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ABSTRACT 

BACKGROUND 

Indirect muscle injuries (IMIs) are a considerable burden to elite football (soccer) teams and 

prevention of these injuries offers many benefits. Preseason medical, musculoskeletal and 

performance screening (termed periodic health examination (PHE)) can be used to help 

determine players at risk of injuries such as IMIs, where identification of PHE-derived 

prognostic factors (PF) may inform IMI prevention strategies. Furthermore, using several PFs 

in combination within a multivariable prognostic model may allow individualised IMI risk 

estimation and specific targeting of prevention strategies, based upon an individual’s PF 

profile. No such models have been developed in elite football and the current IMI prognostic 

factor evidence is limited. This study aims to: 1) to develop and internally validate a 

prognostic model for individualised IMI risk prediction within a season in elite footballers, 

using the extent of the prognostic evidence and clinical reasoning; 2) explore potential PHE-

derived PFs associated with IMI outcomes in elite footballers, using available PHE data from 

a professional team. 

 

METHODS 

A retrospective review has been completed of PHE and injury data, routinely collected over 5 

years (from 1st July 2013 to 19th May 2018) from a population of elite male players at an 

English Premier League football club.  Of 60 candidate PFs, 15 were excluded. Ten factors 

will be included in model development that were identified from a systematic review, 

missing data assessment, measurement reliability evaluation and clinical reasoning.  A full 

multivariable logistic regression model will be fitted, to ensure adjustment before backward 

elimination. The performance and internal validation of the model will be assessed. The 
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remaining 35 candidate PFs are eligible for further exploration, using univariable logistic 

regression to obtain unadjusted risk estimates.  Exploratory PFs will be grouped according to 

type and incorporated into multivariable logistic regression models to determine risk 

estimates. 

 

DISCUSSION 

This study will offer insights into clinical usefulness of a model to predict IMI risk in elite 

football and highlight the practicalities of model development in this setting.  Exploration 

may identify other relevant PFs for future confirmatory studies, model updating, or influence 

future injury prevention research. 
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BACKGROUND 

Indirect muscle injuries (IMI) are the most common injury type in elite football (soccer), 

predominantly affecting lower extremity muscle groups (1, 2). Such injuries occur in the 

absence of direct impact related trauma (during sprinting for example)(3, 4) and are 

subclassified into functional disorders without macroscopic structural tissue muscle damage, 

or structural injuries with clear evidence of muscle disruption (3, 4).  

 

IMIs are problematic for elite teams in terms of both incidence and severity(5), accounting 

for 30.3% to 47.9% of all injuries that result in time lost to both training and competition (1, 

6-9), with the mean and median absence duration reported as 14.4(1) and 15 days 

respectively (8). Player availability is crucial to team prosperity, with vast commercial and 

financial rewards on offer to successful teams and players (10, 11). Conversely, player 

absences through injury negatively affect team performance (12, 13), increase demand on 

medical services and carry a significant financial burden.  As an illustration, for each first 

team player missing through injury, the daily cost to a participating team in the UEFA 

Champions League, is approximately €17000 to €20000 (14, 15). 

 

Periodic Health Examination (PHE) consists of medical examination, musculoskeletal 

assessment, functional movement evaluation and performance tests during preseason and in-

season periods and is used by 94% of elite teams (16). PHE is considered important because 

its intended purposes are to: 1) allow regular health monitoring for underlying but 

asymptomatic pathology (17); 2) establish baseline measures for setting rehabilitation or 

training targets (18); 3) identify individuals who are susceptible to common or severe injury 

types (such as IMIs)(19). For the latter function, PHE cannot detect causes of injury, but can 
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highlight factors that may be associated with an injury outcome (prognostic factors) and 

therefore help explain differences in injury risk across individuals within the team (18). 

Several prognostic factors could also be used in combination within a multivariable 

prognostic model to predict an individual’s absolute injury risk (20, 21). Importantly, both 

prognostic models and prognostic factors (PFs) can be used inform management approaches 

designed to modify an individual’s absolute risk (21). Despite the potential benefits of 

prognostic models for shaping injury prevention strategies aimed at clinically important 

injuries such as IMIs, none have been developed in elite football (22). In addition, there are 

significant methodological limitations in the evidence base on PHE-derived PFs (22).  

 

Therefore, this study will consist of two primary objectives: 1) to develop and internally 

validate a prognostic model for individualised IMI risk prediction during a season in elite 

footballers, using a small number of PHE-derived candidate PFs selected from a previous 

systematic review (22) and clinical reasoning; 2) to explore potential PFs associated with IMI 

outcomes during a season  in this elite cohort using available PHE data from a professional 

team. 

 

METHODS 

Study Design  

This study will be of retrospective cohort design, using a population of male elite football 

players aged 16-40 years old at an English Premier League club. The first objective will be 

conducted in accordance with existing guidelines for model development and internal 

validation (23, 24),  and reported in accordance with the Transparent Reporting of a 
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Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement 

(25, 26). The second objective will be conducted in accordance with existing guidelines (27) 

and reported in accordance with the REporting recommendations for MARKer prognostic 

studies (28, 29). 

