

1 **The International Diabetes Closed Loop (iDCL) trial:**
2 **Clinical Acceptance of the Artificial Pancreas in**
3 **Pediatrics**

4 **A Study of t:slim X2 with Control-IQ Technology**

5 **Study Sponsor**

6 Marc Breton
7 University of Virginia
8 Center for Diabetes Technology

9 **Protocol Chair**

10 R. Paul Wadwa, MD
11 Barbara Davis Center
12 University of Colorado

13 **Participating Institutions**

14 University of Virginia, Charlottesville, Virginia
15 Barbara Davis Center, University of Colorado, Colorado
16 Stanford University, California
17 Yale University, Connecticut

18 **Coordinating Center**

19 Jaeb Center for Health Research

23 **Version Number: v2.5**

24 **May 24, 2019**

KEY ROLES

Sponsor Chair / IDE Chair	
Name, degree	Marc Breton
Institution Name	University of Virginia, Center for Diabetes Technology
Protocol Chair/Director	
Name, degree	R. Paul Wadwa, MD
Institution Name	Barbara Davis Center, University of Colorado
JCHR Coordinating Center Director	
Name, degree	Katrina Ruedy, MSPH
Institution Name	Jaeb Center for Health Research
Medical Monitor	
Name, degree	Roy Beck, M.D., Ph.D.
Institution Name	Jaeb Center for Health Research

PROTOCOL VERSION HISTORY

Version Number	Author(s)	Approver	Effective Date	Revision Description
1.0	R. Paul Wadwa Daniel Cherñavvsky Katrina Ruedy Roy Beck	R. Paul Wadwa	15NOV2018	Original protocol.
1.1	Jessica Rusnak	Daniel Cherñavvsky	21NOV2018	
1.2	Sarah Borgman	Katrina Ruedy	28NOV2018	
2.0	Mary Oliveri	Daniel Cherñavvsky	10DEC2018	Modified study design to include extension phase to the experimental group
2.1	Katrina Ruedy	Daniel Cherñavvsky	20Dec2018	Clarifications added for consistency throughout protocol
2.2	Jessica Rusnak	Daniel Cherñavvsky	15Jan2019	Adding inclusion criteria and clarification regarding use of Basal IQ feature; updated incorrect section references
2.3	Jessica Rusnak	Katrina Ruedy	4Feb2019	Removing and adding questionnaires to be completed by participants and parents/guardians
2.4	Katrina Ruedy	Daniel Cherñavvsky	01Apr2019	Correcting discrepancies in revised questionnaire descriptions and other minor clarifications.
2.5	Katrina Ruedy	Marc Breton	01Jun2019	Corrections to statistical analysis chapter; update of Sponsor name from Daniel Cherñavvsky to Marc Breton

TABLE OF CONTENTS

31	CHAPTER 1: BACKGROUND INFORMATION	19
32	1.1 Introduction.....	19
33	1.2 Rationale	22
34	1.3 Potential Risks and Benefits of the Investigational Device.....	22
35	1.3.1 Known Potential Risks.....	22
36	1.3.1.1 Venipuncture Risks.....	22
37	1.3.1.2 Fingerstick Risks.....	22
38	1.3.1.3 Subcutaneous Catheter Risks (CGM)	22
39	1.3.1.4 Risk of Hypoglycemia	23
40	1.3.1.5 Risk of Hyperglycemia	23
41	1.3.1.6 Risk of Device Reuse.....	23
42	1.3.1.7 Questionnaire	24
43	1.3.1.8 Other Risks	24
44	1.3.2 Known Potential Benefits	24
45	1.3.3 Risk Assessment	24
46	1.4 General Considerations.....	25
47	CHAPTER 2: STUDY ENROLLMENT AND SCREENING	26
48	2.1 Participant Recruitment and Enrollment.....	26
49	2.1.1 Informed Consent and Authorization Procedures.....	26
50	2.2 Participant Inclusion Criteria	27
51	2.3 Participant Exclusion Criteria.....	28
52	2.4 Screening Procedures.....	28
53	2.4.1 Data Collection and Testing.....	28
54	CHAPTER 3: RUN-IN PHASE	30
55	3.1 Run-in Phase Overview	30
56	3.2 Initiation of CGM	30
57	3.3 Initiation of Pump	30
58	3.4 Blood Glucose and Ketone Testing	31
59	3.5 Assessment of Successful Completion of the Run-in Phase.....	32
60	3.6 Optimization of Insulin Pump Settings.....	33
61	CHAPTER 4: RANDOMIZATION VISIT	34

62	4.1 Randomization Visit	34
63	4.1.1 HbA1c	34
64	4.1.2 Baseline C-Peptide Assessment	34
65	4.1.3 Randomization	34
66	4.1.4 Questionnaires.....	35
67	CHAPTER 5: MAIN STUDY PROCEDURES	36
68	5.1 Procedures for the CLC Group	36
69	5.2 Study System Training.....	36
70	5.2.1 System Initiation	37
71	5.2.2 Home Use of the Study System	38
72	5.2.3 Study Device Download	38
73	5.2.4 1-Week Phone Contact	38
74	5.2.5 2-Week Visit (Training Review and Insulin Pump Optimization)	38
75	5.3 Procedures for the SC Group	39
76	5.3.1 Study Device Data Download.....	39
77	5.3.2 1-Week Phone Contact	39
78	5.3.3 2-Week Visit (Training Review and Insulin Pump Optimization)	39
79	5.4 Follow-up Visits and Phone Contacts for Both Groups	40
80	5.4.1 Follow-up Visits.....	40
81	5.4.1.1 Procedures at Follow-up Visits.....	40
82	5.4.2 Phone Contacts.....	40
83	5.4.3 Data from Study Devices	41
84	5.4.4 16-Week Final First Phase Visit	41
85	5.5 Early Termination Visit (If Applicable)	41
86	5.6 Unscheduled Visits	41
87	5.7 Participant Access to Study Device at Study Closure	41
88	CHAPTER 6: EXTENSION PHASE PROCEDURES	42
89	6.1 Closed Loop Control Participants.....	42
90	6.2 SC Group Participants	42
91	6.3 Early Termination Visit (If Applicable)	43
92	6.4 Unscheduled Visits	43
93	6.5 Participant Access to Study Device at Study Closure	43

94	CHAPTER 7: STUDY DEVICES.....	44
95	7.1 Description of the Investigational Device	44
96	7.1.1 Insulin Pump	44
97	7.1.2 Continuous Glucose Monitoring.....	44
98	7.1.3 Blood Glucose Meter and Strips	44
99	7.1.4 Ketone Meter and Strips	44
100	7.1.5 Study Device Accountability Procedures	44
101	7.1.6 Blood Ketone Testing	44
102	7.2 Safety Measures.....	44
103	7.2.1 CGM Calibration	44
104	7.2.2 System Failure	45
105	7.2.3 Hypoglycemia Threshold Alert and Safety Protocol	45
106	7.2.4 Hyperglycemia Threshold Alert and Safety Protocol	45
107	CHAPTER 8: TESTING PROCEDURES AND QUESTIONNAIRES	47
108	8.1 Laboratory Testing.....	47
109	8.1.1 Comprehensive Metabolic Panel (CMP)	47
110	8.1.2 HbA1c:	47
111	8.1.3 Urine Pregnancy:	47
112	8.1.4 C-peptide and Glucose	47
113	8.2 Questionnaires	47
114	8.2.1 Clarke's Hypoglycemia Awareness Scale – Child and Parent	48
115	8.2.2 Hypoglycemia Fear Survey (HFS-II)/Low Blood Sugar Survey –	
116	Child and Parent.....	48
117	8.2.3 Problem Areas In Diabetes Survey (PAID) – Child and Parent	48
118	8.2.4 PedsQL Diabetes Module – Child and Parent	48
119	8.2.5 INSPIRE Survey – Child and Parent	49
120	8.2.6 Pittsburgh Sleep Quality Index (PSQI) – Parent.....	49
121	8.2.7 System Usability Scale (SUS) – Closed-Loop participants only.....	49
122	CHAPTER 9: ADVERSE EVENTS, DEVICE ISSUES, AND STOPPING RULES	50
123	9.1 Adverse Events	50
124	9.1.1 Definitions.....	50
125	9.1.2 Reportable Adverse Events.....	51
126	9.1.2.1 Hypoglycemic Events	51

127	9.1.2.2 Hyperglycemic Events/Diabetic Ketoacidosis.....	51
128	9.1.3 Relationship of Adverse Event to Study Device.....	52
129	9.1.4 Intensity of Adverse Event.....	52
130	9.1.5 Coding of Adverse Events	53
131	9.1.6 Outcome of Adverse Event.....	53
132	9.2 Reportable Device Issues.....	54
133	9.3 Pregnancy Reporting.....	54
134	9.4 Timing of Event Reporting	54
135	9.5 Stopping Criteria.....	55
136	9.5.1 Participant Discontinuation of Study Device.....	55
137	9.5.2 Criteria for Suspending or Stopping Overall Study	55
138	9.6 Independent Safety Oversight.....	55
139	9.7 Risks.....	56
140	CHAPTER 10: MISCELLANEOUS CONSIDERATIONS.....	57
141	10.1 Drugs Used as Part of the Protocol	57
142	10.2 Prohibited Medications, Treatments, and Procedures	57
143	10.3 Participant Withdrawal	57
144	10.4 Confidentiality	57
145	CHAPTER 11: STATISTICAL CONSIDERATION	58
146	11.1 Statistical and Analytical Plans.....	58
147	11.2 Statistical Hypotheses	58
148	11.3 Sample Size.....	58
149	11.4 Outcome Measures	59
150	11.4.1 Primary Efficacy Endpoint	59
151	11.4.2 Secondary Efficacy Endpoints	59
152	11.4.2.1 Secondary Efficacy Endpoints Included in Hierarchical Analysis	59
153	11.4.2.2 Other Secondary Efficacy Endpoints.....	59
154	11.4.2.3 Safety Analyses.....	Error! Bookmark not defined.
155	11.4.3 CGM Metrics Calculations	60
156	11.5 Analysis Datasets and Sensitivity Analyses	61
157	11.5.1 Per Protocol Analyses	61
158	11.5.2 Other Sensitivity Analyses.....	61
159	11.6 Analysis of the Primary Efficacy Endpoint	62

160	11.7 Analysis of the Secondary Endpoints	62
161	11.7.1 Hierarchical Analyses	62
162	11.7.2 Other Endpoint Analyses	63
163	11.8 Safety Analyses.....	64
164	11.9 Intervention Adherence.....	65
165	11.10 Adherence and Retention Analyses	66
166	11.11 Baseline Descriptive Statistics.....	66
167	11.12 Device Issues	66
168	11.13 Planned Interim Analyses	67
169	11.14 Subgroup Analyses	67
170	11.15 Multiple Comparison/Multiplicity.....	68
171	11.16 Exploratory Analyses.....	68
172	CHAPTER 12: DATA COLLECTION AND MONITORING	69
173	12.1 Case Report Forms and Device Data	69
174	12.2 Study Records Retention	69
175	12.3 Quality Assurance and Monitoring.....	69
176	12.4 Protocol Deviations.....	70
177	CHAPTER 13: ETHICS/PROTECTION OF HUMAN PARTICIPANTS.....	71
178	13.1 Ethical Standard.....	71
179	13.2 Institutional Review Boards.....	71
180	13.3 Informed Consent Process	71
181	13.3.1 Consent Procedures and Documentation	71
182	13.3.2 Participant and Data Confidentiality	71
183	CHAPTER 14: REFERENCES.....	73
184		

LIST OF ABBREVIATIONS

ABBREVIATION	DEFINITION
AP	Artificial Pancreas
BG	Blood Glucose
BT/BTLE	Bluetooth, Bluetooth low energy
CRF	Case Report Form
CGM	Continuous Glucose Monitoring System
CLC	Closed-Loop Control
CSII	Continuous Subcutaneous Insulin Injection
CTR	Control-to-Range
DiAs	Diabetes Assistant
DKA	Diabetic Ketoacidosis
EC	European Commission
FDA	Food and Drug Administration
GCP	Good Clinical Practice
HbA1c	Hemoglobin A1c
ID	Identification
iDCL	International Diabetes Closed Loop
IDE	Investigational Device Exemption
IOB	Insulin-on-Board
IQR	Interquartile Range
JDRF	Juvenile Diabetes Research Foundation
LGS	Low Glucose Suspend
PLGS	Predictive Low Glucose Suspend
POC	Point-of-Care
QA	Quality Assurance
QC	Quality Control
RBM	Risk-Based Monitoring
RCT	Randomized Control Trial
SC	Standard of Care group
SD	Standard Deviation
TDD	Total Daily Dose
UI	User Interface

188

Signature Page

189 **The International Diabetes Closed Loop (iDCL) trial:**
190 **Clinical Acceptance of the Artificial Pancreas in Pediatrics**
191 **A Study of t:slim X2 with Control-IQ Technology**

192 **Protocol Identifying Number: DCLP5 Pediatrics**

193 **IND/IDE Sponsor: University of Virginia**

194 **Version Number: v.2.5**

195 **24MAY2019**

Protocol Chair	
Name, Institution	R. Paul Wadwa, M.D./ University of Colorado – Barbara Davis Center
Signature/Date	
Sponsor (IDE Holder)	
Name/Institution	Marc Breton/ University of Virginia
Signature/Date	
Coordinating Center Director	
Name, Institution	Katrina J. Ruedy, MSPH; Jaeb Center for Health Research
Signature/Date	
Medical Monitor	
Name, Institution	Roy Beck, MD, PhD; Jaeb Center for Health Research
Signature/Date	

CLINICAL CENTER PRINCIPAL INVESTIGATOR STATEMENT OF COMPLIANCE

198 **Protocol Title: The International Diabetes Closed Loop (iDCL) trial: Clinical Acceptance of**
199 **the Artificial Pancreas in Pediatrics- A Study of t:slim X2 with Control-IQ Technology**

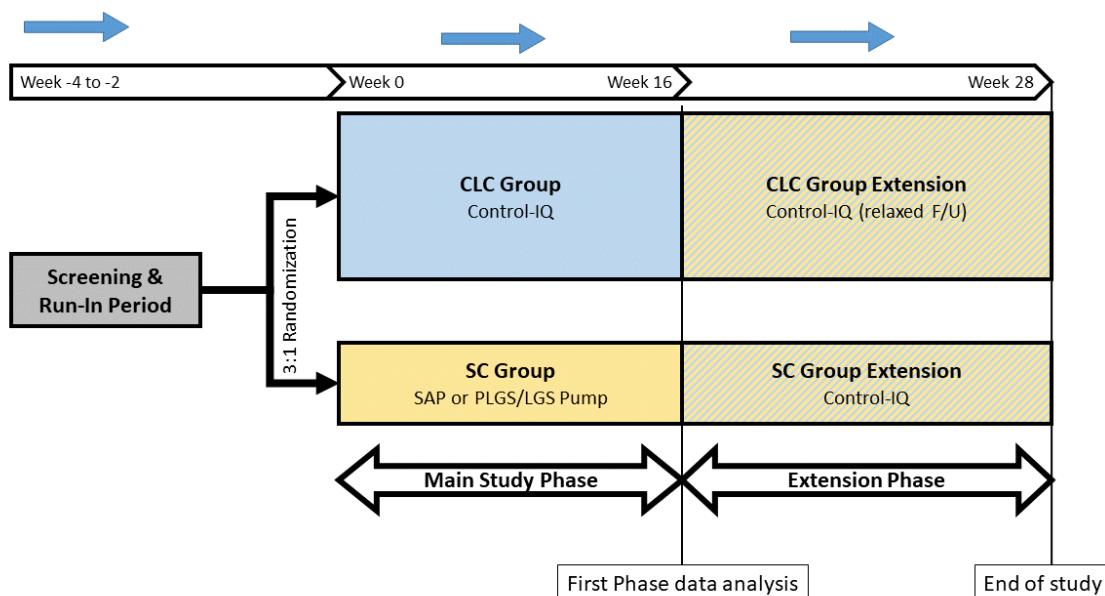
200 Protocol Version/Date: v2.5 / 24MAY2019

201 I have read the protocol specified above. In my formal capacity as a Clinical Center Principal
202 Investigator, my duties include ensuring the safety of the study participants enrolled under my
203 supervision and providing the Jaeb Center for Health Research, with complete and timely
204 information, as outlined in the protocol. It is understood that all information pertaining to the
205 study will be held strictly confidential and that this confidentiality requirement applies to all
206 study staff at this clinical center.

