

Brief Title: Comparison of Glargine to Degludec Insulin Transition With or Without a Bridging Glargine Dose (GLIDING)

Official Title: A Randomized Comparison of Transitioning From Insulin GLargine to Insulin Degludec using a Bridging Dose of Glargine Versus Direct Conversion, in Patients With Type 1 Diabetes Mellitus - a Pilot

StudyNCT number: **NCT04623086**

PI Name: Arthi Thirumalai MD

Document name: Protocol

IRB approval date: 08/13/2020

1 **A randomized comparison of transitioning from insulin**
2 **GLargin to Insulin Degludec usING a bridging dose of**
3 **glargin versus direct conversion, in patients with type 1**
4 **diabetes mellitus – a pilot study**
5 **(GLIDING STUDY)**

6
7
8
9 **INVESTIGATOR-SPONSORED STUDY PROPOSAL**
10

11 **UNIVERSAL TRIAL NUMBER (UTN): U1111-1214-3257**
12

13
14 **Arthi Thirumalai, MBBS, Jing H. Chao, MD, Irl B. Hirsch, MD.**
15

16 **Division of Metabolism, Endocrinology and Nutrition**
17 **Department of Medicine**
18 **University of Washington**
19 **1959 NE Pacific St, Box 356426, Seattle, WA 98195**

20
21 **Correspondence to:**
22

23
24 **Arthi Thirumalai**
25 **Assistant Professor**
26 **1959 NE Pacific St, HSB C-209**
27 **UW Box # 357138, Seattle, WA 98196**
28 **Phone: 206-221-0521, Fax: 206-616-0499**
29 **Email: arthidoc@uw.edu**
30
31
32
33
34
35
36
37
38
39

Table of Contents	
42	1. BACKGROUND AND SIGNIFICANCEError! Bookmark not defined.
43	2. SPECIFIC OBJECTIVES 4
44	3. RESEARCH DESIGN AND METHODS 5
45	3.1 Study Hypothesis 5
46	3.2 EndpointsError! Bookmark not defined. 5
47	3.3 Study type 5
48	3.4 Rationale for study Design 6
49	3.5 Study population: 7
50	3.6 Inclusion Criteria 7
51	3.7 Exclusion Criteria 7
52	3.8 Withdrawal Criteria 8
53	3.9 Patient Replacement 9
54	3.10 Rationale for Study Population 9
55	3.11 Visit Procedures 9
56	3.11.1 Screening Visit (Visit 1) 10
57	3.11.2 CGM insertion visit (Visit 2) 11
58	3.11.3 Telephone Encounters #1 13
59	3.11.4 Telephone Encounter #2: 13
60	3.11.5 Telephone Encounter #3: 13
61	3.11.6 CGM Removal and Download Visit (Visit 3) 14
62	3.11.7 Exit Visit/Telephone encounter #4 (Visit 4) 14
63	3.12 Assessments for Efficacy 14
64	3.13 Assessments for Safety 15
65	3.14 Patient Compliance 15
66	4. STATISTICAL CONSIDERATIONS 16
67	5. DATA HANDLING AND RECORD KEEPING: 16
68	6. ETHICS 17
69	7. STUDY SCHEDULE 17
70	7.1 Study Schedule 18
71	7.2 Study Milestones 19
72	8. STUDY DRUGS AND MATERIALS 19

GLIDE Study

74	8.1	Study medication(s) / devices(s)	19
75	8.2	Packaging and Labelling of Study Medication(s)	19
76	8.3	Storage and Drug Accountability of Study Medication(s)	20
77	8.4	Auxiliary Supply	20
78	8.5	Randomization and Blinding.....	21
79	8.6	Breaking of Blinded Codes	21
80	9.	CONCOMITANT ILLNESSES AND MEDICATIONS.....	21
81	9.1	Definitions	21
82	10.	ADVERSE EVENTS	22
83	10.1	Definitions	22
84	10.1.1	Adverse Event (AE).....	22
85	10.2	Severity Assessment Definitions	23
86	10.3	Relationship to study medication Assessment Definitions.....	23
87	10.4	Outcome Categories and Definitions.....	23
88	10.5	Collection, Recording and Reporting of Adverse Events.....	23
89	10.6	Follow-up of Adverse Events	24
90	10.7	Pregnancy	25
91	10.8	Precautions/Over-dosage	25
92	11.	LIABILITY AND SUBJECT INSURANCE.....	25
93	12.	EVALUABILITY OF SUBJECTS	26
94	13.	PREMATURE TERMINATION OF STUDY:.....	26
95	14.	PUBLICATION PLAN.....	27
96	15.	REFERENCES	28
97			
98			
99			
100			
101			

102

103 1. **BACKGROUND AND SIGNIFICANCE:**

104 Insulin degludec (IDeg), an ultra-long-acting basal insulin, is increasingly used to
105 treat patients with type 1 diabetes (T1D). IDeg has a half-life of 25 hours and
106 duration of action exceeding 42 hours in patients with T1D (1,2) and as a result does
107 not require as stringent a dosing schedule as other basal insulins. It has been shown
108 to have a 4-fold lower within-patient variability in its pharmacodynamic response
109 compared to insulin glargine over the 24 hour dose interval (3). The rate of
110 symptomatic and severe hypoglycemia in T1D patients has also been shown to be
111 lower with IDeg than insulin glargine (4). A recently published systematic review
112 and meta-analysis of 15 clinical trials comparing IDeg to insulin glargine showed
113 lower fasting plasma glucose and less nocturnal hypoglycemia with IDeg (5). The
114 total basal insulin dose invariably decreases with the transition to IDeg (6,7). The
115 lower insulin use and lower rate of hypoglycemia may eventually translate into
116 medical cost savings too (8). Moreover, patients have expressed more satisfaction
117 with their regimen and quality of life with IDeg compared to other agents in one
118 study that compared this objectively using questionnaires, before and after transition
119 (9). All of these factors give IDeg an advantage over other basal insulins currently in
120 the market. However, steady state concentration of IDeg is not reached until 2 to 3
121 doses are administered daily, and this may result in greater glycemic variability in
122 the 24 to 72 hours following the initiation of therapy with IDeg (10). There is
123 currently no evidence-based guidance on how to minimize glucose excursions when
124 transitioning patients from their existing basal insulin to IDeg. The package insert for
125 IDeg suggests a 1:1 dose conversion from other basal insulin regimens to IDeg for
126 adult patients. However, this does not account for the time it takes IDeg to achieve
127 steady state and can result in worsening of glycemic control in the 48-72 hours after
128 the transition is made. Many practitioners at the University of Washington Diabetes
129 Clinic have seen better glycemic control within the first 12 to 24 hours in T1D
130 patients in whom we gave 50% of their usual dose of insulin glargine at bedtime
131 along with the first dose of IDeg. This leads to our hypothesis that a bridging therapy
132 involving the use of a reduced amount of patients' prior basal insulin at the time of
133 initiating IDeg will lead to improved glycemic control in the first 24-72 hours on
134 IDeg, minimizing the morbidities associated with hyperglycemia and the need for
135 correctional insulin and also avoiding hypoglycemia resulting from over-correction
136 due to use of additional rapid-acting insulin. Additionally, we will follow what has
137 been done in prior clinical trials of conversion from other basal insulins to IDeg and
138 hence, convert them from their insulin glargine total daily dose to 80% of that dose
139 as IDeg (4). An improvement in the safety and ease of transitioning from the more
140 commonly used glargine to IDeg may greatly encourage more providers and patients
141 to adopt IDeg as the basal insulin of their choice. Another benefit would be knowing
142 how to transition patients back to their outpatient IDeg therapy when they are being
143 discharged home from an inpatient stay and were switched to insulin glargine during
144 their hospitalization, as IDeg is not formulary in many hospitals. The purpose of this
145 pilot study is to gain preliminary evidence of whether bridging with insulin glargine
146 while transitioning to IDeg provides better glycemic results in the transition period
147 compared to direct conversion.

148148

149 2. ENDPOINTS AND OBJECTIVES:

150 Primary endpoint:

151 Change in percent time spent in target glycemic range (TIR, glucose 70-180 mg/dL, both
152 values included) in the 48 hours before and the 48 hours after the 1st dose of IDeg

153 Primary objective:

154 To compare the mean change in percent time in range (as defined by the primary
155 endpoint) between patients who transition directly to IDeg to the mean change in patients
156 who use a bridging dose of insulin glargine along with 1st dose of IDeg.