 

Data sources  

Both studies will use routinely collected data that was obtained over five seasons (from 1st 

July 2013 to 19th May 2018). Data collected from the musculoskeletal and performance test 

components of the club’s PHE will be used to identify candidate PFs. Injury outcome data 

will also be used to establish the available number of IMI outcomes. 

 

Preseason PHE data collection 

Each new season commenced from July 1st. Available players completed a mandatory PHE 

on one of three days during the first week of the season. Typically, the musculoskeletal and 

performance components of the PHE included: 1) anthropometric measurements; 2) medical 

history (i.e. previous injury history); 3) musculoskeletal examination tests; 4) functional 

movement and balance tests; 5) strength and power tests. The PHE test order was self-

selected by each player and a standardised warm up was not implemented, although players 

could undertake their own warm up procedures if they wished. Each component of the PHE 

test battery was standardised according to a written protocol and examined by 

physiotherapists, sports scientists or club doctors. The same examiners performed the same 

test every season, to avoid inter-tester variability. Throughout the five-year data collection 

period, no examiner attrition occurred.  
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Participant follow up and injury data collection 

Players were followed up to the last day of each competitive domestic season (defined as the 

date of the last first team game of the season) irrespective of whether they had completed the 

PHE procedure or not. Players completed their routine training and match programmes 

throughout. For every player in the squad, any injuries that occurred during the season were 

assessed and electronically documented within 24 hours by a club doctor or physiotherapist 

in accordance with the Consensus Statement on Injury Definitions and Data Collection 

Procedures in Studies of Football Injuries (30). Musculoskeletal assessments were dependent 

on the clinical presentation, although typically consisted of observation, effusion, range of 

movement, muscle length and resisted muscle tests, palpation and special diagnostic manual 

tests. Radiological imaging was used to assist diagnosis as required. Ultrasound scans were 

performed by the club doctor using a Toshiba Aplio 500 or 1900 machine (Toshiba 

Corporation, Tokyo, Japan). Magnetic Resonance Imaging (MRI) was performed as 

appropriate, using a Canon Vantage Titan 3T Scanner (Canon Medical Systems, Otowara, 

Japan) according to sequences determined by the club doctor. Images were evaluated by a 

club doctor and an independent musculoskeletal radiologist.  

 

The medical professionals were not blinded to PHE data at the time of diagnosis. These data 

were not routinely used to inform diagnoses, but instead used to identify functional 

rehabilitation targets and for benchmarking. Following injury, players completed a 

rehabilitation programme as directed by club medical staff to enable them to return to 

training and match participation. 
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Participants and eligibility criteria 

Eligible participants were identified from a review of the PHE database entries during the 

dates stated above. During any season, participants were eligible for inclusion into the 

analysis if they: 1) were aged between 16-40 years; 2) had an outfield position (i.e. not a 

goalkeeper); 3) participated in PHE testing for the relevant season. Participants were 

excluded from the analysis for any season if they were a triallist player or not contracted to 

the club at the time of PHE.  

 

Ethics and Data Use 

Because all data were captured from the mandatory PHE completed through the participants’ 

employment, informed consent was not required. The anonymity and rights of all players 

were protected. The football club granted permission to use these data and the use of the data 

for this study was approved by the Research Ethics service at the University of Manchester. 

This study has been registered on ClinicalTrials.gov, with registered number 

as……………………….. 

 

Data extraction 

All PHE records from eligible participants were extracted and placed into a separate 

database. Using the club’s electronic medical records system, a further database was 

generated of all recorded injuries for each season and a manual review of each eligible 

participant’s medical record was undertaken to ensure accuracy. Each injury was categorised 

according to: 1) contact or non-contact mechanism of injury; 2) injured side; 3) affected body 

area; 4) injury type i.e. IMI/ligament/tendon/cartilage/contusion or 
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laceration/bone/concussion/other musculoskeletal injury; 5) muscle group and diagnostic 

classification if recorded as an IMI. This process allowed an in-house audit of injury 

incidence and absolute risk evaluation for each injury type for the squad overall and for those 

who underwent PHE. All IMIs were then extracted and merged with the PHE database of 

included participants, for each season in which they remained eligible.  

 

Outcome Measures 

The primary outcome measure for both studies will be the occurrence of an initial (index) 

lower extremity IMI sustained by a participant during a season. Only time-loss injuries will 

be included; that is, any index lower extremity IMI that occurred during match play or 

training that resulted in the player being unable to take full part in future match play or 

training (30). An IMI was confirmed during the injury assessment procedure outlined above, 

and graded by the club doctor or physiotherapist according to the Munich Consensus 

Statement for the Classification of Muscle Injuries in Sport (4). This diagnostic classification 

system is the primary method of muscle injury classification used by the club and has been 

validated previously (31).    