207 This trial will be carried out in accordance with ICH E6 Good Clinical Practice (GCP) and as
208 required by the following: United States (US) Code of Federal Regulations (CFR) applicable to
209 clinical studies (45 CFR Part 46, 21 CFR Part 50, 21 CFR Part 56, 21 CFR Part 312, and/or 21
210 CFR Part 812).

211 As the Principal Investigator, I will assure that no deviation from, or changes to the protocol
212 will take place without prior agreement from the sponsor and documented approval from the
213 Institutional Review Board (IRB), or other approved Ethics Committee, except where necessary
214 to eliminate an immediate hazard(s) to the trial participants.

215 All key personnel (all individuals responsible for the design and conduct of this trial) have
216 completed Human Participants Protection Training and Good Clinical Practice Training.
217 Further, I agree to ensure that all staff members involved in the conduct of this study are
218 informed about their obligations in meeting the above commitments.

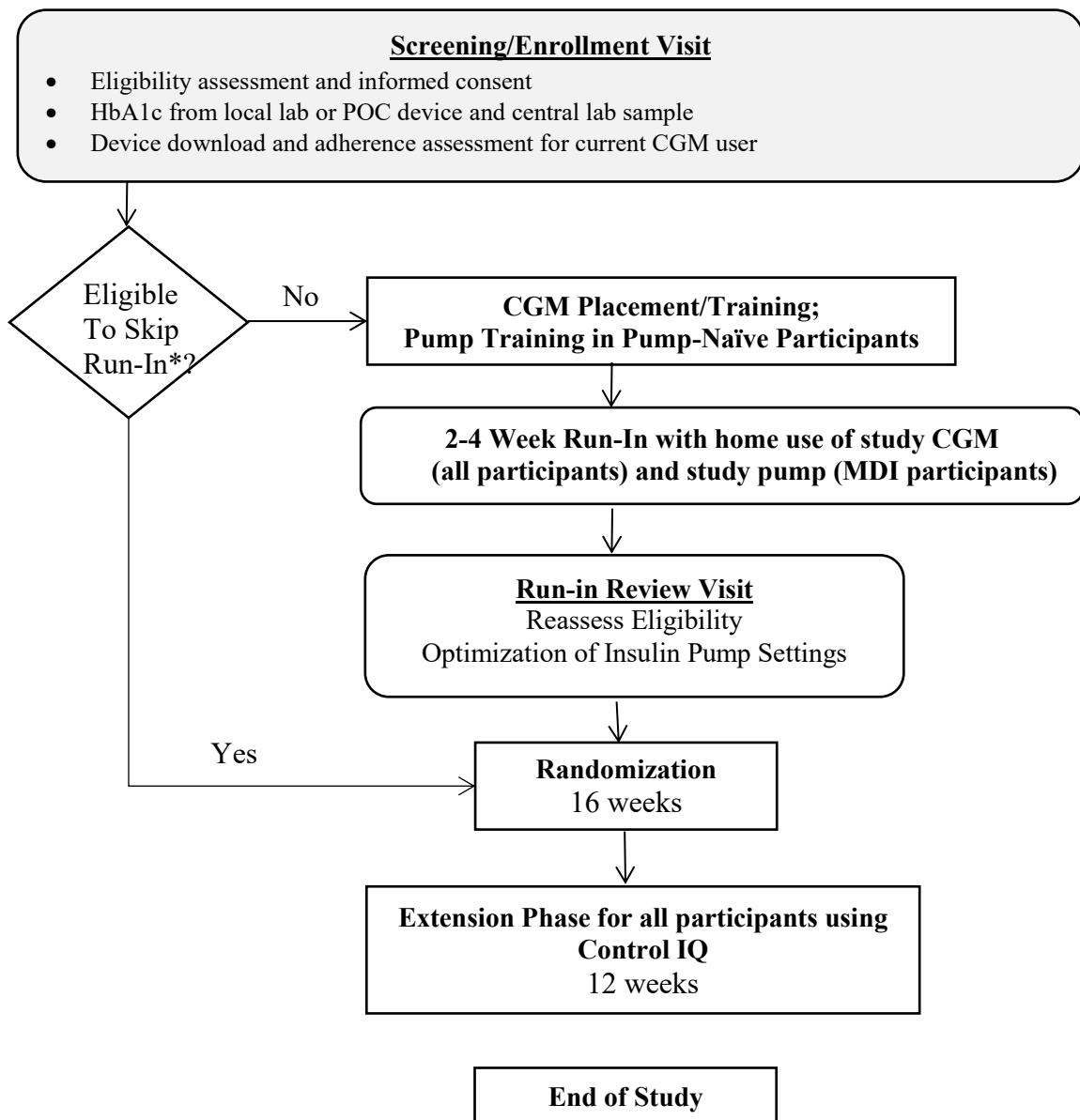

221 Investigator's Name: _____

222 Clinical Center Name/Number:

PROTOCOL SUMMARY

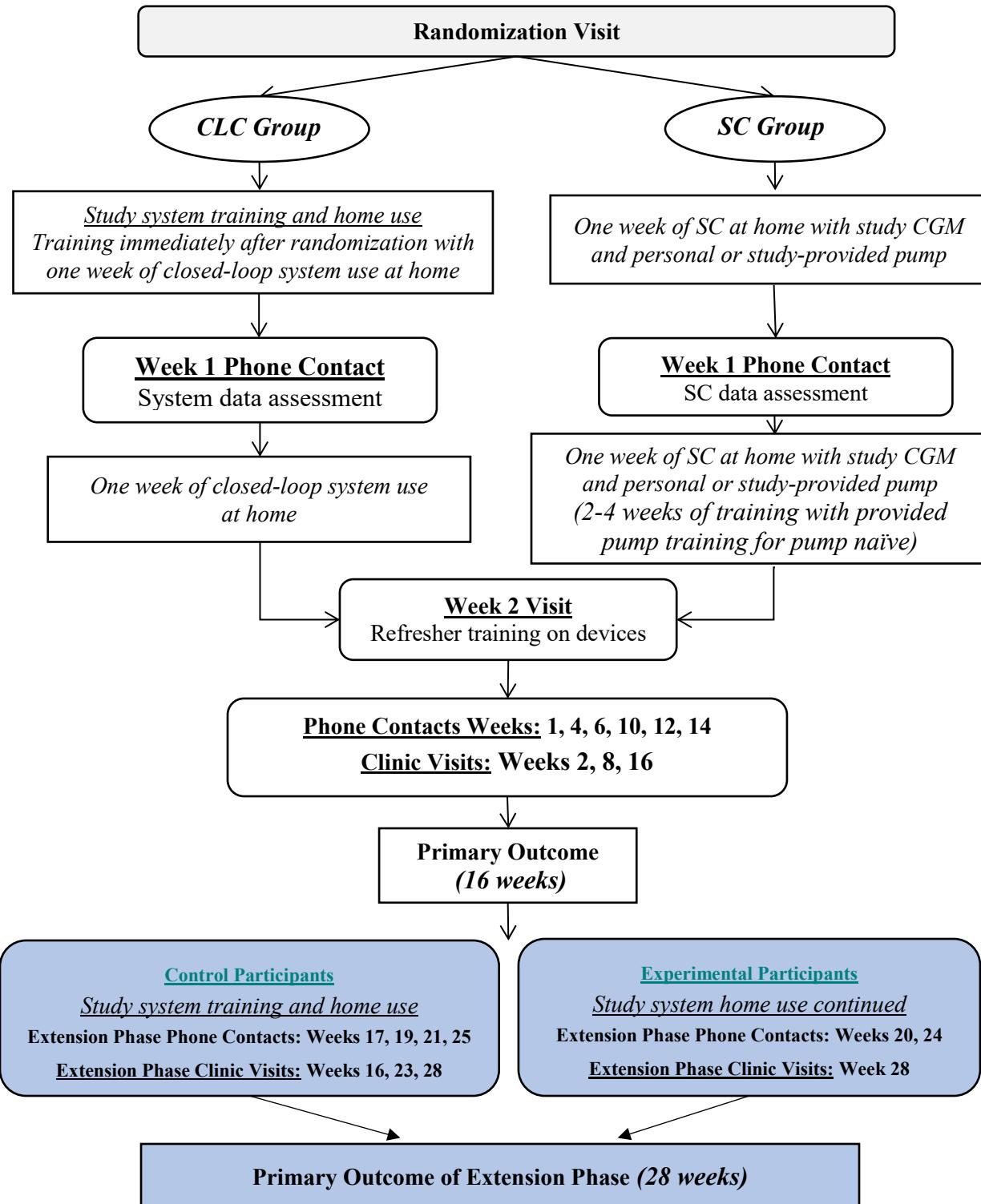
PARTICIPANT AREA	DESCRIPTION
Title	The International Diabetes Closed Loop (iDCL) trial: Clinical Acceptance of the Artificial Pancreas in Pediatrics- A study of t:slim X2 with Control-IQ Technology
Précis	A randomized controlled trial of at-home closed loop system vs. standard of care (defined as either sensor-augmented pump or any kind of low predictive low blood glucose suspend [PLGS; LGS] if participant is currently using) in youth age 6 to 13 years old.
Investigational Device	t:slim X2 with Control-IQ and Dexcom G6 system
Objectives	The objective of the study is to assess efficacy and safety of a closed loop control (CLC) system (t:slim X2 with Control-IQ Technology) in a randomized controlled trial with partial crossover.
Study Design	First phase a 16-week parallel group randomized clinical trial with 3:1 randomization to intervention with the closed loop system vs. standard of care (SC); followed by a 12-week period where the Standard of Care (SC) group will transition to use CLC and the experimental arm will extend the use of CLC for the same period
Number of Clinical Centers	Up to 4 US clinical centers
Endpoint	The primary outcome for the first phase is time in target range 70-180 mg/dL measured by CGM in CLC group vs. SC group over 16 weeks The primary outcome for the extension phase is improving time in range 70-180 mg/dL by CGM when SC (control group) transitions to t:slim X2 with Control-IQ compared with the same group during the Main Phase.
Population	Key Inclusion Criteria <ul style="list-style-type: none"> • Type 1 Diabetes • Ages ≥ 6 and ≤ 13 years old Key Exclusion Criteria <ul style="list-style-type: none"> • Use of any non-insulin glucose-lowering agents except metformin • Actively using any other closed-loop system
Sample Size	First phase: Up to 150 screened participants with the goal of randomizing 100 participants in this 16-week randomized trial. Extension phase will consist of a partial crossover: All randomized participants will participate in an extension phase for another 12 weeks (total 28 weeks). The SC group (control group) will crossover to use Tandem t:slim X2 with Control-IQ for 12 weeks. The experimental arm will continue on the Control-IQ for 12 weeks.
Treatment Groups	<ul style="list-style-type: none"> • Intervention Group: t:slim X2 with Control-IQ Technology and Study CGM. • Control Group: Standard of care (SC) (defined as either sensor-augmented pump or any kind of low or predictive low blood glucose suspend [PLGS; LGS] if participant is currently using), and study CGM • All participants will be offered to extend the study for 12 weeks and the SC group will use the t:slim X2 with Control-IQ System after the first 16-week phase
Participant Duration	16-20 weeks (depending on duration of run-in phase) plus ~12-week extension phase

PARTICIPANT AREA	DESCRIPTION
Protocol Overview/Synopsis	After consent is signed, eligibility will be assessed. Eligible participants not currently using an insulin pump and Dexcom G4, G5 or Dexcom G6 CGM with minimum data requirements will initiate a run-in phase of 2 to 4 weeks that will be customized based on whether the participant is already a pump or CGM user. Participants who skip or successfully complete the run-in will be randomly assigned 3:1 to the use of closed-loop control (CLC group) system using Tandem t:slim X2 with Control-IQ Technology vs SC for 16 weeks. All participants will be provided the option of using t:slim X2 with Control-IQ system in a 12 week Extension Phase. [Figure 1]



224

225
226
227


Figure 1: Study Design: Participants Randomized 3:1 Control-IQ Control (CLC) vs. Standard of Care (SC) Groups. Extension phase with partial crossover of SC group switching to use Control IQ.