157

158 Secondary end points:

159 These will include the following data obtained from their CGM download in the 48 hours
160 following the first dose of IDeg as measured as a difference compared to the 48 hours
161 preceding the dose:

- 162 1. Coefficient of variation of percent-time-in-range for each treatment within
163 each group
- 164 2. Nocturnal time in range of 70-180 mg/dL (between mid-night and 0600 hours,
165 both values included)
- 166 3. Percent time above 180 mg/dL (TAR-1), percent time above 250 mg/dL
167 (TAR-2) for each treatment within each group
- 168 4. Percent time below 70 mg/dL (TBR-1), percent time below 54 mg/dL (TBR-
169 2) for each treatment within each group
- 170 5. Number of correction boluses for each treatment within each group

171

172 Secondary objectives:

173 To compare each of the secondary endpoints between patients who use a bridging dose to
174 patients who transition directly to IDeg.

175

176 3. RESEARCH DESIGN AND METHODS

177 3.1 **Study Hypothesis:**

178 Our hypothesis is that among patients who transition from insulin glargine to IDeg, those
179 who use a bridging dose of insulin glargine will not have a significant change, on average,
180 in time spent in target glycemic range during the transition period, whereas, those
181 transitioning directly to IDeg will have a significant change in this parameter. We further
182 hypothesize that those using the bridging dose of insulin glargine will have less
183 hypoglycemia, less hyperglycemia and need fewer correction boluses than the direct-
184 conversion patients during the transition period.

185 3.2 **Study type:**

186186

187 This will be a double-blind, randomized, single-center, proof-of-concept study.
188 Randomization will be stratified by use of insulin glargine once daily or twice daily at
189 baseline. Randomization will be conducted using permuted-block design with a block
190 size of 4, ensuring equal numbers of bridging and non-bridging patients in each of the 2

191 resultant strata after every 4th patient is randomized within a stratum. The 2 strata with
192 blocked randomization within each stratum will result in 4 groups as follows:

193 **1. Bridging Groups:**

194 i. Patients transitioning from once daily insulin glargine to once daily IDeg with
195 a bridging dose of insulin glargine.
196 ii. Patients transitioning from twice daily insulin glargine to once daily IDeg
197 with a bridging dose of insulin glargine.

198 **2. Direct-Conversion Groups:**

199 i. Patients transitioning from once daily insulin glargine to once daily IDeg
200 without a bridging dose of insulin glargine (but with a bridging dose of
201 placebo solution to preserve blinding).
202 ii. Patients transitioning from twice daily insulin glargine to once daily IDeg
203 without a bridging dose of insulin glargine (but with a bridging dose of
204 placebo solution to preserve blinding).

205
206 All patients will be instructed to use their own prescription insulin medications till before
207 the 1st dose of IDeg. On the night they have to transition to IDeg, they will start using
208 study drugs for their basal insulin (see section 3.10.4). Starting with the 1st dose of IDeg,
209 their basal insulin will be from study drug only, till visit #3 (see section 3.10.6), at which
210 time, they will resume their original insulin prescriptions. They will remain on their own
211 prescription short-acting insulin throughout the study. On the night of the transition, all
212 patients will be instructed to take their 1st dose of IDeg and along with this, they will take
213 a second injection from a pre-filled syringe of a pre-specified dose of insulin glargine or
214 matched placebo (normal saline), that participants will collect from Investigational Drug
215 Services Pharmacy (IDS) on the same day. The dose will be calculated ahead of time by
216 study staff on visit 2 (see under section 3.10.2.1). Neither the patients, nor the research
217 staff will be aware of their randomization, which will be done by IDS. Patients will act as
218 their own controls, as we will collect glycemic data from 48 hours prior to the first dose
219 of IDeg, which will be compared to the data seen in the 48 hours after the first dose of
220 IDeg. During this observation period of the 48 hours before and after the first dose of
221 IDeg, no adjustments will be made to the calculated and recommended doses of insulin
222 glargine or IDeg. Patients will be followed for up to 1 week after the first dose of IDeg.
223

224 **3.3 Rationale for study Design**

225 Though IDeg is being increasingly used in clinical practice, there are no guidelines on
226 what is the best way to transition patients from other long-acting insulins, such as
227 glargine, to IDeg. The package insert recommends 1:1 dose conversion from other basal
228 insulins to IDeg, but this does not account for the time taken by IDeg to achieve steady
229 state (typically 48-72 hours). There is no guidance on what to do in those 48-72 hours.
230 Given the time taken for IDeg to achieve steady state, the period of transition from one
231 insulin to another, can result in significant glycemic variation in the 24-72 hours after the
232 first dose. We want to study how best to avoid or minimize this and the option of using a
233 small dose of their original long-acting insulin has anecdotal evidence of success in our
234 practice.

235235

236 **3.4 Study population:**

237 We aim to recruit patients with type 1 diabetes mellitus only. We will screen 50 patients
238 with the plan to randomize approximately 40 patients to start IDeg. The IDS at the
239 University of Washington will randomize patients (1:1) to either receive or not receive a
240 bridging insulin glargine dose along with the 1st dose of IDeg, within the stratified groups
241 of once- or twice-daily insulin-glargine regimens.

242

243 **3.5 Inclusion Criteria**

244 Patients must meet ALL inclusion criteria to be included in the study.

- 245 1. Patient age is 18-75 years.
- 246 2. Diagnosis of T1D of at least 1-year duration.
- 247 3. Has the ability to provide informed consent before any trial-related activities.
- 248 4. Treated with insulin glargine as their basal insulin in the 3 months preceding
249 screening visit.
- 250 5. Stable insulin regimen (defined as change of <20% in the total daily dose of
251 insulin and no change to the basal insulin agent) over the 3 months preceding the
252 screening visit.
- 253 6. Patient willing to dose their basal insulin at bedtime.
- 254 7. Hemoglobin A1c < 9% in the 3 months preceding screening visit.
- 255 8. Able to self-administer their insulin doses.
- 256 9. Able to do self-monitoring of blood glucose using a glucose meter and willing to
257 do this at least 2 times daily for patients using a CGM that requires calibration
258 prior to the study and 4 times daily for patients who were not using a CGM prior
259 to the study.
- 260 10. Agreeable to the use of a continuous glucose monitor (CGM) for the duration
261 required in the study. If already using a CGM prior to the study, then agreeable to
262 wearing the blinded study CGM concurrently during the study period.
- 263 11. Will be reachable by phone and/or email to comply with study procedures.
- 264 12. Will be able to comply with study procedures, per investigator's opinion.
- 265 13. Patient agrees to not use correctional insulin unless BG ≥250 for the 48 hours
266 before and after 1st dose of IDeg.

267

268 **3.6 Exclusion Criteria**

269 Patient must not have ANY of the exclusion criteria to be included in the study.

- 270 1. Patients with eGFR <30 on at least 2 measurements within 1-year of the screening
271 visit.
- 272 2. History of myocardial infarction within 6 months preceding the screening visit.
- 273 3. Patients taking non-insulin medications for the glycemic management of T1D
274 (including metformin, DPP-4 inhibitors, GLP-1 receptor agonists, SGLT-2
275 inhibitors, thiazolidinediones, alpha-glucosidase inhibitors, pramlintide)
- 276 4. Known or suspected allergy to IDeg or one of its excipients.
- 277 5. Pregnant, planning to become pregnant in the next 3 months or breastfeeding.
- 278 6. Participation in a clinical trial with investigational drug within 1 month of the
279 screening visit or at present.

7. Skin condition that prevents the insertion of the CGM.
8. Previously randomized and received drug in this study.
9. Presence of decompensated or poorly controlled psychiatric conditions.
10. Current known or suspected illicit substance use.
11. Any anticipated surgery or procedure in the next 14 days.
12. Patients using U-300 glargine as their basal insulin.
13. Patients using insulin afreZZa as their short-acting insulin.
14. Use of glucocorticoid burst/pulse therapy within 14 days prior to screening visit (chronic stable glucocorticoid doses are acceptable).

3.7 Withdrawal Criteria

Patients have the right to withdraw from the study at any stage and for any reason.

Patients **may be** discontinued prematurely, by the investigator for any of the following reasons:

- Emergence of a severe condition(s) such that, in the judgement of the investigator, continuation in the trial would negatively impact the health of the patient.
- Lack of compliance with study medication or visits as judged by the Investigator.
- Patient lost to follow-up.
- Major protocol violation.
- Inter-current illness that, in the judgment of the investigator, should result in premature discontinuation.
- Use of prohibited medications (see the Inclusion/Exclusion criteria)
- Onset of glucocorticoid burst/pulse therapy during the study period.
- Knowledge of new risks necessitating new benefit/risk evaluation.
- Patient voices intention to become pregnant in the immediate future.