 

If an index lower extremity IMI occurred, the participant’s outcome for the season will be 

determined and that participant will no longer be considered at risk beyond the time of IMI 

occurrence. In these circumstances, participants will be included for further analysis at the 

start of the consecutive season, providing they remain eligible. If participants sustained any 

upper limb IMI or non-IMI injury type, these will be ignored and the participant will still be 

considered at risk of a lower extremity index IMI.  
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Each participant-season will be treated as independent. Eligible participants who were loaned 

out or transferred to another club throughout that season, but had not sustained an index IMI 

prior to the loan or transfer will still be considered in the risk set. Participants who sustained 

an index IMI while on loan will be included for analysis, as outlined above. Any participants 

who were permanently transferred during a season (anticipated to be very few) will be 

recorded as not having an IMI event during the relevant season and they will exit the cohort 

at this point. A sensitivity analysis may be conducted to evaluate the effect of player loans or 

transfers on the results.  

 

If there are a sufficient number of index IMI outcomes, secondary analyses may be 

performed, which may include outcomes of hamstring muscle IMIs, functional IMIs 

(classified as type 1A to 2B), or structural IMIs (classified as type 3 or 4) according to the 

Munich Consensus Statement criteria.(4) 

 

Sample Size 

As this study will retrospectively utilise the available dataset, a formal sample size 

calculation has not been conducted, as the total sample size and IMI outcomes are already 

fixed. To maximise power, we have elected to use all data from the 5-season period. This 

approach agrees with methodological recommendations that data splitting should be avoided, 

and all available data should be used for model validation (32). 

 

The number of candidate PFs for inclusion in model development will be restricted to be a 

minimum of 10 events per variable, which is recommended to reduce overfitting and 
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optimism during development of a logistic regression model (33). Note that ‘variable’ here 

means a parameter included (or considered for inclusion) in the model that corresponds to 

one of the PFs. Although data cleaning for the final season is still in progress, we anticipate 

that the minimum number of index IMIs will be 100, so will restrict to 10 candidate PFs 

(variables) for inclusion in the model.  

 

Assuming the model will have a modest R Nagelkerke-squared of 25%, then with an 

anticipated outcome proportion of 0.381, our 10 events per variable restriction corresponds to 

targeting an expected shrinkage of 0.85, and thus a relatively small amount of overfitting 

(15%) (34). 

 

Candidate prognostic factors 

A complete list of 60 candidate PFs extracted from the PHE dataset is presented in Table 1.  

 

Table 1: Candidate prognostic factors extracted from PHE data  

Type of Prognostic Factor Candidate Prognostic factor Measurement method Data type 

Anthropometrics 

Age Date of birth Continuous 

Height Standing height measure Continuous 

Weight Digital scales Continuous 

Body fat Skin callipers Continuous 

BMI Composite height (cm) 
and weight (kg) Continuous 

Medical history 

Frequency of previous muscle injuries within 3 years prior to PHE Medical records Discrete (treated as 
continuous) 

Most recent previous muscle injury within 3 years prior to baseline PHE Medical records Categorical 

Frequency of previous foot or ankle injuries within 3 years prior to PHE Medical records Discrete (continuous) 

Most recent previous foot or ankle injury within 3 years prior to PHE Medical records Categorical 
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Frequency of previous hip or groin injuries within 3 years prior to PHE Medical records Discrete (continuous) 

Most recent previous hip or groin injury within 3 years prior to PHE Medical records Categorical 

Frequency of previous knee injuries within 3 years prior to PHE Medical records Discrete (continuous) 

Most recent previous knee injury within 3 years prior to PHE Medical records Categorical 

Frequency of previous shoulder injuries within 3 years prior to PHE Medical records Discrete (continuous) 

Most recent previous shoulder injury within 3 years prior to PHE Medical records Categorical 

Frequency of previous lumbar spine injuries within 3 years prior to PHE Medical records Discrete (continuous) 

Most recent previous lumbar spine injury within 3 years prior to PHE Medical records Categorical 

Frequency of previous iliopsoas IMIs within 3 years prior to PHE Medical records Discrete (continuous) 

Most recent previous iliopsoas IMIs within 3 years prior to baseline PHE Medical records Categorical 

Frequency of previous adductor IMIs within 3 years prior to PHE Medical records Discrete (continuous) 

Most recent previous adductor IMIs within 3 years prior to PHE Medical records Categorical 

Frequency of previous hamstring IMIs within 3 years prior to PHE Medical records Discrete (continuous) 

Most recent previous hamstring IMIs within 3 years prior to PHE Medical records Categorical 

Frequency of previous quadriceps IMIs within 3 years prior to PHE Medical records Discrete (continuous) 

Most recent previous quadriceps IMIs within 3 years prior to PHE Medical records Categorical 