SCHEMATIC OF STUDY DESIGN

*Current use of insulin pump and Dexcom G4, G5, or G6 CGM with readings captured on at least 11 out of the previous 14 days

Figure 2: Schematic of Complete Study Design

232

233

Figure 3: Schematic of Study Design (Post-Randomization)

234

235

236

237

238

239

240

241

242

243

244

245

246

247

	Pre	Pre	0	1w	2w	4w	6w	8w	10w	12w	14w	16w
Visit (V) or Phone (P)	V	V	V	P	V	P	P	V	P	P	P	V
Comment	Screen/ Enroll	Run-in	Rand									
Eligibility Assessment	X	X	X									
HbA1c (DCA Vantage or similar point of care device, or local lab)	X		X									X
HbA1c (Central lab)			X									X
C-peptide (Central lab) and blood glucose assessment			X									
Pregnancy test (females of child-bearing potential)	X		X					X				X
Device Data download(s)	X	X	X	X	X	X	X	X	X	X	X	X
Review diabetes management and AEs		X	X	X	X	X	X	X				X
Questionnaires as defined in section 8.2			X									X

Table 1. Schedule of Study Visits and Procedures (Primary Study Phase)

Experimental Group	20w	24w	28w
Visit (V) or Phone (P)	P	P	V
Comment			
Eligibility Assessment			
HbA1c (DCA Vantage or similar point of care device, or local lab)			X
HbA1c (Central lab)			X
C-peptide (Central lab) and blood glucose assessment			
Pregnancy test (females of child-bearing potential)			X
Device Data download(s)	X	X	X
Review diabetes management and AEs	X	X	X
Questionnaires as defined in section 8.2			X

Table 2: Schedule of Visits and Procedures (Extension Phase for Experimental Group)

249

250	Control Group	17w	19w	21w	23w	25w	28w
251	Visit (V) or Phone (P)	P	P	P	V	P	V
252	Comment						
253	Eligibility Assessment						
254	HbA1c (DCA Vantage or similar point of care device, or local lab)						X
255	HbA1c (Central lab)						X
256	C-peptide (Central lab) and blood glucose assessment						
257	Pregnancy test (females of child-bearing potential)				X		X
258	Device Data download(s)	X	X	X	X	X	X
259	Review diabetes management and AEs	X	X	X	X	X	X
260	Questionnaires as defined in section 8.2						X

261 **Table 3: Schedule of Visits and Procedures (Extension Phase for SC Group)**

262

263

Chapter 1: Background Information

265 1.1 Introduction

266 The Tandem X2 insulin pump with Control-IQ Technology is a third-generation closed-loop
267 control (CLC) system retaining the same control algorithm that was initially tested by UVA's DiAs
268 system and then implemented in the inControl system (TypeZero Technologies, Inc.). DiAs is
269 described in 13 IDEs (see IDEs 1-12 and 14 in the list below) and inControl is described on the
270 rest of IDEs mentioned below (i.e. in IDEs G160097, G160181, G150240, G140169/S010). For
271 complete algorithmic and clinical background, we refer to these IDEs and to a number of scientific
272 publications that describe glycemic control outcomes and clinical impressions from the use of
273 these systems (see list of 25 peer-reviewed papers and scientific presentations under Bibliography).
274 Overall, this control algorithm has been implemented in two mobile platforms (DiAs and
275 inControl) and has been tested in 30 clinical trials by 450 adults and children with type 1 diabetes
276 for over 350,000 hours of use to date in the U.S. and overseas.

277 As described in the Background, this project is a result from a sequence of clinical trials that have
278 tested extensively the control system and in several centers in the U.S. and overseas. The following
279 21 IDEs reflect this progress:

- 280 1. IDE #G110095: Feasibility study of closed loop control in type 1 diabetes using heart rate
281 monitoring as an exercise marker, approved 10/08/2011;
- 282 2. IDE #G120032: Early feasibility (pilot) study of outpatient control-to-range; 3/2/2012;
- 283 3. IDE #G120210: Early feasibility study 2 of outpatient control-to-range; 10/12/2012;
- 284 4. IDE #G130118: DiAs control-to-range nocturnal closed-loop camp study; 6/19/2013;
- 285 5. IDE #G130121: Optimizing closed-loop control of type 1 diabetes mellitus in adolescents;
286 6/19/2013;
- 287 6. IDE# G130142: Closed loop control in adolescents using heart rate as exercise indicator;
288 7/16/13;
- 289 7. IDE #G130143: Early feasibility study of adaptive advisory/automated (AAA) control of
290 type 1 diabetes; 7/19/2013;
- 291 8. IDE #G140066: Full day and night closed-loop with DiAs platform; 5/9/14.
- 292 9. IDE #G140068: Unified Safety System (USS) Virginia Closed Loop versus sensor
293 augmented pump therapy overnight in type 1 diabetes; 5/14/2014;
- 294 10. IDE #G140089: Outpatient control-to-range: Safety and efficacy with day-and-night in-home
295 use; 6/6/2014;
- 296 11. IDE #G140169: Unified Safety System (USS) Virginia Closed-Loop versus Sensor
297 Augmented Pump (SAP) therapy for hypoglycemia reduction in type 1 diabetes; 10/3/2014.
- 298 12. IDE #G150221: Reducing risks and improving glucose control during extended exercise in
299 youth with T1DM: The AP Ski Camp; 11/09/2015;

300 13. IDE #G150240: Project Nightlight: Efficacy and system acceptance of dinner/night vs. 24 hr
301 closed loop control; 11/12/2015;

302 14. IDE #G160047: Closed-loop in young children 5-8 years old using DiAs platform;
303 03/29/2016;

304 15. IDE #G160097: Clinical Acceptance of the Artificial Pancreas: the International Diabetes
305 Closed-Loop (iDCL) Trial/Research Site Training Protocol; 06/03/16.

306 16. IDE#G160181: PROTOCOL 1 for “Clinical Acceptance of the Artificial Pancreas: The
307 International Diabetes Closed Loop (iDCL) Trial; 09/21/16

308 17. IDE#G170255: Protocol 3 for “Pilot Trial of t:slim X2 with Control-IQ
309 Technology”; 11/16/17 and IDE#G170255/S001 Protocol 3 for “Training Study of t:slim X2
310 with Control-IQ Technology”; 11/16/17

311 18. IDE#G170267: “Real-Time Monitoring and Glucose Control During Winter-Sport Exercise
312 in Youth with Type 1 Diabetes: The AP Ski Camp Continued”; 11/21/17

313 19. IDE#G150240/S008: A long-term home use study, enrolling 18-70 years old TID
314 participants since January 2018; it is anticipated that this study will be completed April 2019.

315 20. IDE#G170255: A pilot study of 5 adult subjects completed in December 2017.

316 21. IDE#G170267: Three 48-hour winter ski camps trial T1D participants; one site enrolled 13-
317 18 years old participants in January 2018. The other two sites enrolled participants aged 6-12
318 years old. At the conclusion of these ski camps, subjects continued with the study device for
319 72 hours use at home (March & April 2018).

320 In the G170255 pilot study (mean age 52.8 yrs; 3F/2M, mean A1c 6.5%), the system was
321 challenged with a variety of scenarios including: Pump disconnection, CGM sensor removal
322 without stopping session, CGM sensor change, Basal Rate change, Cartridge Change, Extended
323 Bolus, Calibration at non-ideal conditions, Stopping Control-IQ, Reset Sleep Time, Restaurant
324 Meals and Exercise (treadmill/walk). The study demonstrated excellent connectivity with 98%
325 time in closed-loop control and 94%-time CGM is available during 196 hours of use. [28]

326 The results of the home portion of the IDE#G170267/ski camp trial (Table 5) were as follow: The
327 Control-IQ significantly improved time in target range 70-180 mg/dL (71.0 ± 6.6 vs. 52.8 ± 13.5 %;
328 $p=0.001$) and mean sensor glucose (153.6 ± 13.5 vs. 180.2 ± 23.1 mg/dL; $p=0.003$) without
329 increasing hypoglycemia time <70 mg/dL ($1.7 [1.3-2.1]$ vs. $0.9 [0.3-2.7]$ %; ns). The HCL system
330 was active for 94.4% of the study period. Subjects reported that use of the system was associated
331 with less time thinking about diabetes, decreased worry about blood sugars, and decreased burden
332 in managing diabetes. [33]

333 No AE or SAE happened during these trials related to the equipment used.

334

METRIC (COMPUTED DURING CLOSED-LOOP USE)	OVERALL	DAYTIME	NIGHTTIME
Mean glucose (mg/dL)	129	135	121
Coefficient of variation (median)	27%	27%	21%
% below 54 mg/dL (median)	0.7%	0.0%	0.0%
% below 60 mg/dL (median)	1.1%	2.0%	0.0%
% below 70 mg/dL (median)	2.9%	4.1%	1.0%
Percent in range 70-180 mg/dL (mean)	87%	82%	94%
% above 180 mg/dL (median)	5%	8%	6%
% above 250 mg/dL (median)	0%	0%	0%
% above 300 mg/dL (median)	0%	0%	0%

335

Table 4. Pilot Study results based on time in closed-loop

336

	OVERALL			DAYTIME [7AM - 11 PM]			NIGHTTIME [11PM - 7AM]		
	Control-IQ	SAP	p-value	Control-IQ	SAP	p-value	Control-IQ	SAP	p-value
70 - 180 mg/dL (%)	71.0 ± 6.6	52.8 ± 13.5	0.001	69.1 ± 10.1	54.4 ± 14.2	0.010	74.9 ± 10.1	49.6 ± 18.8	0.001
< 50 mg/dL (%)	0 [0-0.1]	0 [0-0.4]	ns	0 [0-0]	0 [0-0.6]	ns	0 [0-0]	0 [0-0]	ns
< 54 mg/dL (%)	0.2 [0-0.5]	0.2 [0-0.6]	ns	0 [0-0.4]	0.3 [0-0.9]	ns	0 [0-0]	0 [0-0]	ns
< 60 mg/dL (%)	0.7 [0.2-1]	0.5 [0-0.9]	ns	0.3 [0-1.1]	0.7 [0-1.3]	ns	0 [0-0.2]	0 [0-0]	ns
< 70 mg/dL (%)	1.7 [1.3-2.1]	0.9 [0.3-2.7]	ns	1.6 [0.7-2.6]	1.4 [0.5-3.4]	ns	0.7 [0-2.6]	0 [0-0]	0.190
> 180 mg/dL (%)	26.7 ± 7.2	44.7 ± 13.8	0.001	28.1 ± 11.1	42 ± 14.4	0.017	23.8 ± 9.9	49.9 ± 19.3	0.001
> 250 mg/dL (%)	7.2 ± 4.5	16.1 ± 10.3	0.015	8.3 ± 6.4	14.8 ± 11	0.097	5.2 ± 8	18.7 ± 12.9	0.007
> 300 mg/dL (%)	2.9 ± 2.7	5.3 ± 3.9	0.102	3.5 ± 3.9	4.4 ± 4.5	ns	1.8 ± 4	7.1 ± 6.5	0.030
Mean glucose (mg/dL)	153.6 ± 13.5	180.2 ± 23.1	0.003	157 ± 20.2	175.7 ± 24.7	0.064	147.1 ± 16.4	188.8 ± 30.2	0.001
Coefficient of Variation (%)	36.6 ± 4.9	36.5 ± 5.4	ns	35.7 ± 5.3	36.8 ± 6.1	0.185	33.4 ± 7.1	32.9 ± 6.4	ns
Insulin use (U/day)	33.2 ± 15.5	27.8 ± 12.3	ns	26.4 ± 12.8	22.3 ± 9.6	ns	6.8 ± 2.8	5.5 ± 3	ns
CHO treatment (g)	15.5 ± 16.9	35.5 ± 55.5	ns	14.7 ± 16.7	34.5 ± 55.7	ns	0.9 ± 2	1.2 ± 2.6	ns

337

Table 5. Glycemic Outcomes Measured by CGM: Ski camp and home use trial

338

Closed-Loop Control System

339

The Closed-Loop Control System contained in t-slim X2 with Control-IQ Technology is described in Master File MAF-2032/A008. Control-IQ Technology is derived from inControl previously described in IDE# G160097, G160181, G150240 and G140169/S010. The CLC is an “artificial pancreas” (AP) application that uses advanced closed loop control algorithms to automatically manage blood glucose levels for people with Type 1 Diabetes. The system modulates insulin to keep blood glucose in a targeted range. The system components include the t:slim X2 with Control-IQ Technology and the Dexcom CGM G6.

346

347 **Figure 4. t:slim X2 with Control-IQ and Dexcom G6 system**

348 **1.2 Rationale**

349 The objective of this randomized clinical trial is to assess the efficacy and safety of the Control-
350 IQ closed loop system over a 16-week period compared with standard of care. In addition, the data
351 from this trial may be used for subsequent PMA application for this system.

352 The 12-week extension phase will allow for additional exposure time to the Tandem t:slim X2 with Control-
353 IQ Technology and evaluation of the SC arm when crossover to use Control IQ for 12-week period.

354 **1.3 Potential Risks and Benefits of the Investigational Device**

355 Risks and Benefits are detailed below. Loss of confidentiality is a potential risk; however, data are
356 handled to minimize this risk. Hypoglycemia, hyperglycemia and ketone formation are always a
357 risk in participants with type 1 diabetes and participants will be monitored for these events.

358 **1.3.1 Known Potential Risks**

359 **1.3.1.1 Venipuncture Risks**

360 A hollow needle/plastic tube will be placed in the arm for taking blood samples. Blood draws can
361 cause some common reactions like pain, bruising, or redness at the sampling site. Less common
362 reactions include bleeding from the sampling site, formation of a small blood clot or swelling of
363 the vein and surrounding tissues, and fainting.

364 **1.3.1.2 Fingerstick Risks**

365 About 1 drop of blood will be removed by fingerstick for measuring blood sugars and sometimes
366 HbA1c or other tests. This is a standard method used to obtain blood for routine hospital laboratory
367 tests. Pain is common at the time of lancing. In about 1 in 10 cases, a small amount of bleeding
368 under the skin will produce a bruise. A small scar may persist for several weeks. The risk of local
369 infection is less than 1 in 1000. This should not be a significant contributor to risks in this study
370 as fingersticks are part of the usual care for people with diabetes.

371 **1.3.1.3 Subcutaneous Catheter Risks (CGM)**

372 Participants using the CGM will be at low risk for developing a local skin infection at the site of
373 the sensor needle placement. If a catheter is left under the skin for more than 24 hours, it is possible

374 to get an infection where it goes into the skin, with swelling, redness and pain. There may be
375 bleeding where the catheter is put in and bleeding under the skin causes a bruise (1 in 10 risk).

376 Study staff should verbally alert the participant that on rare occasions, the CGM may break and
377 leave a small portion of the sensor under the skin that may cause redness, swelling or pain at the
378 insertion site. The participant should be further instructed to notify the study coordinator
379 immediately if this occurs.