Patients **must** be discontinued for any of the following reasons:

- If Novo Nordisk determines that the study must be stopped, all patients will be required to end participation at that time.
- Trial closed-out.
- Patient becomes pregnant.

A patient will not be discontinued early from the study solely because of missing the scheduled transition from insulin glargine to IDeg. The research staff will discuss the matter with the patient and determine whether they feel he/she can continue moving forward in the study following all study procedures, including dosing. If after this discussion, the patient and the research team are in agreement about continuing in the study, the investigator will decide if he/she may remain in the study.

A subject cannot be considered lost to follow-up until the research center performs and documents at least three (3) attempts to contact him by phone, email or letter.

323 **3.8 Patient Replacement**

324 Patients discontinuing from the study will not be replaced. IDS will continue to assign
325 randomization of the next participant to a specific group, based on the original
326 randomization plan, when the next participant has completed screening procedures and is
327 ready for randomization. We will include data from all randomized participants in our
328 data analysis.

329

330 **3.9 Rationale for Study Population**

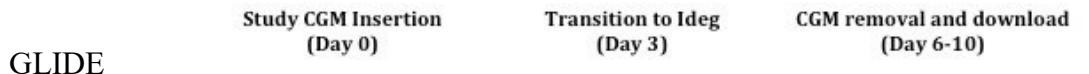
331 The main objective of our study is to determine if the use of a bridging dose of insulin
332 glargine is able to improve glucose control in first few days after the first dose of IDeg.
333 As a result, we will recruit participants who are reasonably well controlled on their
334 baseline insulin regimens. We will exclude participants on non-insulin glucose-lowering
335 agents, as these can affect glycemic variability themselves and confound the results. We
336 are not excluding patients with known severe hypoglycemia or hypoglycemia
337 unawareness in this study, as these are the patients who stand to benefit the most from the
338 transition from insulin glargine to IDeg. We are excluding patients with stage 4 or 5 CKD.
339 We will be excluding patients with a myocardial infarction in the last 6 months. These
340 patients will be excluded as they carry a higher risk that hypoglycemia or hyperglycemia
341 may result in mortality.

342

343 **3.10 Visit Procedures**

344 Subjects will be screened for study eligibility and interest in participating in this study
345 (Screening Visit/Visit 1). All subjects will have the study explained to them and sign the
346 informed consent prior to beginning any study procedures. Subjects must meet the
347 inclusion criteria and have no exclusions.

348


349 Randomization and treatment will be initiated only once eligibility is confirmed.

350

351 There will be 4 phases to the study:

- 352 • A **screening phase** to establish eligibility that spans from screening visit till
353 insertion of study CGM (up to 2 weeks).
- 354 • A **baseline observation** phase to collect CGM data on their original insulin
355 glargine regimen, starting from insertion of study CGM to first dose of IDeg
356 administration (~3 days)
- 357 • A **treatment phase** starting from 1st to last dose of IDeg and consisting of at least
358 3 days of IDeg therapy (3-7 days).
- 359 • A **follow-up phase** from removal of study CGM to exiting from the study (till up
360 to 7 days after the last dose of IDeg)

3613	2
6	373373
1	374374
3623	375375
6	376376
2	377377
3633	378378
6	379379
3	380380
3643	381381
6	382382
4	383383
3653	384384
6	385385
5	386386
3663	387387
6	388388
6	389389
3673	390390
6	391391
7	392392
3683	393393
6	394394
8	
3693	
6	
9	
3703	
7	
0	
3713	
7	
1	
3723	
7	

ed on d * Could be extended by 2 days if inadequate CGM data noted on day 3 (see section 3.11.4)

3.10.1 Screening Visit (Visit 1):

Participants will be seen at the research wing of the Diabetes Care Center (DCC) at the University of Washington, Seattle, WA. Research staff will obtain informed consent after explaining study procedures. A detailed diabetes and medical history will be collected from the subjects. Their current medication regimen will be verified from them, particularly the actual number of units of the different insulins they are using. Subjects will undergo assessment of vital signs (pulse, blood pressure, weight, height, BMI) and a focused physical exam. If there is no available record of eGFR within the last year and/or hemoglobin A1c within the last 90 days, these will be obtained by phlebotomy at this visit. 2 tubes of blood (1x 3cc lavender and 1x 4 cc lime green) will be drawn and sent off to measure hemoglobin A1c (by HPLC method) and basic metabolic panel to the UWMC clinical laboratory, if required. Subjects will be instructed to not alter their diet, alcohol consumption or exercise regimen from the time of study CGM insertion till 48 hours after the first dose of IDEG.

If they are considered to be eligible for the study, then the research staff will contact IDS. IDS will then randomize the participant to one of the two arms within the two stratified groups. (Refer to sections 3.5 and 8.5 for details). Research staff will then contact the participant by phone or email to have them return for visit 2 for insertion of the study CGM.

Important considerations for keeping things as uniform as possible in the study are as below:

- We will ensure that all subjects on once daily insulin glargine are taking it at bedtime. Subjects who were taking it in the morning only at screening visit, will be switched to bedtime dosing at least 7 days prior to study CGM insertion.
- We will ensure that subjects on twice daily insulin glargine at screening visit are taking their 2nd dose of the day at bedtime.

395395

396 **3.10.2 CGM insertion visit (Visit 2):**

397 Participant will return to the DCC, within 2 weeks of visit 1, to meet with a research
398 coordinator who will assist with the insertion of the CGM (Dexcom G6). At this visit,
399 study staff will also perform any teaching and training that may be required for the
400 participant to know how to use the CGM device. This visit needs to be conducted before
401 1200 hours. They will be given CGM supplies to last up to 1 week. They will be
402 instructed to keep the study CGM on at all times for this duration. If they have their own
403 CGM, then they will be allowed to keep that on in addition to the study CGM, should
404 they desire to do so. They will be instructed to replace the sensor, if needed. The study
405 CGM insertion day will be considered day 0. The next day will be day 1. Transition to
406 IDeg will be done on Day 3 as below. Subjects will be dispensed a log book in which
407 they will need to document carbohydrates consumed, exercise duration and time, timing
408 and doses of basal and bolus insulin (broken down as prandial and correction), self-
409 monitored blood glucose values, hypoglycemia symptoms and intervention for each day
410 they are in the study (from CGM insertion to removal) (See Appendix A and B). We will
411 inquire about any change to concomitant medications and document insulin doses being
412 administered.

413

414

415 **3.10.2.1 Insulin Dosing:**

416 At visit 2, subjects will also be given written instructions on how to do the transition from
417 insulin glargine to IDeg.

418

419 *Calculation of IDeg dose*

420 The dose of IDeg that subjects will be switched to will equal 80% of the total daily dose
421 of insulin glargine they reported using at visit 1. This reduction is what was done in the
422 clinical trials of conversion from any basal insulin to IDeg with lower risk of
423 hypoglycemia (4). For example, if a subject was on 25 units of glargine at screening visit,
424 then they will need to switch to 20 units of IDeg ($0.8 \times 25 = 20$). Number of units will be
425 rounded up to the next whole number if decimal points are ≥ 0.5 and rounded down if
426 <0.5 .

427

428 *Timing of IDeg dose*

429 To keep things consistent across participants, we will instruct all patients to start their
430 first dose of IDeg 3 days after the study CGM is inserted. The rationale for this is that the
431 first 24 hours of data on the CGM is not very accurate and after that we want 48 hours of
432 baseline glucose data on insulin glargine, prior to transitioning to IDeg. This will be used
433 later as their baseline to compare with the values seen on IDeg. Subjects will be
434 instructed to administer their first dose of IDeg at 2100 hours on the 3rd day after
435 insertion of study CGM. They will then administer the same dose of IDeg every night for
436 5 ± 2 consecutive doses.

437

438 *Dosing of Insulin Glargine*

439 Dosing of insulin glargine will depend on the group a subject is randomized to:

440

441 **If randomized to bridging dose:**

442 For subjects on once-daily glargine, up to day 2 after study CGM insertion they will
443 administer their usual insulin glargine dose at bedtime. On day 3, they will administer
444 **50% of their usual glargine dose** (using study drug) at 2100 hours **along with** only their
445 **FIRST IDeg** dose, as calculated. Thereafter, they will not administer insulin glargine till
446 after the 5 (\pm 2) days of IDeg are completed.