Frequency of previous calf IMIs within 3 years prior to PHE Medical records Discrete (continuous) 

Most recent previous calf IMIs within 3 years prior to PHE Medical records Categorical 

Musculoskeletal tests 

PROM R hip joint internal rotation Digital inclinometer Continuous 

PROM L hip joint internal rotation Digital inclinometer Continuous 

PROM R hip joint external rotation Digital inclinometer Continuous 

PROM L hip joint external rotation Digital inclinometer Continuous 

R Hip flexor muscle length Thomas test using 
digital inclinometer Continuous 

L Hip flexor muscle length Thomas test using 
digital inclinometer Continuous 

R Hamstring muscle length /neural mobility SLR using digital 
inclinometer Continuous 

L Hamstring muscle length /neural mobility SLR using digital 
inclinometer Continuous 

R Quadriceps muscle length Ely’s test using digital 
inclinometer Continuous 

L Quadriceps muscle length Ely’s test using digital 
inclinometer Continuous 

R Calf muscle length WBL using digital 
inclinometer Continuous 

L Calf muscle length WBL using digital 
inclinometer Continuous 

Toe touch in standing 
Measurement of 

distance from fingertips 
to floor 

Continuous 

Sacroiliac joint kinematic function Gillets test Categorical 
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Functional 
movement/balance tests 

R relative tibial angles SLS measurement with 
Dorsavi ViPerform IMU Continuous 

L Relative tibial angles SLS measurement with 
Dorsavi ViPerform IMU Continuous 

Y Balance Test – R anterior translation Y Balance Test Continuous 

Y Balance Test – L anterior translation Y Balance Test Continuous 

Y Balance Test – R posteromedial translation Y Balance Test Continuous 

Y Balance Test – L posteromedial translation Y Balance Test Continuous 

Y Balance Test – R posterolateral translation Y Balance Test Continuous 

Y Balance Test – L posterolateral translation Y Balance Test Continuous 

Strength/power tests 

R upper body peak power 
Double horizontal press 

using a Keiser Chest 
Press Air 350 machine 

Continuous 

L upper body peak power 
Double horizontal press 

using a Keiser Chest 
Press Air 350 machine 

Continuous 

R maximal loaded leg extension power Double leg press test using 
a Keiser Air 300 machine Continuous 

L maximal loaded leg extension power Double leg press test using 
a Keiser Air 300 machine Continuous 

R maximal loaded leg extension velocity Double leg press test using 
a Keiser Air 300 machine Continuous 

L maximal loaded leg extension velocity Double leg press test using 
a Keiser Air 300 machine Continuous 

R maximal loaded leg extension force Double leg press test using 
a Keiser Air 300 machine Continuous 

L maximal loaded leg extension force Double leg press test using 
a Keiser Air 300 machine Continuous 

CMJ height CMJ using force plates Continuous 

CMJ force per kilogram of body mass CMJ using force plates Continuous 

CMJ power CMJ using force plates Continuous 

Key: PHE=periodic health examination; R=right limb; L= left limb; WBL=weight bearing lunge; CMJ=countermovement jump; PROM=passive range of movement; SLR= 

straight leg raise; BMI= body mass index; Kg=kilos; f=force; Kg=kilos m = mass; SLS = single leg squat; IMU= inertial measurement units. 

 

 

Model development and internal validation  

We have chosen to conduct the model development before the PF exploration because of the 

restrictions on the number of PFs permitted to limit potential overfitting of the model.  

Because only 10 PFs will be used in model building, we have defined these candidate PFs a 

priori, (Table 2). Three candidate PFs have known importance based on the results of our 

previous systematic review so were selected for inclusion (22). All other PFs listed in Table 1 
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were eligible unless there were >15% missing observations or if reliability (where applicable) 

was classed as fair to poor (ICC < 0.70) (35). In these cases, the relevant candidate PFs were 

excluded (Table 3). This was to ensure that only the highest quality data will be used in the 

analysis, with PFs that would generally be available and routinely measured.  

 

Co-linearity amongst factors within a logistic regression model can cause inaccuracies in 

standard error and confidence interval estimates (36) so a scatterplot matrix was used to 

informally assess between-factor correlations for eligible PFs. If PFs were highly correlated, 

one of the PFs were dropped or new composite PFs were generated and replaced the original 

factors (highlighted in Tables 2-4). Typically, this occurred where measurements examined 

both right and left limbs separately; composite factor variables were therefore created for 

both between-limb measurement differences and the mean of the measurements for both 

limbs.  

 

Of the remaining eligible PFs, 7 further candidate factors were selected for inclusion, through 

use of clinical reasoning to identify those with a biologically plausible association with IMI 

development. The final set of 10 PFs is shown in Table 2. 
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Table 2: Restricted set of candidate prognostic factors for model development and validation. 