380 **1.3.1.4 Risk of Hypoglycemia**

381 As with any person having type 1 diabetes and using insulin, there is always a risk of having a low
382 blood sugar (hypoglycemia). The frequency of hypoglycemia should be no more and possibly less
383 than it would be as part of daily living. Symptoms of hypoglycemia can include sweating,
384 jitteriness, and not feeling well. Just as at home, there is the possibility of fainting or seizures
385 (convulsions) and that for a few days the participant may not be as aware of symptoms of
386 hypoglycemia. A CGM functioning poorly and significantly over-reading glucose values could
387 lead to inappropriate insulin delivery.

388 **1.3.1.5 Risk of Hyperglycemia**

389 Hyperglycemia and ketonemia could occur if insulin delivery is attenuated or suspended for an
390 extended period or if the pump or infusion set is not working properly. A CGM functioning poorly
391 and significantly under-reading glucose values could lead to inappropriate suspension of insulin
392 delivery.

393 **1.3.1.6 Risk of Device Reuse**

394 The study CGM system is labeled for single use only. The sensor (the component of the system
395 that enters the skin) will be single use only. The receiver, if used, is a hand-held device. The
396 transmitter and receiver may be reused during the study after cleaning the device using a hospital-
397 approved cleaning procedure. The transmitter is attached to the sensor but does not enter the skin.
398 Participants will be informed that FDA or relevant national authorities have approved these devices
399 for single use and that by using them among multiple patients, bloodborne pathogens (i.e. Hepatitis
400 B) may be spread through the use of multiple users.

401 The study insulin pump is labeled for single-patient use. During the study, this device may be
402 reused after cleaning adhering to a hospital-approved cleaning procedure. All infusion set
403 equipment will be single patient use only (infusion set insertion kits, tubing, cartridges etc.)
404 Participants will be informed that FDA or relevant national authorities typically approve the insulin
405 pump device for single use and that by using them among multiple patients, bloodborne pathogens
406 (i.e. Hepatitis B) may be spread through the use of multiple users.

407 The study blood glucose meter and blood ketone meter are labeled for single-patient use.
408 During the study, only one person can use each device as there are rare risks that bloodborne
409 pathogens (i.e. Hepatitis B) may be spread through the use of multiple users.

410 **1.3.1.7 Questionnaire**

411 As part of the study, participants (parent and child) will complete questionnaires which include
412 questions about their private attitudes, feelings and behavior related to the investigational
413 equipment as well as managing diabetes. It is possible that some people may find these
414 questionnaires to be mildly upsetting. Similar questionnaires have been used in previous research
415 and these types of reactions have been uncommon.

416 **1.3.1.8 Other Risks**

417 Some participants may develop skin irritation or allergic reactions to the adhesives used to secure
418 the CGM, or to secure the insulin infusion sets for the continuous subcutaneous insulin infusion.
419 If these reactions occur, different adhesives or “under-taping” (such as with IV 3000, Tegaderm,
420 etc.) will be tried, sites will be rotated frequently, and a mild topical steroid cream or other
421 medication may be required.

422 Whenever the skin is broken there is the possibility of an infection. The CGM and pump infusion
423 sites are inserted under the skin. It is possible that any part that is inserted under the skin may
424 cause an infection. These occur very infrequently, but, if an infection was to occur, oral and/or
425 topical antibiotics can be used. The risk of skin problems could be greater if you use a sensor for
426 longer than it is supposed to be used. Therefore, participants (and parents) will be carefully
427 instructed about proper use of the sensor.

428 Data downloaded from the CGM, pump, and the home glucose and ketone meter will be collected
429 for the study as measures of diabetes self-management behaviors. Some people
430 may be uncomfortable with the researchers' having such detailed information about their daily
431 diabetes habits.

432 **1.3.2 Known Potential Benefits**

433 One purpose of this research is to reduce the frequency of hypoglycemia and severe hypoglycemic
434 events. Hypoglycemia is the number one fear of many individuals and families with someone who
435 has type 1 diabetes and this fear often prevents optimal glycemic control.

436 It is expected that this protocol will yield increased knowledge about using an automated
437 closed-loop system to control the glucose level and is intended to develop data to support a future
438 PMA-application. The individual participant may not benefit from study participation.

439 **1.3.3 Risk Assessment**

440 Based on the facts that (1) children and adolescents with diabetes experience mild hypoglycemia
441 and hyperglycemia frequently as a consequence of the disease and its management, (2) the study
442 intervention involves periodic automated insulin dosing that may reduce the likelihood of
443 hypoglycemia, and periodic automated attenuation of insulin delivery that may reduce the
444 likelihood of hyperglycemia, (3) if any, hypo and/or hyperglycemia occur, mitigations are in place,
445 and have been tested in prior studies using the investigational device system in the home setting,
446 that limit the likelihood of excessive insulin dosing or prolonged withdrawal of insulin, and (4)
447 rapid reversal of hypoglycemia and hyperglycemia can be achieved, it is the assessment of the
448 investigators that this protocol falls under DHHS 46.405 which is a minor increase over minimal

449 risk. In addition, it is the belief of the investigators that this study also presents prospect of direct
450 benefit to the participants and general benefit to others with diabetes.

451 **1.4 General Considerations**

452 The study is being conducted in compliance with the policies described in the study policies
453 document, with the ethical principles that have their origin in the Declaration of Helsinki, with the
454 protocol described herein, and with the standards of Good Clinical Practice (GCP).

455 Whenever possible, data will be directly collected in electronic case report forms, which will be
456 considered the source data.

457 There is no restriction on the number of participants to be enrolled by each clinical center toward
458 the overall recruitment goal.

459 The protocol is considered a significant risk device study, due to the fact that the closed loop
460 system is experimental. Therefore, an investigational device exemption (IDE) from the U.S. Food
461 and Drug Administration (FDA) is required to conduct the study.

462

Chapter 2: Study Enrollment and Screening

463 **2.1 Participant Recruitment and Enrollment**

464 Enrollment will proceed with the goal of having 100 participants randomized for the first 16-week
465 phase of this trial. A maximum of 150 individuals may be enrolled into screening for the study in
466 order to achieve this goal considering an approximately 30% withdrawal and screen failure rate.

467 For the extension phase, all 100 participants that were randomized and completed the main study
468 will complete the 12-week extension phase. The participants randomized to SC in the main study
469 will crossover to use t:slim x2 with Control IQ. The interventional arm in the main study will
470 continue using the Control IQ system for 12 additional weeks.

471 Study participants will be recruited from up to 4 clinical centers in the United States without regard
472 to gender, race, or ethnicity. There is no restriction on the number of participants to be enrolled
473 by each clinical center toward the overall recruitment goal.

474 The study team will make every effort to have the following minimum numbers of participants
475 complete the trial in the specified subgroups at the time of enrollment:

- 476 • At least one-third of participants with HbA1c $\geq 8.0\%$ and one-third of participants with HbA1c
477 $<7.9\%$
- 478 • At least one-third of participants in the age range 6-10 and one-third of participants 11-13 years
479 old
- 480 • At least 20% of participants who are on multiple daily injections (MDI) rather than pump
- 481 • At least 20% of participants who are CGM-naïve (defined as not using a CGM in the prior 3
482 months)

483 **2.1.1 Informed Consent and Authorization Procedures**

484 Potential eligibility may be assessed as part of a routine-care examination. Before completing any
485 procedures or collecting any data that are not part of usual care, written informed consent and child
486 assent will be obtained.

487 A parent/legal guardian (referred to subsequently as “parent”) will be provided with the Informed
488 Consent Form to read and will be given the opportunity to ask questions. Potential participants
489 meeting the IRB’s minimum age of assent will be given a Child Assent Form to read and discuss
490 with his/her parents and study personnel. If the parent and child agree to participate, the Informed
491 Consent Form and Child Assent Form (if applicable) will be signed. A copy of the consent form
492 will be provided to the participant and his/her parent and another copy will be added to the
493 participant’s study record.

494 As part of the informed consent process, each participant and/or parent/legal guardian will be asked
495 to sign an authorization for release of personal information. The investigator, or his or her
496 designee, will review the study-specific information that will be collected and to whom that

497 information will be disclosed. After speaking with the participant, questions will be answered
498 about the details regarding authorization.

499 A participant is considered enrolled when the informed consent form and child assent (if
500 applicable) has been signed.

501 **2.2 Participant Inclusion Criteria**

502 Individuals must meet all of the following inclusion criteria in order to be eligible to participate in
503 the study.

504 1. Clinical diagnosis, based on investigator assessment, of type 1 diabetes for at least one year
505 and using insulin for at least 6 months

506 2. Familiarity and use of a carbohydrate ratio for meal boluses.

507 3. Age \geq 6 and \leq 13 years old

508 4. Weight \geq 25 kg and \leq 140 kg

509 5. For females, not currently known to be pregnant

510 *If female and sexually active, must agree to use a form of contraception to prevent pregnancy
511 while a participant in the study. A negative serum or urine pregnancy test will be required for
512 all females of child-bearing potential. Participants who become pregnant will be discontinued
513 from the study. Also, participants who during the study develop and express the intention to
514 become pregnant within the timespan of the study will be discontinued.*

515 6. Living with one or more parent/legal guardian knowledgeable about emergency procedures for
516 severe hypoglycemia and able to contact emergency services and study staff.

517 7. Willingness to suspend use of any personal closed loop system that they use at home for the
518 duration of the clinical trial once the study CGM is in use

519 8. Investigator has confidence that the participant can successfully operate all study devices and
520 is capable of adhering to the protocol

521 9. Willingness to switch to lispro (Humalog) or aspart (Novolog) if not using already, and to use
522 no other insulin besides lispro (Humalog) or aspart (Novolog) during the study for participants
523 using the t:slim X2. This includes:

524 ○ Participants randomized to Control IQ

525 ○ Participants on the SC group on MDI treatment that will be provided a Tandem
526 pump to switch to CSII

527 ○ Participates that are already in CSII randomized to SC during the extension phase
528 when transition to Control IQ

529 10. Total daily insulin dose (TDD) at least 10 U/day

530 11. Willingness not to start any new non-insulin glucose-lowering agent during the course of the
531 trial (see section 2.3)

532 12. Participant and parent(s)/guardian(s) willingness to participate in all training sessions as
533 directed by study staff.

534 **2.3 Participant Exclusion Criteria**

535 Individuals meeting any of the following exclusion criteria at baseline will be excluded from study
536 participation.

537 1. Concurrent use of any non-insulin glucose-lowering agent other than metformin (including
538 GLP-1 agonists, Symlin, DPP-4 inhibitors, SGLT-2 inhibitors, sulfonylureas).

539 2. Hemophilia or any other bleeding disorder

540 3. A condition, which in the opinion of the investigator or designee, would put the participant or
541 study at risk (specified on the study procedure manual)

542 4. Participation in another pharmaceutical or device trial at the time of enrollment or during the
543 study

544 5. Employed by, or having immediate family members employed by Tandem Diabetes Care, Inc.,
545 or having a direct supervisor at place of employment who is also directly involved in
546 conducting the clinical trial (as a study investigator, coordinator, etc.); or having a first-degree
547 relative who is directly involved in conducting the clinical trial

548 **2.4 Screening Procedures**

549 After informed consent has been signed, a potential participant will be evaluated for study
550 eligibility through the elicitation of a medical history, performance of a physical examination
551 by study personnel and local laboratory testing if needed to screen for exclusionary medical
552 conditions.

553 Individuals who do not initially meet study eligibility requirements may be rescreened at a later
554 date per investigator discretion.

555 **2.4.1 Data Collection and Testing**

556 A standard physical exam (including vital signs and height and weight measurements) will be
557 performed by the study investigator or designee (a physician, research physician, resident, fellow,
558 nurse practitioner or a physician assistant).

559 The following procedures will be performed/data collected/eligibility criteria checked and
560 documented:

- 561 • Inclusion and exclusion criteria assessed
- 562 • Demographics (date of birth, sex, race and ethnicity)
- 563 • Contact information (retained at the clinical center and not entered into study database)
- 564 • Medical history
- 565 • Concomitant medications

566 • Physical examination to include:

567 • Weight, height

568 • Vital signs including measurement of blood pressure and pulse

569 • Comprehensive Metabolic Panel to assess kidney and liver functioning

570 Blood draw for:

571 • HbA1c level measured using the DCA Vantage or comparable point of care device or local lab

572 ○ Measurement performed as part of usual clinical care prior to obtaining informed consent

573 for participation in the trial may be used

574 ○ Measurement must be made within two weeks prior to enrollment

575 ○ Sample to be sent to a central lab

576 • Urine or serum pregnancy test for all women of child-bearing potential and sexually active.

577 Screening procedures will last approximately 1-2 hours.

578

Chapter 3: Run-In Phase

579 **3.1 Run-in Phase Overview**

580 This phase may begin immediately after enrollment is complete or may be deferred for a maximum
581 of 28 days. The purpose of this run-in phase is to 1) assess compliance with study procedures, 2)
582 to introduce the study CGM to study participants without current use of a CGM and 3) to introduce
583 an insulin pump to participants who have not previously used an insulin pump.

584 Participants who currently use an insulin pump and a Dexcom G4, G5 or G6 with CGM data
585 captured on at least 11 out of the previous 14 days prior to the time of enrollment can skip the run-
586 in phase. If a participant is using a pump with a Low Glucose Suspend (LGS) feature, they will be
587 allowed to continue using this feature. Participants who do not currently use a Dexcom G4, G5, or
588 G6 CGM will be required to participate in the CGM run-in phase. Participants currently using a
589 Dexcom G4, G5, or G6 CGM with CGM readings captured on fewer than 11 out of the previous
590 14 days prior to time of enrollment will be required to participate in the CGM run-in phase. During
591 the CGM run-in phase, participants will use the study CGM for a minimum of 11 days with a goal
592 of at least 14 days.

593 All participants and their parent(s) will receive training on the study CGM as detailed below. This
594 will be an unblinded use of the study CGM.

595 Additionally, MDI and study pump naïve participants will participate in a pump run-in phase that
596 will run 2 to 6 weeks before randomization is assigned. If both pump run-in phase and CGM run-
597 in phase are indicated, they will run concurrently. Training is detailed below.

598

599 **3.2 Initiation of CGM**

600 The participant will be provided with sensors and instructed to use the study CGM on a daily basis.
601 Training will be provided to participants not experienced with CGM use as to how to use the CGM
602 in real-time to make management decisions and how to review the data after an upload for
603 retrospective review. Participants using a personal CGM prior to the study will discontinue the
604 personal CGM beginning in this period.

605 The participant will be observed placing the sensor. The study CGM user's guide will be provided
606 for the participant to take home.

