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STATISTICAL DESIGN AND POWER ANALYSIS

Statistical Design, Power and Analytic Approach. We will test neurosurgical patients (ages 15-25 years)
undergoing evaluation and treatment who require chronic (>7 d) sEEG implantation and recording of the temporal
lobe for seizure localization or brain mapping. One set of behavioral tasks, and corresponding
electrophysiological measures, will allow us to address Aim 1. Another will address Aim 2. Patient permitting,
our goal is to have the same patient complete all tasks. All participants will undergo neuropsychological tests
and will have detailed history/demographic information as part of their clinical battery.

Power and Sample Size. Robust behavioral effects will allow examination of perceptual weighs in neural
representation. Using behavioral effect sizes from Figure 2 pilot data to estimate the sample size required for a
predicted power of 0.8 (two-tailed alpha at .05) yields a sample of N=25. This leaves open the issue of power for
neural measures. Our pilot EEG data with the same task/stimuli revealed robust effects with N=23 (Figure A),
reassuring that N=25 is a reliable target for EEG. The SNR advantages of sEEG versus EEG, and our sEEG
pilot data in Figure 3, suggest that this sample size will be more than sufficient for sEEG measures, especially
as they will be utilized in a within-patient/within-electrode experimental design.

Analyses. Specific pre-registered analyses will assess the hypotheses outlined in the Approach section of the
proposal. Specifically, we will test the following hypotheses:

(H1) broadly, the relative perceptual weight of VOT and F0, as measured behaviorally, will be reflected
in cortical response, (H2) with modulation as a function of baseline perceptual weights, (H3) shifts
experimentally invoked by a change in listening context by presenting speech in noise, (H4) and by
introducing an ‘accent’ that shifts short-term input regularities across VOT and FO. In the latter case, our
approach will allow us to test the specific directional hypothesis (H5) that FO perceptual weights in the
DBSL paradigm are both exaggerated by Canonical input regularities that cleanly convey a VOTxFO
correlation consistent with English and that FO perceptual weights are down-weighted upon introduction
of a regularity that violates the typical pattern of English (supported by scalp EEG pilot, Figure A). Our
use of sEEG allows us to evaluate these hypotheses across the supratemporal plane thereby testing the
strong, and falsifiable, hypothesis (H6) that adaptive plasticity effects are present in HG versus (H7)
apparent only at higher levels of the cortical hierarchy. Our ability to test these hypotheses is
complemented by sEEG electrode placement in cortical regions outside STP (see Figure 3) which will
support secondary hypotheses and serve as control electrode sites.

The study design is justified our extensive behavioral research demonstrating the feasibility of the project
rationale. On the electrophysiological side, our pilot data (Figures A,3) demonstrate the feasibility of recording
robust sEEG and EEG signals responsive to the acoustic dimensions we manipulate. This will provide clear,
informative, interpretable data with which to evaluate the hypotheses listed above.

Evaluating the Hypotheses: Behavioral Analyses. We will evaluate the behavioral impact of the VOT and FO
acoustic dimensions on classification using mixed-effects logistic regression (with patient as a random effect,
stimulus VOT and FO as fixed effects and classification responses as the outcome). Following our prior work, ">
29 perceptual weights for the dimensions will be computed for each patient as the correlation between dimension
values and the proportion of peach classifications across all stimuli in the VOTxFO stimulus grid with absolute
values of the correlation coefficients normalized to sum to one as an index of relative perceptual weight in quiet
(Aim 1) and in noise (Aim 2). To examine the impact of a change in ‘accent’ in the DBSL paradigm, we will use
mixed logit models with responses as a function of patient, block, test stimulus FO and the interaction between
block and FO (Aim 2). Patient will be modeled as a random effect, with the other factors as fixed effects.