Selection 
method Candidate Prognostic factor Composite PF  Measurement unit Measurement 

method Data type Reliability (if 
applicable) 

Systematic 
review 

Age No Years & days Date of birth Continuous N/A 

Frequency of previous muscle injuries within 3 
years prior to PHE No Count Medical records 

Discrete 
(treated as 

continuous) 
N/A 

Most recent previous muscle injury within 3 years 
prior to baseline PHE No < 6 months, 6-12 

months, > 12 months Medical records Categorical N/A 

Clinical 
reasoning/ 
data quality 

CMJ power No Normalised peak force 
(N/Kg-0.67 ) 

CMJ using force 
plates Continuous 

Test-retest ICC 
= 0.92-0.98.(37) 

 

PROM hip joint internal rotation difference* Yes Degrees Digital 
inclinometer Continuous Intra-rater ICC= 

0.90.(38) 

PROM hip joint external rotation difference* Yes Degrees Digital 
inclinometer Continuous Intra-rater ICC = 

0.90.(38) 

Hip flexor muscle length difference* Yes Degrees Thomas test using 
digital inclinometer Continuous Inter-rater ICC = 

0.89.(39) 

Hamstring muscle length /neural mobility 
difference* Yes Degrees SLR using digital 

inclinometer Continuous 

Intra-rater ICC 
=0.95-0.98 (40) 
Interrater ICC = 
0.80-0.97.(41) 

Calf muscle length difference* No Degrees WBL using digital 
inclinometer Continuous 

Inter-rater = ICC 
0.80- 0.95.(42, 
43) Intra-rater = 
ICC 0.88.(43) 

BMI Yes Kg/m2 
Composite height 
(cm) and weight 

(kg) 
Continuous - 

Key: PF= prognostic factor; PHE=periodic health examination; WBL=weight bearing lunge; CMJ=countermovement jump; PROM=passive range of movement; 

ICC=intraclass correlation coefficient; SLR= straight leg raise; BMI= body mass index; Kg=kilos; N= newtons (note that N/kg-0.67 is a scaling factor to normalise force to body 

mass) m = mass; Note: composite factors are identified in the table with  * denoting  between limb differences. 
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Table 3: Candidate Prognostic factors excluded from both model development and 

prognostic factor exploration 

Type of prognostic factor Candidate Prognostic Factor 
Composite 

variable 
created 

Measurement 
unit Measurement method Data type Reason for 

elimination 

Anthropometric Body fat No Percentage Skin callipers Continuous Missing data > 
15% 

Musculoskeletal test 

Quadriceps muscle length difference* Yes Degrees Ely’s test using digital 
inclinometer Continuous 

Intra-rater ICC = 
0.69(44)  

 Inter-rater ICC 
= 0.66. (44) 

Mean quadriceps muscle length** Yes Degrees Ely’s test using digital 
inclinometer Continuous 

Intra-rater ICC = 
0.69(44)   

Inter-rater ICC = 
0.66. (44) 

Toe touch in standing No Centimetres Fingertips to floor distance Continuous Missing data > 
15% 

Sacroiliac joint kinematic function No Subjective score Gillets test Categorical Missing data > 
15% 

Functional movement/balance 
tests 

Y Balance Test – anterior 
translation difference* Yes Centimetres Y Balance Test Continuous Missing data 

>15% 

Y Balance Test – Mean anterior 
translation** Yes Centimetres Y Balance Test Continuous Missing data 

>15% 

Y Balance Test – posteromedial 
translation difference* Yes Centimetres Y Balance Test Continuous Missing data 

>15% 

Y Balance Test – Mean 
posteromedial translation** Yes Centimetres Y Balance Test Continuous Missing data 

>15% 

Y Balance Test –posterolateral 
translation difference* Yes Centimetres Y Balance Test Continuous Missing data 

>15% 

Y Balance Test – Mean 
posterolateral translation** Yes Centimetres Y Balance Test Continuous Missing data 

>15% 

R relative tibial angles No Degrees SLS measurement with 
Dorsavi Viperform IMU Continuous 

Within-session 
ICCs=0.27-

0.75 
 

Between-
session ICCs = 
0.55-0.77(45) 

L relative tibial angles (left leg) No Degrees SLS measurement with 
Dorsavi Viperform IMU Continuous 

Within-session 
ICCs= 0.27-

0.75 
 

Between-
session ICCs = 
0.55-0.77(45) 

Strength/power tests 

Upper body peak power difference* Yes 
Normalised watts 
per kilo (W/kg-

0.67) 

Double horizontal press 
using a Keiser Chest Press 

Air 350 machine 
Continuous Missing data > 

15% 

Mean upper body peak power** Yes 
Normalised watts 
per kilo (W/kg-

0.67) 