447

448 For subjects on twice-daily glargine, on day 3 after study CGM insertion they will
449 administer their AM glargine dose as usual (i.e. 100%). On the same night, they will
450 administer **50% of their bedtime glargine dose** (using study drug) at 2100 hours **along**
451 **with** only their **FIRST IDeg** dose as calculated above. Thereafter, they will not
452 administer insulin glargine till after the 5 (\pm 2) days of IDeg are completed.

453

454 **If randomized to direct conversion:**

455 For subjects on once-daily glargine, up to day 2 after study CGM insertion they will
456 administer their usual insulin glargine dose at bedtime. On day 3, they will administer the
457 **first dose of IDeg**, as calculated above, at 2100 hours **and a placebo solution** in a dose
458 equivalent to 50% of their usual glargine dose. They will **NOT administer any insulin**
459 **glargine** from that night till after 5 (\pm 2) days of IDeg are completed.

460

461 For subjects on twice-daily glargine, on day 3 after study CGM insertion they will
462 administer their AM glargine dose as usual (i.e. 100%). On the same night, they will
463 administer the **first dose of IDeg**, as calculated above, at 2100 hours **and a placebo**
464 **solution** in a dose equivalent to 50% of their bedtime glargine dose. They will **NOT**
465 **administer any insulin glargine** from that night till after 5 (\pm 2) days of IDeg are
466 completed.

467

468 *Use of short-acting insulin*

469 At the CGM insertion visit (visit 2), subjects will be instructed to use their prandial
470 insulin to carbohydrate ratios or pre-specified doses of prandial insulin the way they
471 would have otherwise, during the study. *For the 48 hours before and after the first dose*
472 *of IDeg, however, all subjects will be instructed not to use any correctional insulin unless*
473 *their blood glucose is >250, both around meals and otherwise.* While we understand that
474 subjects might be reluctant to allow their blood glucose to run in the 180-250 range
475 without correction, we feel this is a necessary part of our study protocol. The main reason
476 for this is that our primary study end point is time in range (TIR). If the change from
477 insulin glargine to IDeg results in more time in the 180-250 range in patients not
478 receiving the bridging dose of glargine, patients are likely to correct this aggressively
479 with the use of correctional insulin. This would dilute any measurable differences in our
480 primary end point (TIR). It would only potentially show differences in the secondary end
481 points of dose and number of correctional insulin used. However, by telling them to avoid
482 bolusing till glucose rises above 250, we will be able to discern any differences in TIR
483 that might arise from the change of basal insulin, while at the same time, not being unsafe
484 for the patients over a 96 hour period of time.

485

486 3.10.3 Telephone Encounters #1:

487 This will be on day 1 (i.e. the day after the study CGM is inserted). We will ensure that
488 the study CGM is working and the subject does not have any questions or concerns.
489 Study staff will also assist the subject with any troubleshooting, if necessary. Subjects
490 will be instructed to upload their CGM data on day 3, for research staff to review it.
491 Subjects will be instructed not to alter their insulin glargine dose for the following 48
492 hours, till the night of day 3, when they transition to IDeg. We will inquire about any
493 adverse events and change to concomitant medications and document doses of insulin
494 being administered by patient.
495

496 3.10.4 Telephone Encounter #2:

497 Research staff will review patient's CGM data upload on day 3. We will inquire about
498 adverse events, any change to concomitant medications and also document doses of
499 insulin being administered.
500 If there is \geq 38 hours of usable CGM data, then they will be instructed to proceed with
501 their first dose of IDeg that night, as scheduled. In order to obtain the bridging dose of
502 insulin glargine or matched placebo, subjects will be instructed to proceed to IDS at the
503 University of Washington to collect their study drug the same day.
504 If there is $<$ 38 hours of usable CGM data, then subjects will be instructed to wear their
505 CGM, per study protocol, while remaining on their original insulin regimen, and to again
506 upload CGM data on day 5. Research staff will review this data on day 5.
507 If there is \geq 38 hours of usable CGM data from day 3-5, they will be instructed to proceed
508 with their first dose of IDeg that night, as scheduled. Subjects with $<$ 38 hours of usable
509 CGM data will be discontinued from the study.
510

511 3.10.5 Telephone Encounter #3:

512 This will be on day 4, i.e. the day after the first bedtime dose of IDeg (or on day 6 for
513 subjects who needed to repeat baseline CGM data collection). We will inquire about
514 adverse events and any change to concomitant medications. The doses of insulin
515 administered will be obtained and documented. The main purpose of this call is to ensure
516 that the subject implemented the transition from insulin glargine to IDeg, correctly. If it is
517 discovered that the subject forgot to transition, then they will be given repeat instructions
518 to dose on night of day 4. If it is discovered that the subject executed the transition
519 incorrectly, then they will need to undergo a 3-day "wash out period", during which they
520 will resume their original insulin glargine regimen (with alterations as deemed necessary
521 by study physician on day 4), and then they will be instructed to execute the transition
522 again on night of day 7. If a subject performs the transition erroneously a second time,
523 he/she will be discontinued from the study and replaced by a new subject as the study
524 supplies allow. Subjects will be instructed not to alter their dose of IDeg for at least the
525 first 3 doses (i.e. 48 hours after 1st dose).
526

527 3.10.6 CGM Removal and Download Visit (Visit 3):

528 Subjects will come in approximately 8 ± 2 days after their CGM insertion. At this visit,
529 their study CGM will be removed and downloaded. We will inquire about adverse events
530 and any change to concomitant medications. We will collect and review their study
531 logbook. They will also be given instructions on how to transition back to insulin
532 glargine.

533

534 **Once-daily glargine users:** Approximately 24 hours after their last dose of IDeg,
535 subjects will be instructed to administer 50% of their original total daily dose of glargine
536 at bedtime. At 48 hours after their last dose of IDeg, they will return to their original
537 bedtime insulin glargine dose.

538

539 **Twice-daily glargine users:** Approximately 24 hours after their last dose of IDeg, they
540 will administer 50% of their original bedtime insulin glargine dose. Approximately 36
541 hours after their last dose of IDeg they will again administer 50% of their original
542 morning insulin glargine dose. Approximately 48 hours after their last dose of IDeg, they
543 will resume their original insulin glargine dosing regimen (i.e. 50% of total dose twice
544 daily).

545

546 Subjects will receive a gift card for \$50 for participation in the study.

547

548 3.10.7 Exit Visit/Telephone encounter #4 (Visit 4):

549 This visit will be approximately 7 days after the study CGM removal (+/- 2 days).
550 Subjects will be called to see if they have any concerns or questions. They will be
551 instructed to follow up with their original endocrinologist for any further insulin
552 adjustments.

553

554 3.11 Assessments for Efficacy

555 On the screening visit (visit 1), if there is no available record of eGFR within the last year
556 and/or hemoglobin A1c within the last 3 months, these will be obtained by venipuncture
557 at this visit. The research team nurse or physician will perform this. 2 tubes of blood (1x
558 3cc lavender and 1x 4 cc lime green) will be drawn and sent off to measure hemoglobin
559 A1c (by HPLC method) and basic metabolic panel to the UWMC clinical laboratory. No
560 extra blood will be collected from the subjects. There will be no other instances of blood
561 collection during the study. These will help ensure that appropriate subjects are enrolled
562 in the study.

563 At the various telephone encounters, study staff will verify that the subjects are following
564 study instructions correctly. Specifically, on Telephone Encounter #2, only if adequate
565 usable CGM data is available on the data uploaded by the patient will they be allowed to
566 proceed with the transition (see section 3.11.4).

567 By measuring the time a patient spends in range (TIR = 70-180 mg/dL), we are assessing
568 the efficacy of the use of IDeg as a basal insulin.