Evaluating the Hypotheses: Neural Analyses. We will take a multi-pronged analysis approach. Our pilot data
in Figure 3 demonstrate that high-y activity (HGA) is modulated by graded acoustic details across the VOT and
FO dimensions across electrodes placed in the STP. Following the analysis pipeline used in our pilot data
analyses, we will specifically examine stimulus-time-locked HGA to the Test stimuli, which possess consistent,
perceptually-ambiguous VOT and differentiated FO. We have specific, directional predictions (detailed above)
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regarding how HGA to FO-differentiated Test stimuli will vary according to perceptual weight in behavior. To
briefly recap, we expect that HGA to Test stimuli will be better differentiated (1) in the Speech-in-Noise compared
to the Clear baseline context (because FO carries greater perceptual weight); (2) in the Canonical, compared to
the Reverse, context; (3) in the Canonical, compared to the Baseline Clear Speech context (because stimulus
statistics exaggerate the dimension regularity in behavior).

High-gamma amplitude will be calculated using an approach that utilizes the Hilbert transform. Specifically, the
signal will be filtered into 8 subbands, logarithmically spaced between 70-150 Hz. For each subband, we will
calculate the amplitude (absolute value) of the analytic signal, which is estimated using the Hilbert transform.
Each subband will be normalized to its baseline mean and standard deviation, estimated across trials. The HGA
estimate is then the mean across these subbands.

We will use least-squares linear regression neural encoding models to investigate relationships between acoustic
stimulus dimensions and STP neural responses during the baseline quiet context, in which stimuli sample a 2-d
FO x VOT grid. This approach will allow us to identify the subset of electrodes and temporal windows that encode
at least one of these 2 dimensions at baseline; targeted analysis on this subset (described below) will then be
used to compare listening contexts.

Encoding model inputs will consist of FO and VOT, with an output of channel- and time-specific HGA. For a given
electrode, individual models will be built using single trial data and a sliding window, allowing us to identify the
temporal window relative to stimulus onset that yields significant models. Model quality will be assessed in two
ways. First, using models built on all trials, we will calculate the regression F-statistic, which determines if any
coefficients are significant. This will be compared to null distributions estimated with permutation tests that shuffle
data across trials. Second, goodness-of-fit will be assessed for significant models by performing leave-one-out
cross-validation and calculating R?, the proportion of variance in neural activity explained by the model. Finally,
we will assess the relative encoding strength of each acoustic dimension using model coefficient t-statistics. In
summary, this approach will allow us to identify the timing and anatomical location of FO and VOT encoding
during baseline quiet listening conditions for which dimensions are sampled orthogonally (as in Figure 1a).

To characterize shifts in neural encoding across listening contexts, we will investigate Noise using encoding
models and Canonical/Reverse contexts using cluster-based approaches.***° Encoding models will be built from
the Noise context for all channels and timepoints, using the same approach as Baseline. If a channel/timepoint
is significant in either Baseline or Noise, the FO and VOT coefficient t-statistics will be compared across contexts.
We hypothesize that encoding of FO will strengthen and VOT will weaken in Noise, as measured by changes in
t-statistic magnitudes across multiple models. Next, we will compare neural responses for each of the two Test
stimuli (which were embedded in the FO x VOT grids, Figure 1a) between Baseline vs. Canonical and Canonical
vs. Reverse. The clustering approach will look only at Baseline significant channels and time windows and
involves randomly assigning listening context labels to single-trial data followed by a t-test at each time step.
Across all permutations, a criterion value will be established for each timepoint (>95% of absolute value of ).
For each of these permutations, we will next determine whether its value exceeds criterion across timepoints,
and for how many timepoints it exceeds criterion (a ‘cluster’). For each cluster, t values will be summed and
assigned to all points in the cluster, with the largest summed cluster value stored for each permutation. This will
create a null distribution of 1000 cluster values. We then will establish whether the cluster size calculated across
real neural data (organized according to listening context) exceeds the 95% permutation-based cluster values
such that p<.001 indicates an observed cluster is greater than all permutation-based clusters. Using this
approach, we will identify context-dependent shifts in HGA responses, which we predict will reflect observed
shifts in perceptual weights. Namely, we hypothesize that HGA responses in FO-encoding channels will be
enhanced in the Canonical context relative to both Baseline and the Reverse context.

Rigor and Reproducibility. Analyses will be controlled for multiple comparisons, with sex as a co-variate in our
analyses. We will use pre-registration and provide access to all the deidentified source data.
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