Double horizontal press 
using a Keiser Chest Press 

Air 350 machine 
Continuous Missing data > 

15% 

Key: PHE=periodic health examination; WBL=weight bearing lunge; CMJ=countermovement jump; PROM=passive range of movement; ICC=intraclass correlation 

coefficient; SLR= straight leg raise; SLS = single leg squat; BMI= body mass index; f=force; W= watts; (note that W/kg-0.67 has a scaling factor to normalise power to body 

mass) Kg=kilos; IMU= inertial measurement units; m = mass; Note: composite factors are identified in the table with  * denoting  between limb differences and **denoting  

combined mean values of both limbs. 
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Prognostic factor exploration 

Candidate PFs that were that were not selected for use in model development but not 

excluded, will be eligible for further exploratory analysis (Table 4). This will allow 

identification of other potentially useful associations which may assist future analyses or 

updating of the model created under the first objective of this investigation.  
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Table 4: Candidate prognostic factors - exploratory study 

Type of 
prognostic 

factor 
Candidate Prognostic factor Composite 

prognostic factor 
Measurement 

unit Measurement method Data type Reliability (if 
applicable/available) 

Anthropometric 
Height No Centimetres Standing height measure Continuous - 

Weight No Kilograms Digital scales Continuous - 

Medical history 

Frequency of previous foot or ankle injuries within 3 years prior 
to PHE. No Count Medical records Continuous - 

Most recent previous foot or ankle injury within 3 years prior to 
PHE. No 

< 6 months, 
6-12 months, 
> 12 months 

Medical records Categorical - 

Frequency of previous hip or groin injuries within 3 years prior 
to PHE. No Count Medical records Continuous - 

Most recent previous hip or groin injury within 3 years prior to 
PHE. No 

< 6 months, 
6-12 months, 
> 12 months 

Medical records Categorical - 

Frequency of previous knee injuries within 3 years prior to PHE. No Count Medical records Continuous - 

Most recent previous knee injury within 3 years prior to PHE. No 
< 6 months, 

6-12 months, 
> 12 months 

Medical records Categorical - 

Frequency of previous shoulder injuries within 3 years prior to 
PHE. No Count Medical records Continuous - 

Most recent previous shoulder injury within 3 years prior to 
PHE. No 

< 6 months, 
6-12 months, 
> 12 months 

Medical records Categorical - 

Frequency of previous lumbar spine injuries within 3 years prior 
to PHE. No Count Medical records Continuous - 

Most recent previous lumbar spine injury within 3 years prior to 
PHE. No 

< 6 months, 
6-12 months, 
> 12 months 

Medical records Categorical - 

Frequency of previous iliopsoas IMIs within 3 years prior to 
PHE. No Count Medical records Continuous - 

Most recent previous iliopsoas IMIs within 3 years prior to 
baseline PHE. No 

< 6 months, 
6-12 months, 
> 12 months 

Medical records Categorical - 

Frequency of previous adductor IMIs within 3 years prior to 
PHE. No Count Medical records Continuous - 

Most recent previous adductor IMIs within 3 years prior to PHE. No 
< 6 months, 

6-12 months, 
> 12 months 

Medical records Categorical - 

Frequency of previous hamstring IMIs within 3 years prior to 
PHE. No Count Medical records Continuous - 

Most recent previous hamstring IMIs within 3 years prior to 
PHE. No 

< 6 months, 
6-12 months, 
> 12 months 

Medical records Categorical - 

Frequency of previous quadriceps IMIs within 3 years prior to 
PHE. No Count Medical records Continuous - 

Most recent previous quadriceps IMIs within 3 years prior to 
PHE. No 

< 6 months, 
6-12 months, 
> 12 months 

Medical records Categorical - 

Frequency of previous calf IMIs within 3 years prior to PHE. No Count Medical records Continuous - 

Most recent previous calf IMIs within 3 years prior to PHE. No 
< 6 months, 

6-12 months, 
> 12 months 

Medical records Categorical - 

Musculoskeletal 
tests 

Mean PROM hip joint internal rotation** Yes Degrees Digital inclinometer Continuous Intra-rater ICC = 
0.90.(38) 

Mean PROM hip joint external rotation** Yes Degrees Digital inclinometer Continuous Intra-rater ICC =  
0.90.(38) 

Mean hip flexor muscle length** Yes Degrees Thomas Test for using 
digital inclinometer Continuous Inter-rater ICC = 

0.89.(39)  

Mean hamstring muscle length /neural mobility** Yes Degrees SLR using digital 
inclinometer Continuous 

Intra-rater ICC = 0.95-
0.98.(41) 

Inter-rater ICC = 0.80-
0.97.(41) 

Mean calf muscle length** Yes Degrees WBL using digital 
inclinometer Continuous 

Inter-rater ICC = 0.80- 
0.95.(42, 43) 

Intra-rater ICC = 
0.88.(43) 

Strength/power 
test 

Maximal loaded leg extension power difference* Yes 
Normalised 

watts per kilo 
(W/kg-0.67) 

Double leg press test 
using a Keiser Air 300 

machine 
Continuous Test-retest ICC = 

0.886(46) 

Mean of maximal loaded leg extension power** Yes 
Normalised 

watts per kilo 
(W/kg-0.67) 