607 **3.3 Initiation of Pump**

608 Pump-naïve participants will use the study insulin pump and CGM for up to 4 weeks before
609 randomization is assigned.

610 Participants who are pump-naïve will be provided with a study pump similar to the pump used
611 with the closed-loop system, but with the closed-loop control feature either absent or deactivated
612 and will be instructed to use the pump on a daily basis. An initial basal insulin profile will be

613 customized on a per-participant basis. Total daily insulin dose will be reduced by approximately
614 20% as a general rule, with a recommended method outlined in a separate procedures' manual.
615 Further adjustments to total daily dose (TDD) and intraday basal rate profile may be made during
616 the course of the run-in period that can be concomitant with the CGM run-in phase.

617 Participants and parent(s) will complete training on the study pump as detailed below.

618 • The participant will be fully instructed on the study insulin pump. A qualified system trainer
619 will conduct the training and in particular discuss differences from their home pump in
620 important aspects such as calculation of insulin on board (IOB) and correction boluses.
621 • The study pump will have the Basal-IQ feature, and participants will be able to use this feature
622 at investigator discretion.

623 Additional topics are not limited to but may include: infusion site initiation, cartridge/priming
624 procedures, setting up the pump, charging the pump, navigation through menus, bolus
625 procedures including stopping a bolus, etc.

626 • For pump-naïve participants, the study team will assist the participant in study pump infusion
627 site initiation and will start the participant on the study pump. The study pump will be
628 programmed with the participant's insulin requirements.
629 • The participant will be supervised with the study pump during at least one meal or snack bolus
630 to ensure participant understanding of the pump features.
631 • The participant will be encouraged to review the literature provided with the pump and infusion
632 sets after the training is completed.

633

634 Note: For the extension phase, participants in the control group will be trained on the use of the
635 Control IQ system. Follow up phone contacts and in-clinic visits are described in Table 3.

636

637 **3.4 Blood Glucose and Ketone Testing**

638 Participants will receive supplies for blood glucose and ketone testing.

639 • Blood glucose testing

640 ○ Participants will be provided with a study blood glucose meter, test strips, and standard
641 control solution to perform quality control (QC) testing at home per manufacturer guidelines.
642 ○ All study blood glucose meters will be QC tested with control solution if available during
643 all office visits. A tested meter will not be used in a study if it does not read within the target
644 range at each concentration per manufacturer labeling. The participant will be instructed to
645 contact study staff for a replacement of the meter, test strips, and control solution if a meter
646 fails QC testing at home.

647 ○ Participants will be reminded to use the study blood glucose meter for all fingerstick BGs
648 during the study.

649 ○ Participants will be given guidelines for treatment of low or high blood glucose.

650 • Blood ketone testing

651 ○ Participants will be provided with a study blood ketone meter, test strips, and standard
652 control solution to perform QC testing at home per manufacturer guidelines.

653 ○ All study blood ketone meters will be QC tested with control solution if available during
654 all office visits. A tested meter will not be used in a study if it does not read within the target
655 range at each concentration per manufacturer labeling. The participant will be instructed to
656 contact study staff for a replacement of the meter, test strips, and control solution if a meter
657 fails QC testing at home.

658 ○ Participants will be instructed to perform blood ketone testing as described in section 7.1.6.

659 ○ Participants will be given guidelines for treatment of elevated blood ketones

660 • Participants will be required to have a home glucagon emergency kit. Participants who
661 currently do not have one will be given a prescription for the glucagon emergency kit.

662 **3.5 Assessment of Successful Completion of the Run-in Phase**

663 Enrolled participants will return approximately 14 days after the initiation of the run-in phase
664 to assess progress or successful completion of the phase. If needed, one or more interim visits or
665 phone contacts may occur to assist the participant with any system use issues. Visit procedures
666 will include the following:

- 667 • Assessment of compliance with the use of either or both CGM and/or study pump (if
668 applicable)
- 669 • Assessment of compliance with the use of:
 - 670 ○ CGM,
 - 671 ○ study pump,
 - 672 ○ CGM and study pump
- 673 • Assessment of skin reaction in areas where a CGM sensor was worn
- 674 • Assessment of eligibility to continue to the randomized control trial (RCT) phase of the study

675 The appropriate study equipment will be downloaded and reviewed after the first 2 weeks of the
676 run-in phase have been completed; participants will be evaluated for compliance and progress. If
677 that run-in phase occurred without any major safety issues, participants who are completing only
678 the CGM run-in can be randomized. Those completing study pump and CGM may continue the
679 run-in phase for another 2-4 weeks at PI discretion. In addition, MDI or study-pump naïve
680 participants will be contacted by study staff within approximately 24hrs, 72hrs, and 1 week after
681 pump initiation to answer any questions related to device use prior to the 2-week visit. All
682 participants may have unlimited contact with the study team as needed.

683 To enter the randomized trial from the run-in phase, participants must have obtained CGM
684 readings on at least 11 out of the previous 14 days of the run-in phase (if applicable) and pump-
685 naïve patients must have successfully used the study pump each day (if applicable). If a participant
686 fails to meet either or both of these criteria, or if it is determined that the participant will benefit
687 from additional time with equipment training, then the run-in period may be extended at the
688 discretion of the investigator. One or two additional periods may occur, each a minimum of 11
689 days with a goal of at least 14 days, with another clinic visit to assess results after each period
690 using the same criteria as above. The run-in duration will therefore vary from approximately 2 to 6
691 weeks, depending on the participant. Additional visits and phone contacts for further training are
692 at investigator discretion.

693 An assessment of CGM and pump knowledge will be made and the participant must demonstrate
694 sufficient competency to proceed to the RCT. The trainer and participant will review the individual
695 items listed on the pump training checklist to ensure competency.

696 Participants who are unable to meet the CGM or study pump compliance requirements and those
697 who no longer meet all of the inclusion and exclusion criteria will be withdrawn from the study.

698 If the participant is eligible to continue in the study, study staff will follow the procedure for insulin
699 pump optimization described below in section 3.6.

700 **3.6 Optimization of Insulin Pump Settings**

- 701 • Data-driven optimization of pump settings will occur at the following times:
 - 702 • For the first phase: Prior to Randomization:
 - 703 ○ At the Run-in Review Visit
 - 704 • Following Randomization visit and initiation of Extension Phase:
 - 705 ○ If needed at the criteria of the physician at each clinical center, optimization may be done
706 by phone contacts or in clinic visits.
 - 707 ○ If the study participant contacts the study physician due to concerns about their pump
708 settings due to recurring hypo- or hyperglycemia.

709 Data will be obtained from CGM and/or pump downloads at the visit. Adjustments to pump
710 settings (basal rates, correction factor, insulin-to-carbohydrate ratio, etc.) will be made in response
711 to major trends observed in the CGM data, with flexibility for clinicians to adhere to guidelines
712 and practices established at each individual practice rather than a fixed set of heuristics for all
713 clinical centers.

714

Chapter 4: Randomization Visit

715 **4.1 Randomization Visit**

716 The visit may occur on the same day as the Screening or Run-in Review Visit, or on a subsequent
717 day. If deferred, the randomization visit should occur no more than 14 days after screening (if Run-
718 in skipped) or successful completion of the run-in phase.

719 A urine pregnancy test will be repeated for all females of child-bearing potential if this visit is not
720 on the same day as the Screening Visit.

721 **4.1.1 HbA1c**

722 HbA1c will be measured using DCA Vantage or similar point-of-care (POC) device or local lab if
723 this visit is not on the same day as the Screening Visit. A blood sample also will be drawn to send
724 to the central laboratory for baseline HbA1c determination to be used in outcome analyses.

725 **4.1.2 Baseline C-Peptide Assessment**

726 A blood sample will be drawn to send to the central laboratory for a random, non-fasting C-peptide
727 determination to characterize baseline residual insulin production. In conjunction, blood glucose
728 may be measured using a blood glucose meter or a blood sample may be drawn to send to the
729 central laboratory for a blood glucose assessment.

730 **4.1.3 Randomization**

731 Eligible participants will be randomly assigned to one of two treatment groups in a 3:1 ratio:

- 732 1. Control-IQ Closed-Loop Control (CLC) Group
- 733 2. Standard of Care (SC) Group

734 The participant's randomization group assignment is determined by completing a Randomization
735 Visit case report form on the study website. The randomization list will use a permuted block
736 design, stratified by clinical center.

737 *The participant will be included in the data analysis regardless of whether or not the protocol for
738 the assigned randomization group is followed. Thus, the investigator must not randomize a
739 participant until he/she is convinced that the participant/parent will accept assignment to either
740 of the two groups.*

741 *It was decided that it was more important to stratify randomization by clinical center than by
742 factors such as baseline time in range, HbA1c, or device use since these factors will be easier to
743 adjust for in analysis than will clinical center in view of the relatively small number at each clinical
744 center.*

745 **4.1.4 Questionnaires**

746 Participants will complete a set of baseline questionnaires, described in section 8.2 adapted for
747 age, prior to randomization.

748

Chapter 5: Main Study Procedures

749 **5.1 Procedures for the CLC Group**

750 Participants assigned to the CLC group will receive study system training. These training
751 sessions can occur on the same day or extend to up to one additional day if needed within 1-7
752 days from randomization; participants will not take the study system home until training has
753 been completed.

754 The parent/guardian will be trained on severe hypoglycemia emergency procedures including
755 removal of the study pump and administration of glucagon. The parent/guardian will be asked to
756 attend any/all of the other training procedures.

757 **5.2 Study System Training**

758 Participants will receive study system training by a qualified trainer. The study system includes
759 the Tandem t:slim X2 with Control-IQ technology and associated Dexcom G6 CGM.

760 CGM training will include:

- 761 • The participant will be instructed and supervised on how to insert the sensor and transmitter.
- 762 • The participant will learn how to calibrate the CGM unit
- 763 • The participant will learn how to access the CGM trace via the t:slim X2 with Control-IQ user
764 interface
- 765 • Participants will be asked to perform fingerstick blood glucose measurements in accordance
766 with the labeling of the study CGM device

767 Pump training will include:

- 768 • The participant will be fully instructed on the study insulin pump. A qualified system trainer
769 will conduct the training and in particular discuss differences from their home pump in
770 important aspects such as calculation of insulin on board and correction boluses. Additional
771 topics not limited to but may include: infusion site initiation, cartridge/priming procedures,
772 setting up the pump, charging the pump, navigation through menus, bolus procedures including
773 stopping a bolus, etc.
- 774 • The study team will assist the participant in study pump infusion site initiation and will start
775 the participant on the study pump. The study pump will be programmed with the participant's
776 usual basal rates and pump parameters. The participant's personal pump will be removed.
- 777 • The participant will be supervised with the study pump during at least one meal or snack bolus
778 to ensure participant understanding of the pump features.
- 779 • The participant will be encouraged to review the literature provided with the pump and infusion
780 sets after the training is completed.

781 Pump training specific to the Control-IQ Technology functions will include:

782 • How to turn on and off Control-IQ technology.

783 • How to understand when Control-IQ is increasing or decreasing basal rates.

784 • How to administer a meal or correction bolus on the t:slim X2 with Control-IQ system

785 • What to do when exercising while using the system

786 • How to enable the sleep function and set the sleep schedule

787 • The participant will be assessed for understanding of the system interface and how to react to

788 safety/alert messages.

789 • The participant will be given a User Guide as a reference.

790 **5.2.1 System Initiation**

791 The participant will be instructed to use the system in closed-loop mode except 1) when no

792 calibrated CGM sensor is available or 2) if insulin is delivered by any means other than the

793 study pump (e.g. injection of subcutaneous insulin via syringe in the event of infusion site failure).

794 If insulin is delivered by any means other than the study pump, participant will be instructed to

795 turn off Control-IQ for approximately four hours.

796 The participant will also be instructed to contact study staff during periods of illness with an

797 elevated temperature >101.5 degrees Fahrenheit (38.6 degrees Celsius), periods of significant

798 illness, or during periods of use of medications such as epinephrine for the emergency treatment

799 of a severe allergic reaction or asthma attack in addition to use of oral or injectable glucocorticoids

800 to determine if closed-loop use should be temporarily discontinued.

801 The participant's parent/legal guardian will be required to attend the training procedures and will

802 be trained in all aspects aforementioned. All training will be conducted considering age of

803 participant and parent involvement on diabetes treatment.

804 Participants will be provided with sufficient supplies to last until the subsequent visit.

805 Participants will be provided with contact information and will be asked to call the study

806 clinical staff for any health-related issues and for technical issues with t:slim X2 with

807 Control-IQ. Participants may use the study pump without Control-IQ activated and study

808 CGM during periods of component disconnections or technical difficulties. Participants will

809 also receive study staff contact information to ask any questions they may have during the study.

810 Study staff will discuss with the participant that routine contact is required and will make

811 arrangements with the participant for the contacts. If the participant cannot be reached, the

812 participant's other contact methods will be utilized, including the emergency contact. Participants

813 who are not compliant with the arranged contacts on two separate occasions may be discontinued

814 at the discretion of the investigator.

815 Upon completion of the t:slim X2 with Control-IQ training, study staff will document, using a

816 checklist, that the participant is familiar with the function/feature and/or capable of performing

817 each of the tasks specified.

818 Participants will be provided Hypoglycemia, Hyperglycemia and Ketone Guidelines (section 7.2)
819 for when their glucose levels are >300 mg/dL for more than two hours or >400 mg/dL at any time
820 or <70 mg/dL or ketones ≥ 1.5 mmol/L.

821 **5.2.2 Home Use of the Study System**

822 After training on the study system has been completed, participants will proceed with home use
823 (meaning free-living use at school, home, etc.) of the t:slim X2 with Control-IQ technology
824 system.

825 Participants may use available manufacturer-provided software and features of the study CGM
826 related to mobile data access or remote monitoring, but will be instructed not to use any third-party
827 components for this purpose.

828 **5.2.3 Study Device Download**

829 Participants will be instructed to download the study device prior to each phone visit or on at least
830 every 3-week basis throughout the remainder of the study.

831 **5.2.4 1-Week Phone Contact**

832 Study staff will perform a phone call with the participant within 7 (± 1) days following
833 randomization.

834 The following will occur:

- 835 • Assessment of compliance with study device use by review of any available device data
- 836 • Assessment of adverse events, adverse device effects, and device issues
- 837 • Study staff will answer any questions related to device use

838 Participants will then complete an additional week of home use with the study system. Participants
839 will return to clinic 14 (± 3) days from the date of randomization.

840 **5.2.5 2-Week Visit (Training Review and Insulin Pump Optimization)**

841 The participant will be offered review training to address any questions on the use of the study
842 device including meal bolus strategies and strategies related to pump use and exercise.

