
actually administered 

Whether interventions pertain to the 
cluster level, the individual 
participant level or both 

 

Outcomes 6a Completely defined pre-
specified primary and 
secondary outcome measures, 
including how and when they 
were assessed 

Whether outcome measures pertain 
to the cluster level, the individual 
participant level or both 

 

6b Any changes to trial outcomes 
after the trial commenced, 
with reasons 

 
 

Sample size 7a How sample size was 
determined 

Method of calculation, number of 
clusters(s) (and whether equal or 
unequal cluster sizes are assumed), 
cluster size, a coefficient of 
intracluster correlation (ICC or k), 
and an indication of its uncertainty 
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7b When applicable, explanation 
of any interim analyses and 
stopping guidelines 

 
 

Randomisation:  
 Sequence 
generation 

8a Method used to generate the 
random allocation sequence 

 
 

8b Type of randomisation; details 
of any restriction (such as 
blocking and block size) 

Details of stratification or matching 
if used 

 

 Allocation 
concealment 
mechanism 

9 Mechanism used to implement 
the random allocation 
sequence (such as sequentially 
numbered containers), 
describing any steps taken to 
conceal the sequence until 
interventions were assigned 

Specification that allocation was 
based on clusters rather than 
individuals and whether allocation 
concealment (if any) was at the 
cluster level, the individual 
participant level or both 

 

 Implementation  10 Who generated the random 
allocation sequence, who 
enrolled participants, and who 
assigned participants to 
interventions 

Replace by 10a, 10b and 10c  

 
10a 

 
Who generated the random 
allocation sequence, who enrolled 
clusters, and who assigned clusters 
to interventions 
 

 

 
10b 

 
Mechanism by which individual 
participants were included in 
clusters for the purposes of the trial 
(such as complete enumeration, 
random sampling) 

 

 
10c 

 
From whom consent was sought 
(representatives of the cluster, or 
individual cluster members, or both), 
and whether consent was sought 
before or after randomisation  

 

    
 

Blinding 11a If done, who was blinded after 
assignment to interventions 
(for example, participants, 
care providers, those assessing 
outcomes) and how 

 
 

11b If relevant, description of the 
similarity of interventions 

 
 

Statistical methods 12a Statistical methods used to 
compare groups for primary 
and secondary outcomes 

How clustering was taken into 
account 

 

12b Methods for additional 
analyses, such as subgroup 
analyses and adjusted analyses 

 
 

Results  
Participant flow (a 
diagram is strongly 
recommended) 

13a For each group, the numbers 
of participants who were 
randomly assigned, received 
intended treatment, and were 

For each group, the numbers of 
clusters that were randomly 
assigned, received intended 
treatment, and were analysed for the 
primary outcome 
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analysed for the primary 
outcome 

13b For each group, losses and 
exclusions after 
randomisation, together with 
reasons 

For each group, losses and 
exclusions for both clusters and 
individual cluster members 

 

Recruitment 14a Dates defining the periods of 
recruitment and follow-up 

 
 

14b Why the trial ended or was 
stopped 

 
 

Baseline data 15 A table showing baseline 
demographic and clinical 
characteristics for each group 

Baseline characteristics for the 
individual and cluster levels as 
applicable for each group 

 

Numbers analysed 16 For each group, number of 
participants (denominator) 
included in each analysis and 
whether the analysis was by 
original assigned groups 

For each group, number of clusters 
included in each analysis 

 

Outcomes and 
estimation 

17a For each primary and 
secondary outcome, results for 
each group, and the estimated 
effect size and its precision 
(such as 95% confidence 
interval) 

Results at the individual or cluster 
level as applicable and a coefficient 
of intracluster correlation (ICC or k) 
for each primary outcome 

 

17b For binary outcomes, 
presentation of both absolute 
and relative effect sizes is 
recommended 

 
 

Ancillary analyses 18 Results of any other analyses 
performed, including subgroup 
analyses and adjusted 
analyses, distinguishing pre-
specified from exploratory 

 
 

Harms 19 All important harms or 
unintended effects in each 
group (for specific guidance 
see CONSORT for harmsiii) 

 
 

Discussion  
Limitations 20 Trial limitations, addressing 

sources of potential bias, 
imprecision, and, if relevant, 
multiplicity of analyses 

 
 

Generalisability 21 Generalisability (external 
validity, applicability) of the 
trial findings 

Generalisability to clusters and/or 
individual participants (as relevant) 

 

Interpretation 22 Interpretation consistent with 
results, balancing benefits and 
harms, and considering other 
relevant evidence 

 
 

Other information 
 

 
Registration 23 Registration number and name 

of trial registry 

 
 

Protocol 24 Where the full trial protocol 
can be accessed, if available 

 
 

Funding 25 Sources of funding and other 
support (such as supply of 
drugs), role of funders 
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* Note: page numbers optional depending on journal requirements 
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Table 2:  Extension of CONSORT for abstracts to reports of cluster randomized trials 
 
Item Standard Checklist item Extension for cluster trials 
Title Identification of study as randomised Identification of study as cluster 

randomised 
Trial design Description of the trial design (e.g., 

parallel, cluster, non-inferiority) 
 

Methods   
Participants Eligibility criteria for participants and the 

settings where the data were collected 
Eligibility criteria for clusters  

Interventions Interventions intended for each group  
Objective Specific objective or hypothesis Whether objective or hypothesis pertains 

to the cluster level, the individual 
participant level or both 

Outcome Clearly defined primary outcome for this 
report 

Whether the primary outcome pertains 
to the cluster level, the individual 
participant level or both 

Randomization How participants were allocated to 
interventions 

How clusters were allocated to 
interventions 

Blinding (masking) Whether or not participants, care givers, 
and those assessing the outcomes were 
blinded to group assignment 

 

Results   
Numbers randomized Number of participants randomized to each 

group 
Number of clusters randomized to each 
group  

Recruitment Trial status1  
Numbers analysed Number of participants analysed in each 

group 
Number of clusters analysed in each 
group 

Outcome For the primary outcome, a result for each 
group and the estimated effect size and its 
precision 

Results at the cluster or individual 
participant level as applicable for each 
primary outcome 

Harms Important adverse events or side effects  
Conclusions General interpretation of the results   
Trial registration Registration number and name of trial 

register 
 

Funding Source of funding  
   

 
1 Relevant to Conference Abstracts 
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