Double leg press test 
using a Keiser Air 300 

machine 
Continuous Test-retest ICC = 

0.886(46) 

Loaded maximal leg extension velocity difference* Yes Peak velocity 
(m.s -1) 

Double leg press test 
using a Keiser Air 300 

machine 
Continuous Test-retest ICC = 

0.792(46) 

Mean of maximal loaded leg extension velocity** Yes Peak velocity 
(m.s -1) 

Double leg press test 
using a Keiser Air 300 

machine 
Continuous Test-retest ICC = 

0.792(46) 

Loaded maximal leg extension force difference* Yes 
Normalised 
peak force 
(N/Kg-0.67 ) 

Double leg press test 
using a Keiser Air 300 

machine 
Continuous Test-retest ICC = 

0.914(46) 

Mean of maximal loaded leg extension force** Yes 
Normalised 

peak velocity 
(N/Kg-0.67 ) 

Double leg press test 
using a Keiser Air 300 

machine 
Continuous Test-retest ICC = 

0.914(46) 

CMJ force per kilogram of body mass No Force per kg 
(F/kg) CMJ using force plates Continuous - 

CMJ height No Centimetres CMJ using force plates Continuous Test-retest ICC = 0.80-
0.88.(47) 
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Key: PF= prognostic factor; PHE=periodic health examination; WBL=weight bearing lunge; CMJ=countermovement jump; PROM=passive range of movement; 

ICC=intraclass correlation coefficient; SLR= straight leg raise; BMI= body mass index ;f=force; Kg=kilos; m = mass; m.s -1= metres/second;  Note: composite factors are 

identified in the table with  * denoting  between limb differences and **denoting  combined mean values of both limbs. 

 

Statistical analysis  

Model development and internal validation  

Multivariable logistic regression will be used for the analysis as this is an appropriate method 

where outcomes are binary (26) and independent variables (PFs) are continuous, categorical 

or a combination (36). Initially we will fit a full multivariable model containing all 10 

candidate PFs to ensure a fully adjusted model prior to potential elimination of unimportant 

candidate factors (23). Backward elimination will then be used to successively remove non-

significant factors with p-values of greater than 0.157. This threshold was set to approximate 

equivalence with Akaike’s Information Criterion (48). Using backward elimination in this 

way may deliver a more parsimonious model which is therefore easier to implement in 

clinical practice than a full model.  Where possible, we will retain continuous candidate PFs 

in their continuous form to avoid statistical power loss (49). 

We will assume that any missing data are missing at random (MAR) so multiple imputation 

(MI) will be used, using 50 imputations for missing values. We have chosen to utilise MI 

because it avoids excluding participants from the analysis, is an effective method of handling 

missing prognostic factor information and can be used to account for uncertainty in missing 

data (50).  

 

The apparent performance of the developed model will be summarised in the development 

datasets (averaged over imputation datasets), via calibration and discrimination. Model 

calibration determines performance in terms of the agreement between predicted outcome 
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risks and those actually observed (51). Graphical plots are useful to assess calibration (23), so 

will be produced and utilised in the analysis. We will calculate calibration-in-the-large 

(CITL, ideal value of 0), which quantifies the systematic error in model predictions (overall 

agreement). A related measures is E/O (ideal value of 1), which gives the ratio of the mean of 

the predicted risks against the mean of the observed risks (O) (51, 52). A calibration slope 

will also be calculated, where a value of 1 equals perfect calibration (26). Models 

demonstrate perfect calibration within development data, but in new data the slope may be <1 

due to overfitting in the model development dataset (see below for how this will be handled) 

(52).  

 

Discrimination performance is a measure of a model’s ability to separate participants who 

have experienced an outcome compared to those who have not, quantified using the C 

(concordance) statistic (equivalent to the area under the ROC curve) (23). This index measure 

will be calculated for the development model, where 1 demonstrates perfect discrimination, 

while 0.5 indicates that discrimination is no better than by chance alone.  

 

To quantify the degree of optimism due to overfitting, our model will be internally validated 

using bootstrap re-sampling. This will be conducted as previously outlined (26, 53). The 

prognostic factor variable selection procedure and model construction will be repeated for 

200 bootstrap samples. For each sample, the difference in bootstrap apparent performance (of 

the bootstrap model in the bootstrap data) and test performance (of the bootstrap model in the 

original dataset) will be averaged across the 200 samples, to obtain a single estimate of 

optimism for each performance statistic. Then, to calculate optimism-adjusted estimate of 
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performance for our new model, the estimates of optimism will be subtracted from the 

original apparent estimates of performance.  

The optimism-adjusted calibration slope will provide a uniform shrinkage factor, which will 

be applied to all prognostic factor effects in the developed model to adjust (shrink) for 

overfitting. The intercept of the model will then be re-estimated accordingly. This will then 

form our final model.   