843 The following will occur:

- 844 • Assessment of compliance with study device use by review of any available device data
- 845 • Assessment of adverse events, adverse device effects, and device issues
- 846 • Study staff will answer any questions related to device use and follow the procedure for insulin
847 pump optimization described in section 3.6 using the study CGM available data from the
848 previous two weeks.
- 849 • The blood glucose meter and study ketone meter will be downloaded and QC tested with
850 control solution.

851 **5.3 Procedures for the SC Group**

852 Participants in the SC group will use an insulin pump that they usually use for the treatment of
853 their diabetes or a study pump provided by the study team if they are transitioning from MDI to
854 pump for the study, in conjunction with the study CGM, study blood glucose meter, and study
855 ketone meter. Study pump training and/or study CGM training will be provided if the participant
856 is initiating use of these devices at this point.

857 If a participant is using a pump with a LGS feature, he/she will be allowed to continue using this
858 feature during the trial.

859 Participants may use available manufacturer-provided software and features of the study CGM
860 related to mobile data access or remote monitoring, but will be instructed not to use any third-party
861 components for this purpose.

862 **5.3.1 Study Device Data Download**

863 Participants will be instructed to upload data from the study CGM using commercially available
864 software prior to the 1-week phone contact and prior to the 2-week clinic visit for clinician review.
865 Participants will be provided with any software and hardware needed to perform these data
866 uploads.

867 **5.3.2 1-Week Phone Contact**

868 Study staff will perform a phone call with the participant 7(± 1) days following randomization.

869 The following will occur:

- 870 • Assessment of compliance with study device use by review of any available device data
- 871 • Assessment of adverse events, adverse device effects, and device issues
- 872 • Study staff will answer any questions related to device use

873 The participant will continue on SC for a second week, then return to the clinic 14 (± 3) days from
874 the date of randomization.

875 **5.3.3 2-Week Visit (Training Review and Insulin Pump Optimization)**

876 The participant will be offered review training on the use of SC during the remainder of the study,
877 including meal bolus strategies and strategies related to pump use and exercise.

878 The following will occur:

- 879 • Assessment of compliance with study device use by review of any available device data
- 880 • Assessment of adverse events, adverse device effects, and device issues
- 881 • Study staff will review uploaded CGM data, answer any questions related to device use, and
882 follow the procedure for insulin pump optimization described in section 3.6.
- 883 • The study blood glucose meter and study ketone meter will be downloaded and QC tested with

884 at least two different concentrations of control solution if available.

885 The participant will be instructed to upload data from the CGM at least once every 4 weeks for the
886 remainder of the study.

887 **5.4 Follow-up Visits and Phone Contacts for Both Groups**

888 The schedule for remaining follow-up visits and phone contacts is the same for both treatment
889 groups. Study staff will discuss with the participant that periodic contact is required and will make
890 arrangements with the participant for the contacts. If the participant or parent/guardian, cannot be
891 reached, the participant's other contact methods will be utilized, including the emergency contact.

892 **5.4.1 Follow-up Visits**

893 Follow-up visits in clinic will occur at:

- 894 • 2 week (± 3 days)
- 895 • 8 weeks (± 1 week)
- 896 • 16 weeks (+1 week) – end of Main Study Phase

897 **5.4.1.1 Procedures at Follow-up Visits**

898 Procedures performed in both groups at each visit, unless otherwise specified below:

- 899 • Assessment of compliance with study device use by review of any available device data
- 900 • Assessment of adverse events, adverse device effects, and device issues
- 901 • Download of device data (study system or personal pump and study CGM, study BG meter,
902 study ketone meter)

903 **5.4.2 Phone Contacts**

904 In addition to the 1-week phone contact described above for the respective treatment groups, the
905 following phone contacts will be made:

- 906 • 4 weeks (± 3 days)
- 907 • 6 weeks (± 3 days)
- 908 • 10 weeks (± 3 days)
- 909 • 12 weeks (± 3 days)
- 910 • 14 weeks (± 3 days)

911 At each phone contact, the following procedures are performed in both treatment groups:

- 912 • Review of available CGM and/or system data to identify any safety issues associated with
913 insulin pump settings and current diabetes management approach
- 914 • Assessment of adverse events, adverse device effects, and device issues

915 Additional phone contacts may be performed as needed.

916 **5.4.3 Data from Study Devices**

917 All participants will be asked to upload data from the CGM at least once every 4 weeks during the
918 extension phase. The study staff will confirm that the data were received.

919 **5.4.4 16-Week Final First Phase Visit**

920 All participants will return to the clinic for a 16-Week (+7 days) final clinic visit during which the
921 following will occur:

- 922 • HbA1c determination using the DCA Vantage or similar point of care device
- 923 • Collection of a blood sample to send to the central laboratory for HbA1c determination
- 924 • Completion of questionnaires
- 925 • Weight and height measurement will be repeated
- 926 • Assessment of adverse events, adverse device effects, and device issues
- 927 • Download of device data (study system or personal pump and study CGM, study BG meter,
928 study ketone meter)

929 **5.5 Early Termination Visit (If Applicable)**

930 Participants will be asked to come for an end of study visit in the event of withdrawal or early
931 termination.

932 **5.6 Unscheduled Visits**

933 Participants may have unscheduled visits during the study period if required for additional device
934 training or other unanticipated needs per the study investigator discretion.

935 **5.7 Participant Access to Study Device at Study Closure**

936 Participant will return all investigational study devices and supplies (insulin pump, CGM and
937 related supplies) at study closure. Participant may keep the study ketone meter and study
938 glucometer if these devices are not marked for investigational use only.

939

Chapter 6: Extension Phase Procedures

940 At the conclusion of the 16-week visit, all participants will have the option to use of the Control-
941 IQ closed-loop system.

942 **6.1 Closed Loop Control Participants**

943 Participants who have completed the 16-week Main Study Phase will be provided the option to
944 continue the use the t:slim with Control-IQ System for an additional 12 weeks.

945 The following phone contacts will be made for CLC Group participants in the Extension Phase:

946 • 20 week (± 3 days)
947 • 24 week (± 3 days)

948 At each phone contact, the following procedures are performed:

949 Review of available CGM and/or system data to identify any safety issues associated with insulin
950 pump settings and current diabetes management approach

951 • Assessment of adverse events, adverse device effects, and device issues

952 **6.2 SC Group Participants**

953 Training on pump (section 5.2) use will be provided and therapy optimization will occur as
954 follows:

955 • If needed at the criteria of the physician at each clinical center, optimization may be done at
956 either phone contacts or in clinic visits.
957 • If the study participant contacts the study physician due to concerns about their pump settings
958 due to recurring hypo- or hyperglycemia.

959 Data will be obtained from CGM and/or pump downloads at the visit. Adjustments to pump
960 settings (basal rates, correction factor, insulin-to-carbohydrate ratio, etc.) will be made in response
961 to major trends observed in the CGM data, with flexibility for clinicians to adhere to guidelines
962 and practices established at each individual practice rather than a fixed set of characteristics for all
963 clinical centers.

964 The following phone contacts will be made for SC Group participants in the Extension Phase:

965 • 17 weeks (± 3 days)
966 • 19 weeks (± 3 days)
967 • 21 weeks (± 3 days)

968 • 25 weeks (± 3 days)

969 At each phone contact, the following procedures are performed:

970 • Review of available CGM and/or system data to identify any safety issues associated with
971 insulin pump settings and current diabetes management approach

972 • Assessment of adverse events, adverse device effects, and device issues

973 Follow-up visits for SC group during the Extension Phase in clinic will occur at:

974 • 23 Weeks (± 1 week)

975 • 28 Weeks (+1 week) – End of Study

976 Procedures Specific to the 28 Week Visit

977 • HbA1c determination using the DCA Vantage or similar point of care device

978 • Collection of a blood sample to send to the central laboratory for HbA1c determination

979 • Completion of questionnaires

980 • Weight measurement will be repeated, in addition to height

981 • Insulin Pump Optimization as described above

982 **6.3 Early Termination Visit (If Applicable)**

983 Participants will be asked to come for an end of study visit in the event of withdrawal or early
984 termination.

985 **6.4 Unscheduled Visits**

986 Participants may have unscheduled visits during the study period if required for additional device
987 training or other unanticipated needs per the study investigator discretion.

988 **6.5 Participant Access to Study Device at Study Closure**

989 Participant will return all investigational study devices and supplies (insulin pump, CGM and
990 related supplies) at study closure. Participant may keep the study ketone meter and study
991 glucometer if these devices are not marked for investigational use only.

992

Chapter 7: Study Devices

993 **7.1 Description of the Investigational Device**

994 **7.1.1 Insulin Pump**

995 The study system will include the Tandem t:slim X2 with Control-IQ technology.

996 **7.1.2 Continuous Glucose Monitoring**

997 The study CGM will include Dexcom G6 transmitter and sensors when using the Tandem t:slim
998 X2 with Control-IQ technology. This may not be an FDA-approved device system at the start of
999 the study, but may become approved during the course of the study. The CGM sensor will be
1000 replaced at least once every 10 days.

1001 **7.1.3 Blood Glucose Meter and Strips**

1002 Blood glucose levels will be measured using the study's blood glucose meter (glucometer) and the
1003 CGM device will be calibrated if needed using the study glucometer and strips in accordance with
1004 the manufacturer's labeling.

1005 **7.1.4 Ketone Meter and Strips**

1006 Blood ketone levels will be measured using the Abbott Precision Xtra meter and strips in
1007 accordance with the manufacturer's labeling. The blood glucose meter component of the Precision
1008 Xtra device will not be used.

1009 **7.1.5 Study Device Accountability Procedures**

1010 Device accountability procedures will be detailed in the clinical center procedures manual.

1011 **7.1.6 Blood Ketone Testing**

- 1012 • Participants to perform QC testing at home per manufacturer guidelines.
- 1013 • All study blood ketone meters will be QC tested with control solution if available during all
1014 office visits. A tested meter will not be used in a study if it does not read within the target
1015 range at each concentration per manufacturer labeling. The participant will be instructed to
1016 contact study staff for a replacement of the meter, test strips, and control solution if a meter
1017 fails QC testing at home.
- 1018 • Participants will be instructed on how to perform blood ketone testing.
- 1019 • Participants will be given guidelines for treatment of elevated blood ketones.

1020 **7.2 Safety Measures**

1021 **7.2.1 CGM Calibration**

1022 Throughout the study, participants will be instructed to calibrate the study CGM in accordance
1023 with manufacturer labelling.

1024 **7.2.2 System Failure**

1025 If the CGM signal becomes unavailable for more than 20 minutes consecutively, Control-IQ or
1026 closed loop will not operate to automatically adjust insulin. If the CGM is not connected, the
1027 system will revert to usual function of the pump and deliver insulin with the insulin dosing
1028 parameters programmed in the system for that individual. Resumption of Closed-Loop will
1029 occur automatically once CGM signal is available again.

1030 If the study system is unable to activate Control-IQ for any reason, the pump will automatically
1031 revert to preprogrammed basal insulin delivery without any need for instruction from the user.

1032 If the t:slim X2 detects a system error that does not allow the pump to operate, the Malfunction
1033 Alarm will display and the participant will be instructed to contact Tandem Technical Support via
1034 the study team.

1035 **7.2.3 Hypoglycemia Threshold Alert and Safety Protocol**

1036 During the course of the study, participants will be permitted to change the CGM low glucose
1037 threshold alert setting on their device or mobile app, but will be instructed to choose a value no
1038 less than 70 mg/dL.

1039 The t:slim X2 with Control-IQ system will issue a predictive hypoglycemia alert (Control-IQ Low
1040 Alert) when the system predicts BG <70 mg/dL within the next 15 minutes (<80 mg/dL when
1041 exercise mode is activated).

1042 If the participant receives a Control-IQ Low Alert, a message appears on the user interface (UI)
1043 that is accompanied by vibration followed by vibrations and/or sound if not acknowledged by the
1044 user in 5 minutes. This alert remains on the screen until acknowledged by the user. The user is
1045 prompted to test blood sugar and treat with carbs.

1046 **7.2.4 Hyperglycemia Threshold Alert and Safety Protocol**

1047 During the course of the study, participants will be permitted to change the CGM high glucose
1048 threshold alert setting on their device or mobile app, but will be instructed to choose a value no
1049 greater than 300 mg/dL.

1050 The t:slim X2 with Control-IQ system will issue a predictive hyperglycemia alert (Control-IQ
1051 High Alert) when the system has increased insulin delivery, but detects a CGM value above 200
1052 mg/dL and does not predict the value will decrease in the next 30 minutes.

1053 If the participant receives a Control-IQ High Alert, a message appears on the UI that is
1054 accompanied by vibration followed by vibrations and/or sound if not acknowledged by the user in
1055 5 minutes. This alert remains on the screen until acknowledged by the user. The user is prompted
1056 to check the site for occlusion and test blood glucose.

1057 If a participant's CGM reading is >300 mg/dL for over 2 hours or ≥ 400 mg/dL at any point, the
1058 participant will be instructed to take the following steps:

1059

- Perform a blood glucose meter check.

1060 • If the blood glucose is >300 mg/dL, check for blood ketones with the study ketone meter.

1061 • If the ketone level is ≥ 1.5 mmol/L, take correction insulin, change insulin (pump) infusion site
1062 and contact study staff.

1063 • If a participant administers correction insulin via insulin syringe, participants will be instructed
1064 to turn Control-IQ off for approximately four hours.

Chapter 8: Testing Procedures and Questionnaires

1066 8.1 Laboratory Testing

1067 8.1.1 Comprehensive Metabolic Panel (CMP)

1068 A blood sample will be obtained at screening to assess kidney and liver functioning.

1069 8.1.2 HbA1c:

1070 • Performed locally at the Screening visit, Randomization visit and the 16-week visit.

1071 • A blood sample will be obtained and sent to central lab at the Randomization visit, at the 16-

1072 week visit and at the end of the study visit.

1073 8.1.3 Urine Pregnancy:

1074 Performed locally for females of child-bearing potential at the Screening visit and the
1075 Randomization visit. This will also be done anytime pregnancy is suspected.

1076 8.1.4 C-peptide and Glucose

1077 Blood samples will be obtained and sent to the central lab at the Randomization visit. Back-up
1078 samples will be stored on-site until all samples are resulted.

1079 8.2 Questionnaires

1080 Questionnaires are completed at the Randomization Visit and Week 16 Visit for all participants.
1081 Participants who complete the Extension Phase will also complete the questionnaires at Week 28.
1082 The questionnaires will be family and age appropriate are described briefly below. The procedures
1083 for administration are described in the clinical center procedures manual.