569

570

571 3.12 Assessments for Safety

572 The primary safety concern in this study is the risk of hypoglycemia. Hypoglycemia
573 management will be revised at screening visit to ensure appropriate education and all
574 medications and supplies needed to manage hypoglycemia will be prescribed at screening.
575 Subjects will be instructed that if they see BG <70 mg/dL on their personal CGM that
576 persists longer than 15 minutes or notice symptoms of hypoglycemia regardless of
577 glucose reading, they need to perform a capillary blood glucose (CBG) measurement to
578 confirm if the meter shows a reading <70 mg/dL. If it does, they need to complete a
579 hypoglycemia episode form (Appendix B). Upon onset of a hypoglycemic episode,
580 subject is recommended to check CBG every 15 minutes until the value is \geq 70 mg/dL
581 and/or symptoms have resolved. Repeated CBG measurements and/or symptoms,
582 occurring within a period of 60 minutes after onset on a hypoglycemic episode, will by
583 default be considered as one hypoglycemic episode until a succeeding CBG value is \geq 70
584 mg/dL and/or symptoms have been resolved and should be reported as one hypoglycemic
585 episode. CBG measurements < 70 mg/dL or hypoglycemic symptoms after the 60
586 minutes period shall trigger the reporting of a new hypoglycemia episode and prompt the
587 subject to fill out a new hypoglycemic episode form until a succeeding measurement is \geq
588 70 mg/dL and/or symptoms have been resolved. In case of several low CBG values
589 within the 60 minutes interval, the lowest value is the one that will be reported as the
590 CBG value for the hypoglycemic episode but the start time of the episode will remain as
591 the time for the first CBG value and/or symptom. Whenever a subject completes a
592 hypoglycemia episode form, they should notify study staff within 24 hours. When they
593 notify study staff, details of the events around the low blood glucose (activity, food intake,
594 insulin administration) will be collected from them and then recommendations will be
595 made, as deemed necessary, by the study physician.

596 Hyperglycemia is the other risk of this study. Subjects will be instructed at screening to
597 notify study staff within 24 hours of a blood glucose >250. Study staff will try to
598 ascertain from the subject if any investigations are needed and make management
599 recommendations, as deemed necessary, by the study physician.

600 By measuring the time a patient spends above or below range (>180 mg/dL or <70 mg/dL) and assessing the frequency of use of correctional doses of short-acting insulin, we
601 are assessing how safe their glycemic management regimen is.
603

604 3.13 Patient Compliance

605 Patient compliance to study procedures will be assessed during the telephone encounters. 606
606 Compliance will be defined by the following (all 3 need to be met to be considered 607
607 compliant), assessed during the 48 hours prior to and after the first dose of IDeg:
611
612

- 608 • No missed doses of basal insulin
- 609 • No missed doses of nutritional insulin with meals
- 610 • Wearing the study CGM for >19 hours a day

613 4. STATISTICAL CONSIDERATIONS:

614 The primary objective of this pilot study is to calculate the change in percent time that 615 BG is “in range” (TIR defined as 70-180 mg/dL) in the 48 hours before the first IDeg 616 dose vs. the 48 hours after the first dose, and to compare the mean of this change between 617 patients who are randomized to receive bridging glargine and those who are randomized 618 to not receive bridging glargine. Randomization will be stratified by glargine use (once 619 vs. twice daily). For each patient, the TIR in the 48 hours before first IDeg use will be 620 calculated, as will the TIR in the 48 hours after first IDeg use. The difference of these 621 values will then be calculated, and the mean of the differences compared between the 622 randomized arms. Our primary hypothesis will assume that the “bridging effect” is 623 similar between patients who take glargine once daily and twice daily. However, we plan 624 an exploratory look at this assumption as a secondary objective.

625

626 If we assume the true change in TIR (before first dose of IDeg minus after first dose of 627 IDeg) to be 0% for the bridging group and 15% for the non-bridging group, and if we 628 assume a common standard deviation of 15% (meaning the distributions of change in TIR 629 are separated by 1 standard-deviation unit), then 20 patients in each group will provide 630 87% power to observe a statistically significant (at the two-sided level of .05) difference 631 in mean change of TIR.

632

633 As noted above, we’ll assess the magnitude of this difference as a function of once- vs. 634 twice-daily glargine use. With only 40 patients, it’s highly unlikely that a statistically 635 significant interaction will be observed, but if the directions of the difference in mean 636 changes are the same in the once-daily vs. twice-daily groups we shall consider the 637 results to be consistent with each other.

638

639 Secondary endpoints to be assessed in a descriptive manner include the following:

- 640 1. Coefficient of variation of TIR for each treatment within each group
- 641 2. Nocturnal time in range of 70-180 mg/dL (nTIR; both values included) (between
- 642 mid-night and 0600 hours)
- 643 3. Percent time above 180 mg/dL (TAR-1), percent time above 250 mg/dL (TAR-2)
- 644 for each treatment within each group
- 645 4. Percent time below 70 mg/dL (TBR-1), percent time below 54 mg/dL (TBR-2)
- 646 for each treatment within each group
- 647 5. Number of correction boluses for each treatment within each group

648

649 The overarching goal of this pilot study is to collect data in a controlled setting on a 650 variety of long-acting insulin regimens and gain an idea if there is a signal. The data 651 generated in this pilot study will be used to assist in the design of a future and larger 652 study where a more definitive comparison of efficacy will be conducted.

653

654

655 5. DATA HANDLING AND RECORD KEEPING:

656 Study information will be collected for each participant by research staff using 657 standardized Case xReport Forms (CRFs). CRFs will not report information about

658 treatment assignment in order to maintain blinding of treatment allocation. Forms will be 659 stored at a secure location at the clinical site. We expect that the majority of data will be 660 collected via CRFs; however, other data sources, such as CGM download and laboratory 661 data, may be used. All study data will be entered into the Research Electronic Data 662 Capture (REDCap), a web-based data entry and management system that is HIPPA 663 compliant and powered by the Institute of Translational Health Sciences, by research 664 staff. The clinical data management procedures will be consistent with the International 665 Conference on Harmonisation (ICH E6) standards for Good Clinical Practice (GCPs)¹.

666

667

668 6. ETHICS:

669 Ethical considerations related to the trial include ensuring that all patients receive an 670 amount of insulin deemed appropriate by the clinicians for treatment of their diabetes 671 mellitus both during the study period and following the conclusion of the study. Patients 672 should have prompt treatment for both hypoglycaemia and hyperglycemia with blood 673 glucose level of > 250mg/dl, as well as other possible complications related to treatment 674 with insulin, according to the standard of care following the guidance of their clinicians. 675 Potential participants will be sought from among the patients attending the study center, 676 University of Washington's Diabetes Care Center in Seattle, WA. An application will be 677 submitted for approval by University of Washington's IRB prior to conducting the 678 research study. Potential candidates will be identified and contacted according to the 679 procedures established by University of Washington's IRB in compliance with local laws 680 protecting patient confidentiality and in accordance with the Declaration of Helsinki and 681 the ICH GCP guidelines¹. Patients meeting the inclusion and exclusion criteria of the 682 study will be identified by clinicians at the study center and offered the opportunity to 683 participate in the study. An informed consent form will be given to all patients meeting 684 the inclusion and exclusion criteria. This informed consent form will clearly offer the 685 possibility to opt out of any further contacts with the study. Written consent will be 686 obtained from all subjects invited to participate in the study after explaining again the 687 purpose and procedures of the study. In the initial contact and at the time of the 688 screening visit, study subjects will be encouraged to ask questions and they will be 689 reassured that they may withdraw from the study at any time. Clinician investigators and 690 Novo Nordisk, will comply with all applicable regulatory and legal requirements, ICH 691 GCP guidelines and the Declaration of Helsinki in obtaining and documenting the 692 informed consent¹.

693

694

695 7. STUDY SCHEDULE:

696 The study will begin recruitment of patients immediately following the approval of 697 University of Washington's IRB. We plan to recruit patients over a 12-month period. 698 Following the completion of patient recruitment and data collection, we plan to perform 699 data analysis and complete the integrated final study report over a 4-month period.

700

701 7.1 Study Schedule

Event	Screening Visit	Observation on Glargine		Treatment with IDeg		Follow-Up
	Up to 2 weeks	Day 0	Day 1	Day 3	Day 4 ^a	Day 7 ± 2 ^a Day 14 ± 2 ^a
Informed consent/HIPPA	x					
History/focused exam	x					
Weight and vital signs	x					
Documentation of insulin doses	x	x	x	x	x	x
Documentation of concurrent medications	x	x	x	x	x	x
Inquiry of adverse events		x	x	x	x	x
Download of data from home glucose meter and/or CGM ^b	x					
Labs	x					
Eligibility	x					
Randomization	x ^c					
Study Drug Dispensation				x		
Placement of study CGM		x				
Daily Insulin logbook and hypoglycemia episode form dispensation		x				
Telephone Encounter			x	x	x	x
Collection of data from study CGM Upload				x		
Study Drug Administration				x	x	x
Study Logbook/Hypoglycemia form Collection						x
Download data from study CGM						x ^d

702 a. Day 4, 7, and 14 may be extended by 2 days if patients do not have ≥ 38 hours of
703 usable study CGM data. See Section 3.11.4.704 b. Download of data from patients' CGM will be performed if patients wear their own
705 CGM prior to participating in the study.