 

Prognostic factor exploration 

All candidate factors eligible for the exploratory study will undergo univariable logistic 

regression analyses to determine unadjusted associations with IMIs. Candidate PFs will be 

grouped according to PF type (Table 4) and incorporated into multivariable logistic 

regression models to determine regression coefficients and odds ratios after adjustment for 

age, BMI, frequency of previous IMIs and most recent IMI within the 3 years prior to PHE, 

(which were included as candidates in the original model). During multivariable analysis of 

the anthropometric candidate factors, BMI will not be included in these models due to 

collinearity with height and weight factors. Exploration of non-linear associations between 

candidate factors and index IMI outcomes will be evaluated using a fractional polynomial 

approach (49). This analysis will allow examination of added prognostic value over and 

above other factors included in the original model. 
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DISCUSSION 

Although previous studies in elite football have investigated the association between factors 

obtained during PHE and IMIs using multivariable models, none have developed, validated 

or evaluated the performance a prognostic model for injury prediction purposes (22). While it 

is possible develop a prognostic model from PHE data (18), our investigation will offer 

valuable insights into the practical aspects of this process and the clinical usefulness of a 

model when applied to an individual football club. Our findings may also outline how these 

principles may be used in future at other clubs or sports, or on larger datasets which could be 

derived from several collaborating clubs. 

 

Despite the availability of high quality PHE and injury data, the relatively small number of 

outcomes in this dataset is problematic and will permit only a limited selection of candidate 

prognostic factors for use in model development. Utilising more than one prognostic factor 

for every 10 injury outcomes may cause significant issues with model overfitting, where 

spurious observed relationships occur because of regression value distortion (33). This leads 

to overestimation of predictive performance (optimism) which is especially evident in small 

datasets (54). To limit the effects of overfitting, only 10 PFs will be permitted and use of data 

reduction methods have been required to select which appropriate candidate factors are 

included. 

 

PFs for clinical injury outcomes are either intrinsic (person specific) or extrinsic 

(environment specific) (55) and can be modifiable or non-modifiable (56). Only the non-
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modifiable factors of increasing age and history of previous muscle injury have been shown 

to have modest prognostic value for hamstring muscle injuries in elite footballers (22), so  

will be included in model development. However, their non-modifiable nature means that 

they have limited use in terms of informing injury prevention strategies. To enhance the 

clinical applicability of the model, other potentially relevant and modifiable factors have been 

selected for inclusion.  

 

The methodological shortcomings in the literature mean that only three candidate prognostic 

factors could be selected for model development from our previous systematic review (22). 

Therefore, candidate PF selection for our model has been largely based upon evaluation of 

collinearity, measurement reliability and clinical reasoning. Therefore, it is possible that 

some important factors have not been considered. As such, only modest performance of this 

initial model is expected.  

 

It is acknowledged that the proposed prognostic model will assume that participants are 

independent for each season and utilise the binary outcome of at least one IMI in a season, 

rather than evaluating time to individual IMI events. This means that we will not account for 

within-person correlations from season to season. Although this is not fully representative of 

the real world, because this is a novel area and we are restricted to a relatively small dataset, 

we have elected to perform the analyses in a more simplistic manner in the first instance.  

Further, more complex analyses may be conducted in future.  
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To assess the generalisability of a prognostic model it should be externally validated using 

data from another location (21, 24) such as a dataset from another comparable elite level 

football team. Because there is likely to be considerable between-team heterogeneity in PHE 

processes (16), candidate prognostic factors within our model may not translate externally at 

this time. There are no immediate plans to externally validate this model. However, 

depending on the outcome of the model development and PF exploratory studies, it may be 

possible to conduct a future prospective temporal validation study within the same football 

club, or external validation study in different population. If feasible, such investigations will 

require a separate associated protocol.  

 

The current evidence relating to PFs for injury in football is frequently flawed due to issues 

with the reliability of data measurement, adjustment, dichotomisation and potential 

diagnostic misclassification, so there is a need for further studies that address these issues 

(22). Further hypothesis-free exploratory studies that investigate many factors, (including 

those that are not necessarily biologically plausible) may assist with identification of new 

factors that may help inform management decisions and monitoring purposes (20). 

Furthermore, these types of studies are helpful because new PFs may be used to update a 

developed model to improve performance (57). We have therefore outlined an associated 

phase 1 exploratory study to investigate the association between IMIs and other factors from 

the current dataset using a validated diagnostic outcome classification system, recommended 

statistical approaches and ensuring where possible, analysis of continuous data remains on 

the continuous scale to explore linear and non-linear associations.  
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We anticipate that this investigation will provide a comprehensive evaluation of what is 

currently possible in terms of using PHE data to predict IMIs at an elite football club, by 

adhering to transparent reporting procedures and current best practice for model 

development, validation and exploration of potential PFs. We hope these studies will also 

identify further research priorities for this novel and potentially valuable area of 

sports/football medicine research.  
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