1084 The following questionnaires will be completed at the Randomization Visit:

- Clarke's Hypoglycemia Awareness Scale – Child and Parent (Children age 10+ years at the time of consent will complete as well as all Parents)
- Fear of Hypoglycemia Survey (HFS-II) – Child and Parent
- Problem Areas In Diabetes Survey (PAID) – Child and Parent
- Pediatric Quality of Life – Child and Parent
- INSPIRE Survey – Child and Parent
- Pittsburgh Sleep Quality Index (PSQI) – Parent

1092 The following questionnaires will be completed at the Week 16 and Week 28 Visits:

1093 • Clarke's Hypoglycemia Awareness Scale – Child and Parent (Children age 10+ years at the
1094 time of consent will complete as well as all Parents)

1095 • Fear of Hypoglycemia Survey (HFS-II) – Child and Parent
1096 • Problem Areas In Diabetes Survey (PAID) – Child and Parent
1097 • Pediatric Quality of Life – Child and Parent
1098 • INSPIRE Post-Assessment Survey – Child and Parent
1099 • Pittsburgh Sleep Quality Index (PSQI) – Parent
1100 • System Usability Scale (SUS) – Closed-Loop participants only
1101 Administration time is approximately 15 minutes.

1102 **8.2.1 Clarke's Hypoglycemia Awareness Scale – Child and Parent**

1103 The scale comprises eight questions characterizing the participant's exposure to episodes
1104 of moderate and severe hypoglycemia. It also examines the glycemic threshold for, and
1105 symptomatic responses to hypoglycemia. A score of four or more on a scale of 0 to 7 implies
1106 impaired awareness of hypoglycemia.

1107 Administration time is approximately 5 minutes.

1108 **8.2.2 Hypoglycemia Fear Survey (HFS-II)/Low Blood Sugar Survey – Child and Parent**

1109 The Hypoglycemia Fear Survey-II was developed to measure behaviors and worries related to fear
1110 of hypoglycemia in adults with type 1 diabetes. It is composed of 2 subscales, the Behavior (HFS-
1111 B) and Worry (HFS-W). HFS-B items describe behaviors in which patients may engage to avoid
1112 hypoglycemic episodes and/or their negative consequences (e.g., keeping blood glucose levels
1113 higher, making sure other people are around, and limiting exercise or physical activity). HFS-W
1114 items describe specific concerns that patients may have about their hypoglycemic episodes (e.g.,
1115 being alone, episodes occurring during sleep, or having an accident). HFS-II was adapted for
1116 children and parents. Items are rated on a 5-point Likert scale (0=never, 4=always), with higher
1117 scores indicating higher fear of hypoglycemia.

1118 Administration time is approximately 10 minutes (both versions).

1119 **8.2.3 Problem Areas In Diabetes Survey (PAID) – Child and Parent**

1120 The Problem Areas In Diabetes Survey is a measure of diabetes-related emotional distress and
1121 consists of a scale of 16 items for the Parent version and 11 items for the Child version. Patients
1122 and parents rate the degree to which each item is currently problematic for them on a 6-point Likert
1123 scale, from 1 (no problem) to 6 (serious problem).

1124 Administration time is approximately 10 minutes.

1125 **8.2.4 PedsQL Diabetes Module – Child and Parent**

1126 This is a 33-item scale developed and validated for the measurement of diabetes-specific quality
1127 of life. Separate forms have been validated for child self-report (5-7 year old; 8-12 year old; and
1128 12-18 year old) and parent report for these same age groups. Participants record the extent to

1129 which they (or their child) experienced each of 33 problems related to diabetes in the prior
1130 month.

1131 Administration time is approximately 15 minutes.

1132 **8.2.5 INSPIRE Survey – Child and Parent**

1133 The INSPIRE (Insulin Delivery Systems: Perceptions, Ideas, Reflections and Expectations) survey
1134 was developed to assess various aspects of a user's experience regarding automated insulin
1135 delivery for both patients and family members. The surveys include various topics important to
1136 patients with type 1 diabetes and their family members based upon >200 hours of qualitative
1137 interviews and focus groups. The child pre-assessment survey includes 27 items, and the parent
1138 pre-assessment survey includes 45 items. The post-assessment child survey includes 17 items, and
1139 the parent post-assessment contains 21 items. Response options for all surveys include a 5-point
1140 Likert scale from strongly agree to strongly disagree, along with an N/A option.

1141 Administration time is approximately 5 minutes.

1142 **8.2.6 Pittsburgh Sleep Quality Index (PSQI) – Parent**

1143 Pittsburgh Sleep Quality Index (PSQI) is a 10-item questionnaire that measures the sleep quality
1144 and pattern of sleep in adults. Seven component scores are derived, each scored 0 (no difficulty)
1145 to 3 (severe difficulty). The component scores are summed to produce a global score (range 0 to
1146 21). Higher scores indicate worse sleep quality.

1147 Administration time is approximately 5 minutes.

1148 **8.2.7 System Usability Scale (SUS) – Closed-Loop participants only**

1149 The System Usability Scale (SUS) is a 10-item questionnaire that measures the overall usability of
1150 a system. It is a valid and reliable measure of the perceived usability of a system and is technology-
1151 agnostic. The questionnaire presents statements with five response options (anchoring the options
1152 from strongly disagree to strongly agree) and asks users to rate their agreement to the statements.
1153 User scores are transformed into a composite score, from 0 to 100, and this score is taken as an
1154 overall measure of the system's usability; higher scores indicate better perceived usability.

1155 Administration time is approximately 5 minutes.

1156 **Chapter 9: Adverse Events, Device Issues, and Stopping Rules**

1157 **9.1 Adverse Events**

1158 **9.1.1 Definitions**

1159 Adverse Event (AE): Any untoward medical occurrence in a study participant, irrespective of the
1160 relationship between the adverse event and the device(s) under investigation (see section 9.1.2 for
1161 reportable adverse events for this protocol).

1162 Serious Adverse Event (SAE): Any untoward medical occurrence that:

- 1163 • Results in death.
- 1164 • Is life-threatening; (a non-life-threatening event which, had it been more severe, might have
1165 become life-threatening, is not necessarily considered a serious adverse event).
- 1166 • Requires inpatient hospitalization or prolongation of existing hospitalization.
- 1167 • Results in persistent or significant disability/incapacity or substantial disruption of the ability
1168 to conduct normal life functions (sight threatening).
- 1169 • Is a congenital anomaly or birth defect.
- 1170 • Is considered a significant medical event by the investigator based on medical judgment (e.g.,
1171 may jeopardize the participant or may require medical/surgical intervention to prevent one of
1172 the outcomes listed above).

1173 Unanticipated Adverse Device Effect (UADE): Any serious adverse effect on health or safety or
1174 any life-threatening problem or death caused by, or associated with, a device, if that effect,
1175 problem, or death was not previously identified in nature, severity, or degree of incidence in the
1176 investigational plan or application (including a supplementary plan or application), or any other
1177 unanticipated serious problem associated with a device that relates to the rights, safety, or welfare
1178 of participants (21 CFR 812.3(s)).

1179 Adverse Device Effect (ADE): Any untoward medical occurrence in a study participant which the
1180 device may have caused or to which the device may have contributed (Note that an Adverse Event
1181 Form is to be completed in addition to a Device Deficiency or Issue Form).

1182 Device Complaints and Malfunctions: A device complication or complaint is something that
1183 happens to a device or related to device performance, whereas an adverse event happens to a
1184 participant. A device complaint may occur independently from an AE, or along with an AE.
1185 An AE may occur without a device complaint or there may be an AE related to a device complaint.
1186 A device malfunction is any failure of a device to meet its performance specifications or otherwise
1187 perform as intended. Performance specifications include all claims made in the labeling for the
1188 device. The intended performance of a device refers to the intended use for which the device is
1189 labeled or marketed. (21 CFR 803.3). Note: for reporting purposes, clinical centers will not be
1190 asked to distinguish between device complaints and malfunctions.

1191 **9.1.2 Reportable Adverse Events**

1192 For this protocol, a reportable adverse event includes any untoward medical occurrence that meets
1193 one of the following criteria:

- 1194 1. A serious adverse event
- 1195 2. An Adverse Device Effect as defined in section 9.1.1, unless excluded from reporting in section
1196 9.2
- 1197 3. An Adverse Event occurring in association with a study procedure
- 1198 4. Hypoglycemia meeting the definition of severe hypoglycemia as defined below
- 1199 5. Diabetic ketoacidosis (DKA) as defined below or in the absence of DKA, a hyperglycemic or
1200 ketosis event meeting the criteria defined below

1201 Hypoglycemia and hyperglycemia not meeting the criteria below will not be recorded as adverse
1202 events unless associated with an Adverse Device Effect. Skin reactions from sensor placement are
1203 only reportable if severe and/or required treatment.

1204 Pregnancy occurring during the study will be recorded.

1205 **9.1.2.1 Hypoglycemic Events**

1206 Hypoglycemia not associated with an Adverse Device Effect is only reportable as an adverse event
1207 when the following definition for severe hypoglycemia is met: the event required assistance of
1208 another person due to altered consciousness, and required another person to actively administer
1209 carbohydrate, glucagon, or other resuscitative actions. This means that the participant was
1210 impaired cognitively to the point that he/she was unable to treat himself/herself, was unable to
1211 verbalize his/ her needs, was incoherent, disoriented, and/or combative, or experienced seizure or
1212 coma. These episodes may be associated with sufficient neuroglycopenia to induce seizure or
1213 coma. If plasma glucose measurements are not available during such an event, neurological
1214 recovery attributable to the restoration of plasma glucose to normal is considered sufficient
1215 evidence that the event was induced by a low plasma glucose concentration.

1216 **9.1.2.2 Hyperglycemic Events/Diabetic Ketoacidosis**

1217 Hyperglycemia not associated with an Adverse Device Effect is only reportable as an adverse
1218 event when one of the following 4 criteria is met:

- 1219 • the event involved DKA, as defined by the Diabetes Control and Complications Trial (DCCT)
1220 and described below
- 1221 • evaluation or treatment was obtained at a health care provider facility for an acute event
1222 involving hyperglycemia or ketosis
- 1223 • blood ketone level ≥ 1.5 mmol/L and communication occurred with a health care provider at
1224 the time of the event
- 1225 • blood ketone level ≥ 3.0 mmol/L, even if there was no communication with a health care
1226 provider

1227 Hyperglycemic events are classified as DKA if the following are present:

1228 • Symptoms such as polyuria, polydipsia, nausea, or vomiting;

1229 • Serum ketones ≥ 1.5 mmol/L or large/moderate urine ketones;

1230 • Either arterial blood pH < 7.30 or venous pH < 7.24 or serum bicarbonate < 15 ; and

1231 • Treatment provided in a health care facility

1232 All reportable Adverse Events—whether volunteered by the participant, discovered by study
1233 personnel during questioning, or detected through physical examination, laboratory test, or other
1234 means—will be reported on an adverse event form online. Each adverse event form is reviewed
1235 by the Medical Monitor to verify the coding and the reporting that is required.

1236 **9.1.3 Relationship of Adverse Event to Study Device**

1237 The study investigator will assess the relationship of any adverse event to be related or unrelated
1238 by determining if there is a reasonable possibility that the adverse event may have been caused by
1239 the study device.

1240 To ensure consistency of adverse event causality assessments, investigators should apply the
1241 following general guideline when determining whether an adverse event is related:

1242 Yes

1243 There is a plausible temporal relationship between the onset of the adverse event and the study
1244 intervention, and the adverse event cannot be readily explained by the participant's clinical state,
1245 intercurrent illness, or concomitant therapies; and/or the adverse event follows a known pattern of
1246 response to the study intervention; and/or the adverse event abates or resolves upon discontinuation
1247 of the study intervention or dose reduction and, if applicable, reappears upon re-challenge.

1248 No

1249 Evidence exists that the adverse event has an etiology other than the study intervention (e.g.,
1250 preexisting medical condition, underlying disease, intercurrent illness, or concomitant
1251 medication); and/or the adverse event has no plausible temporal relationship to study intervention.

1252 **9.1.4 Intensity of Adverse Event**

1253 The intensity of an adverse event will be rated on a three point scale: (1) mild, (2) moderate, or (3)
1254 severe. It is emphasized that the term severe is a measure of intensity: thus, a severe adverse event
1255 is not necessarily serious. For example, itching for several days may be rated as severe, but may
1256 not be clinically serious.

1257 • **MILD:** Usually transient, requires no special treatment, and does not interfere with the
1258 participant's daily activities.

1259 • **MODERATE:** Usually causes a low level of inconvenience or concern to the participant and
1260 may interfere with daily activities, but is usually ameliorated by simple therapeutic measures.

1261 • SEVERE: Interrupts a participant's usual daily activities and generally requires systemic drug
1262 therapy or other treatment.

1263 **9.1.5 Coding of Adverse Events**

1264 Adverse events will be coded using the MedDRA dictionary. The Medical Monitor will review
1265 the investigator's assessment of causality and may agree or disagree. Both the investigator's and
1266 Medical Monitor's assessments will be recorded. The Medical Monitor will have the final say in
1267 determining the causality.

1268 Adverse events that continue after the participant's discontinuation or completion of the study will
1269 be followed until their medical outcome is determined or until no further change in the condition
1270 is expected.

1271 **9.1.6 Outcome of Adverse Event**

1272 The outcome of each reportable adverse event will be classified by the investigator as follows:

- 1273 • RECOVERED/RESOLVED – The participant recovered from the AE/SAE without sequelae.
1274 Record the AE/SAE stop date.

- 1275 • RECOVERED/RESOLVED WITH SEQUELAE – The event persisted and had stabilized
1276 without change in the event anticipated. Record the AE/SAE stop date.

- 1277 • FATAL – A fatal outcome is defined as the SAE that resulted in death. Only the event that
1278 was the cause of death should be reported as fatal. AEs/SAEs that were ongoing at the time of
1279 death; however, were not the cause of death, will be recorded as “resolved” at the time of death.

- 1280 • NOT RECOVERED/NOT RESOLVED (ONGOING) – An ongoing AE/SAE is defined as the
1281 event was ongoing with an undetermined outcome.

- 1282 ○ An ongoing outcome will require follow-up by the clinical center in order to determine the
1283 final outcome of the AE/SAE.

- 1284 ○ The outcome of an ongoing event at the time of death that was not the cause of death, will
1285 be updated and recorded as “resolved” with the date of death recorded as the stop date.