GLIDE Study

706 c. Randomization will be performed at the end of the screening visit after patients
707 complete informed consent and have been deemed eligible to participate in the study.
708 d. Downloaded data include all endpoints listed under Section 3.2.
709

710 **7.2 Study Milestones**

711
712
713
714 **8. STUDY DRUGS AND MATERIALS:**

715 **8.1 Study medication(s) / devices(s)**

716 • Insulin glargine, 100 units per mL injected subcutaneously daily, dosage as
717 determined by the clinician and study protocol. Manufacturer: Sanofi or Lilly
718 • IDeg, 100 units per mL injected subcutaneously daily, dosage as determined by
719 the clinician and study protocol. Manufacturer: Novo Nordisk.
720 • Placebo, 9g/L sodium chloride (normal saline) injected subcutaneously daily,
721 dosage as determined by the clinician and study protocol.
722 • Pen needles for injecting insulins.
723 • Dexcom G6 Mobile CGM System, inserted subcutaneously and worn for 3-10
724 days. Manufacturer: Dexcom, Inc.
725 • Glucose meter and 100 test strips, to perform self-monitoring of blood glucose,
726 one box dispensed per patient. Source: Diabetes Care Center. Manufacturer:
727 Accucheck Aviva Plus
728

729 **8.2 Packaging and Labelling of Study Medication(s)**

730 • IDS will package the glargine and placebo as pre-filled syringed from vials 731
731 identically. IDS will then label the syringes with dose, dosing instructions, and 2
732 patient identifiers based on study drug request order entered by research staff, 733
733 after being notified about treatment assignment by IDS.
734 • IDeg will be dispensed in the original manufacturer's packaging, and IDS will 735
735 label IDeg with dose, dosing instructions, and 2 patient identifiers.
736 • Dexcom G6 Mobile CGM System will be distributed to patients in its original 737
737 manufacturer packaging.

738
739 Labelling of all medications and device will be in accordance with local law and study
740 requirements.
741

742 8.3 Storage and Drug Accountability of Study Medication(s)

743 All investigational and/or trial products received will be accounted for by the IDS. 744 Accountability logs are maintained for each product and dispensing is logged out as 745 individual line items. Other than syringes and needles, subjects will return used, partly 746 used, and unused products, and these will be documented on the accountability logs and 747 may be retained for reconciliation.

748

749 All products will be stored at the designated temperature (e.g. refrigerated or room 750 temperature) with temperature monitoring by the institutional system, TempTrak. This is 751 a continuous monitoring system with temperature time points taken every 15 minutes. 752 Temperature graphs are accessible via a web-based system. TempTrak sensors are 753 calibrated on a yearly basis. A second overlay is the use of Min/Max thermometers with 754 manual recording of temperature daily on Mon - Fri. All Min/Max thermometers have a 755 calibration certificate and are replaced prior to the expiration date.

756

757 Destruction of trial products are by incineration at an EPA approved site as contracted by 758 the University of Washington Medical Center, currently by Clean Harbors Environmental 759 Services. If preferred, trial products can be shipped back to the Novo Nordisk. 760 Destruction of returns can be performed on an on-going basis. At study closure, all trial 761 products are accounted for and any unused remaining inventory can be destroyed or 762 shipped back to Novo Nordisk.

763

764 At the time of study drug prescription and dispensing, research staff will provide patients 765 with instructions to store the study drug at room temperature (below 86°F), keeping the 766 study drug away from direct heat and light. Research staff will verify the conditions for 767 storage with patients on day 7±2 of study intervention period. However, research staff 768 will not specifically require patients to measure or record the storage temperature of the 769 study drug because of the short duration of the study intervention period, making it 770 extremely unlikely for the study drug to be compromised as long as patients properly 771 follow the storage instructions. There will be no trial medication(s) dispensed to any 772 person not enrolled in the study. IDS will store unused study drug separately from used 773 study drugs in the refrigerator at 36°F to 46°F (2°C to 8°C) until the drug's expiration 774 date. Patients will be instructed to return used/unused study drug, and University of 775 Washington's IDS will destroy the returned study drug per its standard protocol outlined 776 above.

777

778 8.4 Auxiliary Supply

779 There is no additional item or equipment needed other than the ones listed under the 780 section of Study medication(s) / devices(s). Patients may continue to use the following 781 medications and devices during the study period:

782

- A rapid-acting insulin analogue that patients normally take following the 783 instructions of their clinicians, administered using either insulin pens or vials and 784 syringes
- Glucagon emergency kit, inject 1 mg/mL subcutaneously or intramuscularly as 786 needed for treatment of severe hypoglycemia

787 • Home glucose meters
788 • Home continuous glucose monitors
789

790 8.5 Randomization and Blinding

791 We will perform a randomized, placebo-controlled intervention study to minimise bias. 792 Study participants will be randomized in a 1:1 ratio to one of two arms within 2 stratified 793 groups groups (see Section 3.3). After a participant has been randomized, a study drug 794 request will be sent to IDS to dispense the study drug. In keeping with the blinded 795 procedure, the patient and research staff will not be aware of treatment assignment. The 796 study drug request sent to IDS will reflect only the dose of bridging insulin they should 797 receive. IDS will then dispense a prefilled syringe of either insulin glargine or matched 798 placebo to reflect this dose, directly to the research participant on the day it needs to be 799 administered. Participants will then administer the study drug at home according to the 800 instructions provided to them by their clinician investigators and/or research staff 801 according to their randomized assignment and the dosing described under Section 802 3.11.2.1.

803

804 8.6 Breaking of Blinded Codes

805 Breaking of the blinded code will not be applicable, as medical emergencies that may 806 possibly associated with treatment with insulin will be no different between the control 807 and the study groups. However, breaking the blinded code may be done if demanded by 808 the patient. Whenever a code is broken, the person breaking the code must record the 809 time, date and reason, as well as his/her initials in the source documents. All codes must 810 be kept throughout the study period. Accountability of all broken or unbroken codes 811 (hard copy or electronic) will be performed at or after trial closure.

812

813

814 9. CONCOMITANT ILLNESSES AND MEDICATIONS:

815 9.1 Definitions:

816 Concomitant illness: any illness that is present at the start of the trial (*i.e. at the first visit*). 817 Concomitant medication: any medication other than the trial product(s) that is taken 818 during the trial, including the screening and run-in periods.

819 Details of all concomitant illnesses and medication must be recorded at trial entry (*i.e. at 820 the first visit*). Any changes in concomitant medication must be recorded at each visit. If 821 the change influences the subject's eligibility to continue in the trial, Novo Nordisk must 822 be informed.

823 The information collected for each concomitant medication includes, at a minimum, start 824 date, stop date or continuing, and indication.

825 For each concomitant illness, date of onset, date of resolution or continuing, at a 826 minimum, should be recorded.

827

828

829 10. ADVERSE EVENTS:

830 **10.1 Definitions**

831 The FDA approved version of the Prescribing Information or update thereof will be used
832 for assessment of expectedness.

833 **10.1.1 Adverse Event (AE):**

834 An AE is any undesirable medical event occurring to a subject in a clinical trial, whether or
835 not related to the trial product(s). This includes events reported from the first trial related
836 activity after the subject has signed the informed consent and until post treatment follow-
837 up period as defined in the protocol. The following should not be recorded as AEs, if
838 recorded as medical history/concomitant illness on the CRF at screening:

- 839 • Pre-planned procedure, unless the condition for which the procedure was planned has
840 worsened from the first trial related activity after the subject has signed the informed
841 consent
- 842 • Pre-existing conditions found as a result of screening procedures

843 **Clinical Laboratory Adverse Event:**

844 A clinical laboratory AE is any clinical laboratory abnormality regarded as clinically
845 significant i.e. an abnormality that suggests a disease and/or organ toxicity and is of a
846 severity, which requires active management, (i.e. change of dose, discontinuation of trial
847 product, more frequent follow-up or diagnostic investigation).

849 **Serious Adverse Event (SAE):**

850 A serious AE is an experience that at any dose results in any of the following:

- 851 • Death
- 852 • A life-threatening* experience
- 853 • In-patient hospitalisation or prolongation of existing hospitalization
- 854 • A persistent or significant disability/incapacity
- 855 • A congenital anomaly/birth defect
- 856 • Important medical events that may not result in death, be life-threatening*, or require
857 hospitalisation may be considered an SAE when, based upon appropriate medical
858 judgement, they may jeopardise the subject and may require medical or surgical
859 intervention to prevent one of the outcomes listed in this definition
- 860 • Suspicion of transmission of infectious agents

861 *The term life-threatening in the definition of SAE refers to an event in which the subject was at risk of death
862 at the time of the event. It does not refer to an event which hypothetically might have caused death if it was
863 more severe.

865 **Serious Adverse Drug Reaction (SADR):**

866 An adverse drug reaction (ADR) is an adverse event (AE) for which a causal relationship
867 to the trial product is at least possible i.e. causal relationship is conceivable and cannot be
868 dismissed. Serious adverse reaction (SAR): Adverse event which fulfils both the criteria
869 for a Serious Adverse Event and the criteria for an Adverse Reaction.

871 **Suspected Unexpected Serious Adverse Reaction (SUSAR):**

873 An SAE which is unexpected and regarded as possibly or probably related to the
874 trial/study product by the investigator.

875

876 **Medical Events of Special Interest (MESI):** A MESI is (1) a medication error (e.g. 877
wrong drug administration or wrong route of administration) or (2) a suspected 878
transmission of an infectious agent via the product

879

880 **Non-Serious Adverse Event:**

881 A non-serious AE is any AE which does not fulfil the definition of an SAE.

882

883 **10.2 Severity Assessment Definitions:**

- 884 • Mild: Transient symptoms, no interference with the subject's daily activities
- 885 • Moderate: Marked symptoms, moderate interference with the subject's daily activities
- 886 • Severe: Considerable interference with the subject's daily activities, unacceptable

887

888 **10.3 Relationship to study medication Assessment Definitions:**

- 889 • Probable: Good reasons and sufficient documentation to assume a causal relationship
- 890 • Possible: A causal relationship is conceivable and cannot be dismissed
- 891 • Unlikely: The event is most likely related to an etiology other than the trial product

892

893 **10.4 Outcome Categories and Definitions:**

894 • Recovered: Fully recovered or by medical or surgical treatment the condition has 895
returned to the level observed at the first trial related activity after the subject signed the 896
informed consent

897 • Recovering: The condition is improving and the subject is expected to recover from the 898
event. This term should only be used when the subject has completed the trial

899 • Recovered with sequelae: As a result of the AE, the subject suffered persistent and 900
significant disability/incapacity (e.g. became blind, deaf, paralysed). Any AE recovered 901 with
sequelae should be rated as an SAE

902 • Not recovered

903 • Fatal

904 • Unknown

905

906 **10.5 Collection, Recording and Reporting of Adverse Events**

907 All events meeting the definition of an adverse event will be collected and reported from 908
the first study-related activity after the subject has signed the informed consent and until 909 the
end of the posttreatment follow-up period as stated in the protocol.

910

911 We intend to comply with all local legal, regulatory, and IRB requirements.

912

913 All AEs will be reported on the Adverse Events form that will be completed by the study
914 staff, who are masked as to study treatment assignment, at each regular follow-up visits.

915 This will ensure that AEs are ascertained in an unbiased manner using the same 916
standardized methodology for patients in both treatment arms. Forms will include 917
standardized questions relating to specific events of import in diabetic patients on either 918 of
the study treatment arms, as well as any significantly abnormal physical findings 919
identified on examination and any significantly abnormal laboratory results obtained on 920 the
patient between visits or at the time of the visit. AEs reported or ascertained between 921 clinic
visits will be captured and reported at the time of the next scheduled visit. Pre- 922 existing
conditions (that is, any condition that was known to be present prior to the 923 signing of
informed consent or was identified during the screening procedures) will not 924 be considered
or recorded as AEs unless the condition worsens in intensity or frequency 925 after the initiation
of study intervention. Likewise, continuing AEs will not be reported 926 as AEs at subsequent
visits unless they increase in severity or frequency between visits, 927 they result in criteria for
a SAE, and/or they resolve between visits. The investigators 928 will report all adverse events
including SAEs, SUSARs, serious adverse drug reactions 929 (SADRs) to the competent
authority and independent ethics committee/IRB based upon 930 federal regulations and
local/IRB policies. The investigators will also report all SAEs, 931 SUSARs, and SADRs to
Novo Nordisk at the same time such events are reported to 932 regulatory authorities or within
15 days from the investigators becoming aware of such 933 adverse events, whichever comes
first.

934

935 The investigators will collect the following information at minimum for each of these
936 events:

937 1. Study name
938 2. Patient identification (e.g. initials, sex, age)
939 3. Event (preferably a diagnosis)
940 4. Drug
941 5. Reporter identification (e.g. Name, or initials)

942 Also 6) Causality, and 7) Outcome

943

944 **10.6 Follow-up of Adverse Events**

945 During and following a subject's participation in a clinical trial, the investigators and
946 institution will provide adequate medical care to the study subject for any study-related
947 adverse events, including clinically significant laboratory values related to the study.
948 This medical care for study subjects will be provided regardless of their insurance status.
949

950 All adverse events classified as serious or severe or possibly/probably related to the trial 951
product must be followed until the subject has recovered and all queries have been 952
resolved. For cases of chronic conditions follow-up until the outcome category is 953
“recovered” is not required, as these cases can be closed with an outcome of “recovering” 954 or
“not recovered”.

955

956 All other adverse events must be followed until the outcome of the event is “recovering”
957 (for chronic conditions), or “recovered” or until the end of the post-treatment follow-up

958 stated in the protocol, whichever comes first, and until all queries related to these AEs have
959 been resolved.

960

961 **10.7 Pregnancy**

962 Study subjects will be instructed to notify the investigators immediately if they become
963 pregnant.

964

965 The investigators will report to Novo Nordisk any pregnancy occurring during the trial
966 period. Reporting of pregnancy by investigators will occur within the same timelines
967 described above for reporting of Adverse Events.

968

969 Pregnancy complications should be recorded as adverse event(s). If the infant has a
970 congenital anomaly/birth defect this must be reported and followed up as a serious adverse
971 event.

972

973 **10.8 Precautions/Over-dosage**

974

975 All patients enrolled in the study will have access to and be instructed to wear a CGM from
976 day 0 until the completion of study intervention. Patients may continue to wear the CGM
977 as part of the standard of care for their diabetes beyond the study period. Use of a CGM
978 has been shown to be effective in preventing hypoglycemia, which is a possible
979 complication related to overdose of insulin, as well as morbidities and mortality related to
980 hypoglycaemia (11). Clinician investigators and/or research staff will also provide patients
981 with instructions on prompt recognition and proper treatment of hypoglycemia and
982 prescribe patients with glucagon kit to be used for treatment of hypoglycemia as needed.
983 Patients will have access to medical providers at the DCC by phone or e-care
984 communication if additional guidance is needed in the event of overdose by the study drug
985 during the study.

986

987

11. LIABILITY AND SUBJECT INSURANCE:

988

989 During and following a subject's participation in the clinical trial, the investigators and
990 their institution will provide adequate medical care to the study subject for any study-
991 related adverse events, including clinically significant laboratory values related to the
992 study. This medical care for study subjects will be provided regardless of their insurance
993 status.

994

995 The investigators will be responsible for the conduct of the study and agree to defend,
996 indemnify, and hold harmless Novo Nordisk, any of its parent companies, affiliates, or
997 subsidiaries, and their respective officers, directors, employees, agents, representatives,
998 distributors, salespersons, customers, licensees, and end-users from and against any claim,
999 suit, demand, loss, damage, expense or liability imposed by any third party arising from or
1000 related to: (a) any breach of Novo Nordisk-investigators' obligations or representations; or
1001 (b) Novo Nordisk-investigators' negligent or grossly negligent use or willful misuse of the
study drug, the results, or services derived therefrom. This

GLIDE Study

1002 indemnification shall not apply in the event and to the extent that a court of competent
1003 jurisdiction or a duly appointed arbiter determines that such losses or liability arose as a
1004 result of Novo Nordisk's gross negligence, intentional misconduct, or material breach of
1005 its responsibilities.

1006

1007

1008 12. EVALUABILITY OF SUBJECTS:

1009 For all analyses, patients not meeting the compliance criteria of the study listed under
1010 Section 3.13 will not be included in the analyses. Clinician investigators will determine
1011 patients' compliance with study drug based on patient's recorded log and patients' time
1012 spent wearing CGM after CGM data has been downloaded at the follow-up visit. We will
1013 include data from all randomized participants in our data analysis. The subjects or
1014 observations to be excluded, and the reasons for their exclusion will be documented and
1015 signed by the clinician investigators or staff prior to database release. The documentation
1016 will be stored together with the remaining trial documentation.

1017

1018 **PK and/or PD Modelling**

1019 PK and PD modelling is not planned for this study.

1020

1021

1022 13. PREMATURE TERMINATION OF STUDY:

1023 All patients participating in the study will have already been taking insulin glargine prior
1024 to their enrolment in the study. Therefore, we do not anticipate patients developing any
1025 unforeseen adverse effect associated with the administration of insulin glargine. Similarly,
1026 we do not anticipate patients developing any unforeseen adverse effect associated with the
1027 administration of the placebo (normal saline).

1028

1029 IDeg will be discontinued if a patient:

- 1030 • Experiences an SAE related to IDeg (with the exception of hypo- or
1031 hyperglycemia) or an intolerable AE, such as a persistent allergy or rash.
- 1032 • Becomes pregnant or breastfeeding
- 1033 • Withdraws consent for participation in the study

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043 Date and reason for drug discontinuation will be recorded on the relevant Case Report
1044 Form. Refer to Section 3.7 for Withdrawal Criteria. All study discontinuations decided by
1045 the clinician investigators will be reviewed by University of Washington's IRB. Patients
1046 discontinued from the study will be placed back on their original home insulin regimen and
1047 asked to follow up with their outpatient endocrinologists within 2-12 weeks, or at an
1048 interval deemed appropriate by their outpatient endocrinologists. Major attempts will be
1049 made to schedule an end-of-study follow-up phone call for all patients who are lost to
1050 follow-up during the course of the study.

1051

1052

1053

1054

1055

1056

1057 Patients who discontinue study drug or withdraw consent from the study prior to
1058 completion of data collection will not be replaced.

1047 14. PUBLICATION PLAN:

1048 Data and results generated from the study will be published or publicly presented at
1049 national and/or regional meetings in the form of abstracts, posters, and/or oral
1050 presentations. Clinician investigators will make good faith effort to publish data and results
1051 of this study in a peer reviewed scientific journal. The clinician investigators intend to
1052 register the study with clinicaltrials.gov.

1053

1054

1055

1056

1057 15. REFERENCES:

1. Heise T, Nosek L, Bottcher SG, Hastrup H, Haahr H. Ultra-long-acting insulin degludec has a flat and stable glucose-lowering effect in type 2 diabetes. *Diabetes Obes Metab* 2012; 14:944-950.
2. Haahr H, Heise T. A review of the pharmacological properties of insulin degludec and their clinical relevance. *Clin Pharmacokinet* 2014; 53:787-800.
3. Heise T, Hermanski L, Nosek L, Feldman A, Rasmussen S, Haahr H. Insulin degludec: four times lower pharmacodynamic variability than insulin glargine under steady-state conditions in type 1 diabetes. *Diabetes Obes Metab* 2012; 14:859-864.
4. Lane W, Bailey TS, Gerety G, Gumprecht J, Philis-Tsimikas A, Hansen CT, Nielsen TSS, Warren M, Group I, Switch. Effect of Insulin Degludec vs Insulin Glargine U100 on Hypoglycemia in Patients With Type 1 Diabetes: The SWITCH 1 Randomized Clinical Trial. *Jama* 2017; 318:33-44.
5. Liu W, Yang X, Huang J. Efficacy and Safety of Insulin Degludec versus Insulin Glargine: A Systematic Review and Meta-Analysis of Fifteen Clinical Trials. *Int J Endocrinol* 2018; 2018:8726046.
6. Hamamoto Y, Honjo S, Fujimoto K, Tokumoto S, Ikeda H, Wada Y, Koshiyama H. Basal and Bolus Insulin Dose Changes after Switching Basal Insulin to Insulin Degludec in Patients with Type 1 Diabetes Mellitus: A Pilot Study. *Clin Drug Investig* 2017; 37:845-852.
7. Bohn B, Zimmermann A, Wagner C, Merger S, Dunstheimer D, Kopp F, Gollisch K, Zindel V, Holl RW, Initiative DPV. Real-life experience of patients starting insulin degludec. A multicenter analysis of 1064 subjects from the German/Austrian DPV registry. *Diabetes Res Clin Pract* 2017; 129:52-58.
8. Lane WS, Weatherall J, Gundgaard J, Pollock RF. Insulin degludec versus insulin glargine U100 for patients with type 1 or type 2 diabetes in the US: a budget impact analysis with rebate tables. *J Med Econ* 2018; 21:144-151.
9. Lecumberri E, Ortega M, Iturregui M, Quesada JA, Vazquez C, Orozco D. Quality-of-life and treatment satisfaction in actual clinical practice of patients with Type 1 diabetes mellitus (T1DM) and hypoglycemia treated with insulin degludec. *Curr Med Res Opin* 2018; 34:1053-1059.
10. Heise T, Korsatko S, Nosek L, Coester HV, Deller S, Roepstorff C, Segel S, Kapur R, Haahr H, Hompesch M. Steady state is reached within 2-3 days of once-daily administration of degludec, a basal insulin with an ultralong duration of action. *J Diabetes* 2016; 8:132-138.
11. ICH. Guideline for Good Clinical Practice in International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceutical for Human Use. 1996.
12. Wolpert HA. Use of continuous glucose monitoring in the detection and prevention of hypoglycemia. *J Diabetes Sci Technol* 2007; 1:146-150

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

APPENDIX A: Sample Subject Daily Insulin Logbook, version-1.0

1106

Trial ID: U1111-1214-3257

1107

1108

Subject No. XX Subject Initials: ABC Subject DOB: MMDDYY

1109

1110

Date: MMDDYY Study Day: #

Time point	Time (hh:mm)	BG value (mg/dL)	Carbohydrates consumed (grams)	Bolus insulin dose NUTRITIONAL (units)	Bolus insulin dose CORRECTION (units)	Basal insulin dose (units)
Before breakfast						
Before lunch						
Before dinner						
At bedtime						
*Extra time point #1						
*Extra time point #2						
*Extra time point #3						

1111

* To be used only if needed. NOTE: please use these fields to enter any snacks consumed as well.

1112

1113

1114

Did you exercise today? [] yes or [] no

1115

1116

If yes, then please specify when and how long: from _____ to _____ (hh:mm)

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130
1131 **APPENDIX B: Sample Subject Hypoglycemia Episode Form, version 1.0**
1132 (see Section 3.12 for details on directions to fill out this form)
1133
1134 Trial ID: U1111-1214-3257
1135 Subject No. XX Subject Initials: ABC Subject DOB: MMDDYY
1136
1137 Date: MMDDYY Study Day: #
1138
1139 1. When did the low BG start? _____(hh:mm)
1140 2. What was the lowest BG value during the episode? _____(mg/dL)
1141 3. Did you experience any of the following symptoms with this low BG?
1142 [] No or [] Yes (check all that apply)
1143 [] Sweating
1144 [] Trembling
1145 [] Feeling hungry
1146 [] Rapid or irregular heartbeat
1147 [] Feeling confused
1148 [] Feeling drowsy
1149 [] Speech difficulty
1150 [] Visual disturbances
1151 [] Odd behavior
1152 [] Impaired balance
1153 [] Reduced coordination of movements
1154 [] Headache
1155 [] Feeling discomfort or unease
1156 [] Seizure
1157 [] Loss of consciousness
1158 [] Other
1159 4. Were you able to manage it by yourself? [] yes or [] no. If no, please fill out Q9-
1160 12 as well. If yes, please skip Q9-12.
1161 5. How did you treat the low BG? _____
1162 6. When did the low BG resolve? _____(hh:mm)
1163 7. Did this episode happen in relation to physical activity? [] Yes or [] No
1164 If yes, then what were you doing? _____
1165 8. Were you asleep when the low blood glucose happened? [] Yes or [] No
1166 9. Who assisted in treatment of the episode? _____
1167 10. Where was the treatment administered? _____
1168 11. What treatment was provided to treat the episode? _____
1169 12. Were your symptoms alleviated by this treatment? [] Yes or [] No
1170
1171
1172
1173
1174
1175
1176