- 1286 • UNKNOWN – An unknown outcome is defined as an inability to access the participant or the
1287 participant's records to determine the outcome (for example, a participant that was lost to
1288 follow-up).

1289 All clinically significant abnormalities of clinical laboratory measurements or adverse events
1290 occurring during the study and continuing at study termination should be followed by the
1291 participant's physician and evaluated with additional tests (if necessary) until diagnosis of the
1292 underlying cause, or resolution. Follow-up information should be recorded on source documents.

1293 If any reported adverse events are present when a participant completes the study, or if a participant
1294 is withdrawn from the study due to an adverse event, the participant will be contacted for re-
1295 evaluation within 2 weeks. If the adverse event has not resolved, additional follow-up will be
1296 performed as appropriate. Every effort should be made by the Investigator or delegate to contact
1297 the participant until the adverse event has resolved or stabilized.

1298 **9.2 Reportable Device Issues**

1299 All UADEs, ADEs, device complaints, and device malfunctions will be reported irrespective of
1300 whether an adverse event occurred, except in the following circumstances.

1301 The following device issues are anticipated and will not be reported on a Device Issue Form but
1302 will be reported as an Adverse Event if the criteria for AE reporting described above are met:

- 1303 • Component disconnections
- 1304 • CGM sensors lasting fewer than the number of days expected per CGM labeling
- 1305 • CGM tape adherence issues
- 1306 • Pump infusion set occlusion not leading to ketosis
- 1307 • Battery lifespan deficiency due to inadequate charging or extensive wireless communication
- 1308 • Intermittent device component disconnections/communication failures not leading to system
1309 replacement
- 1310 • Device issues clearly addressed in the user guide manual that do not require additional
1311 troubleshooting
- 1312 • Skin reactions from CGM sensor placement or pump infusion set placement that do not meet
1313 criteria for AE reporting

1314 **9.3 Pregnancy Reporting**

1315 If pregnancy occurs, the participant will be discontinued from the study. The occurrence of
1316 pregnancy will be reported on an AE Form.

1317 **9.4 Timing of Event Reporting**

1318 SAEs and UADEs must be reported to the Coordinating Center within 24 hours via completion of
1319 the online serious adverse event form.

1320 Other reportable adverse events, device malfunctions (with or without an adverse event), and
1321 device complaints should be reported promptly by completion of an electronic case report form,
1322 but there is no formal required reporting period.

1323 The Coordinating Center will notify all participating investigators of any adverse event that is
1324 serious, related, and unexpected. Notification will be made within 10 days after the Coordinating
1325 Center becomes aware of the event.

1326 Each principal investigator is responsible for reporting serious study-related adverse events and
1327 abiding by any other reporting requirements specific to his/her Institutional Review Board or
1328 Ethics Committee.

1329 Upon receipt of a UADE report, the Sponsor will investigate the UADE and if indicated, report
1330 the results of the investigation to the clinical centers' IRBs, and the FDA within 10 working days
1331 of the Sponsor becoming aware of the UADE per 21CFR 812.46(b). The Medical Monitor must
1332 determine if the UADE presents an unreasonable risk to participants. If so, the Medical Monitor
1333 must ensure that all investigations, or parts of investigations presenting that risk, are terminated as

1334 soon as possible but no later than 5 working days after the Medical Monitor makes this
1335 determination and no later than 15 working days after first receipt notice of the UADE.

1336 In the case of a device system component malfunction (e.g. pump, CGM, control algorithm),
1337 information will be forwarded to the responsible company by the clinical center personnel, to be
1338 handled by its complaint management system.

1339 **9.5 Stopping Criteria**

1340 **9.5.1 Participant Discontinuation of Study Device**

1341 Rules for discontinuing study device use are described below.

1342 • The investigator believes it is unsafe for the participant to continue on the intervention. This
1343 could be due to the development of a new medical condition or worsening of an existing
1344 condition; or participant behavior contrary to the indications for use of the device that imposes
1345 on the participant's safety

1346 • The participant requests that the treatment be stopped

1347 • Participant pregnancy

1348 • Two distinct episodes of DKA

1349 • Two distinct severe hypoglycemia events as defined in section 9.1.2.1

1350 If pregnancy occurs, the participant will be discontinued from the study entirely. Otherwise, even
1351 if the study device system is discontinued, the participant will be encouraged to remain in the study
1352 through the final study visit.

1353 **9.5.2 Criteria for Suspending or Stopping Overall Study**

1354 In the case of an unanticipated system malfunction resulting in a severe hypoglycemia or severe
1355 hyperglycemia event (as defined in section 9.1.2.2), use of the study device system will be
1356 suspended while the problem is diagnosed.

1357 In addition, study activities could be similarly suspended if the manufacturer of any constituent
1358 study device requires stoppage of device use for safety reasons (e.g. product recall). The affected
1359 study activities may resume if the underlying problem can be corrected by a protocol or system
1360 modification that will not invalidate the results obtained prior to suspension. The study Medical
1361 Monitor will review all adverse events and adverse device events that are reported during the study
1362 and will review compiled safety data at periodic intervals (generally timed to the review of
1363 compiled safety data by the DSMB). The Medical Monitor may request suspension of study
1364 activities or stoppage of the study if deemed necessary based on the totality of safety data available.

1365 **9.6 Independent Safety Oversight**

1366 A Data and Safety Monitoring Board (DSMB) will review compiled safety data at periodic
1367 intervals (typically every 6 months). In addition, the DSMB will review all DKA and severe
1368 hypoglycemia irrespective of relatedness to study device use, and all serious events (including
1369 UADEs) related to study device use at the time of occurrence. The DSMB also will be informed
1370 of any ADEs not meeting criteria for a UADE if the Medical Monitor requests the DSMB

1371 review. The DSMB can request modifications to the study protocol or suspension or outright
1372 stoppage of the study if deemed necessary based on the totality of safety data available. Details
1373 regarding DSMB review will be documented in a separate DSMB document.

1374 **9.7 Risks**

1375 The potential risks associated with use of the study device are described in section 1.3.

1376 Additional risks are minor and/or infrequent and include:

1377 • Pain, bruising, redness, or infection from blood draws
1378 • Loss of confidentiality
1379 • Stress from completing quality of life questionnaires

1380

Chapter 10: Miscellaneous Considerations

1381 **10.1 Drugs Used as Part of the Protocol**

1382 Participants will use either lispro or aspart insulin prescribed by their personal physician.

1383 **10.2 Prohibited Medications, Treatments, and Procedures**

1384 Participants using glulisine at the time of enrollment will be asked to contact their personal
1385 physician to change their prescribed personal insulin to lispro or aspart for the duration of the trial
1386 in the case they are randomized to experimental arm

1387 Treatment with any non-insulin glucose-lowering agent (including GLP-1 agonists, Symlin, DPP-
1388 4 inhibitors, SGLT-2 inhibitors, biguanides, sulfonylureas and naturaceuticals) will not be
1389 permitted.

1390 The investigational study devices (t:slim X2 insulin pump, study CGM systems) must be removed
1391 before Magnetic Resonance Imaging (MRI), Computed Tomography (CT) or diathermy treatment.
1392 Participants may continue in the trial after temporarily discontinuing use if requiring one of the
1393 treatments above.

1394 **10.3 Participant Withdrawal**

1395 Participation in the study is voluntary, and a participant may withdraw at any time. For participants
1396 who withdraw, their data will be used up until the time of withdrawal.

1397 **10.4 Confidentiality**

1398 For security and confidentiality purposes, participants will be assigned an identifier that will
1399 be used instead of their name. Protected health information gathered for this study will be
1400 shared with the coordinating center, the Jaeb Center for Health Research in Tampa, FL.
1401 De-identified participant information may also be provided to research sites involved in the study.
1402 De-identified participant information may also be provided to Tandem for system evaluation
1403 purposes.

1404

Chapter 11: Statistical Consideration

1405 11.1 Statistical and Analytical Plans

1406 The outcome metrics and the statistical analyses are summarized below. A detailed statistical
 1407 analysis plan will be written and finalized prior to the first tabulation of data by treatment group
 1408 (ie, for DSMB review). The analysis plan synopsis in this chapter contains the framework of the
 1409 anticipated final analysis plan.

1410 11.2 Statistical Hypotheses

1411 This study is an extension to children ages 6-13 years old, of the Main Protocol described in IDE
 1412 G180053, which includes N=168 children ages 14 and up and adults. Thus, the primary outcome
 1413 for this study is identical to the Main protocol - CGM-measured % in range 70-180 mg/dL.

1414 The hypotheses for the primary outcome are:

- 1415 a. *Null Hypothesis*: There is no difference in mean CGM-measured % in range 70-180 mg/dL
 1416 over 16 weeks between SC and CLC
- 1417 b. *Alternative Hypothesis*: The mean CGM-measured % in range 70-180 mg/dL over 16
 1418 weeks is different for SC and CLC.

1419 11.3 Sample Size

1420 Sample size has been computed for the primary outcome (CGM-measured % in range 70-180
 1421 mg/dL). Data from IDE G170267; Device Name: t:slim X2 with Control-IQ Technology; “Real-
 1422 Time Monitoring and Glucose Control During Winter-Sport Exercise in Youth with Type 1
 1423 Diabetes: The AP Ski Camp Continued” were used to calculate sample size specific to this age
 1424 group. In this study, which was completed in the winter of 2018, 24 school-aged children (6-12
 1425 years) with type 1 diabetes participated in a 3-day ski camp (~5 h skiing/day), followed by an
 1426 additional 72 hour at-home phase under parental supervision. Study participants were randomized
 1427 1:1 to SAP and t:slim X2 with Control-IQ Technology. The data from the 72-hour home phase
 1428 was used for this sample size calculation – *note that the closed-loop control system and the age*
 1429 *range of the participants are identical to those proposed in this application*:

Results from home phase of G170267	Control IQ	SAP	F	p value
Percent between 70 and 180mg/dl	71 ± 6.6	52.8 ± 13.5	16.4	0.001

1430 From the DCLP1 study using the same algorithm in an older cohort, the effective standard
 1431 deviation (after adjusting for the correlation between baseline and follow up) for time in range 70-
 1432 180 mg/dL over the course of 6 months was 6% (95% CI 5% to 7%) for the CLC group and 7%
 1433 (95% CI 6% to 8%) for the SAP group.

1434 A total sample size was computed to be N=60 for the following assumptions: (1) 3:1 [CLC:SC]
 1435 randomization, (2) 90% power, (3) a 10% absolute increase in % time in range 70-180 mg/dL, (4)
 1436 an effective SD of 10%, and (5) 2-sided type 1 error of 0.05.

1437 The total sample size has been increased to N=100 to account for dropouts and to increase the
1438 number of participants who will be exposed to the CLC system for an enhanced safety and
1439 feasibility assessment.

1440 **11.4 Efficacy Outcome Measures**

1441 **11.4.1 Primary Efficacy Endpoint**

1442 • CGM-measured % in range 70-180 mg/dL

1443 **11.4.2 Secondary Efficacy Endpoints**

1444 **11.4.2.1 Secondary Efficacy Endpoints Included in Hierarchical Analysis**

1445 The following secondary endpoints will be tested in a hierarchical fashion as described in
1446 section 11.7.1.

1447 • CGM-measured % above 180 mg/dL
1448 • CGM-measured mean glucose
1449 • HbA1c at 16 weeks
1450 • CGM-measured % below 70 mg/dL
1451 • CGM-measured % below 54 mg/dL
1452 • CGM-measured % above 250 mg/dL
1453 • Glucose variability measured with the coefficient of variation (CV)

1454 **11.4.2.2 Other Secondary Efficacy Endpoints**

1455 The following endpoints are considered exploratory. Type 1 error for these endpoints will be
1456 controlled using the false discovery rate (FDR) instead of the familywise error rate (FWER).

1457 **CGM-Measured:**

1458 • % in range 70-140 mg/dL
1459 • glucose variability measured with the standard deviation (SD)
1460 • % <60 mg/dL
1461 • low blood glucose index
1462 • hypoglycemia events (defined as at least 15 consecutive minutes <70 mg/dL)
1463 • % >300 mg/dL
1464 • high blood glucose index
1465 • % in range 70-180 mg/dL improvement from baseline to 16 weeks $\geq 5\%$
1466 • % in range 70-180 mg/dL improvement from baseline to 16 weeks $\geq 10\%$

1467 *HbA1c:*

- 1468 • HbA1c <7.0% at 16 weeks
- 1469 • HbA1c <7.5% at 16 weeks
- 1470 • HbA1c improvement from baseline to 16 weeks >0.5%
- 1471 • HbA1c improvement from baseline to 16 weeks >1.0%
- 1472 • HbA1c relative improvement from baseline to 16 weeks >10%
- 1473 • HbA1c improvement from baseline to 16 weeks >1.0% or HbA1c <7.0% at 16 weeks

1474 *Questionnaires*

- 1475 • Fear of Hypoglycemia Survey (HFS-II) – total score, 2 subscales and 4 factor scores:
 - 1476 ◆ Behavior (avoidance and maintain high BG)
 - 1477 ◆ Worry (helplessness and social consequences)
- 1478 • Clarke Hypoglycemia Awareness Scores
- 1479 • Problem Areas In Diabetes Survey (PAID)
- 1480 • INSPIRE survey scores
- 1481 • PedsQL Diabetes Module – total score and 5 subscales:
 - 1482 ◆ Diabetes
 - 1483 ◆ Treatment I
 - 1484 ◆ Treatment II
 - 1485 ◆ Worry
 - 1486 ◆ Communication
- 1487 • Pittsburgh Sleep Quality Index (Parent only)
- 1488 • System Usability Scale (SUS)

1489 *Other:*

- 1490 • Insulin
 - 1491 ◆ Total daily insulin (units/kg)
 - 1492 ◆ Basal: bolus insulin ratio
- 1493 • Weight and Body Mass Index (BMI)

1494 **11.4.3 CGM Metrics Calculations**

1495 Randomization is preceded by two weeks of CGM run-in, which will be used in the calculation
1496 of baseline CGM metrics. For participants who are eligible to skip the run-in, comparable

1497 amount of CGM data from their own sensors will be taken before randomization visit to
1498 calculate baseline CGM metrics.

1499 CGM data starting from randomization visit through the 16-week visit will be included in the
1500 calculation of each CGM metric. Percentages in range 70-180 mg/dL (and all other CGM-based
1501 metrics) will be calculated giving equal weight to each CGM point for each participant.

1502 **11.5 Analysis Datasets and Sensitivity Analyses**

1503 All analyses comparing the CLC arm with SC arm will follow the intention-to-treat (ITT)
1504 principle with each participant analyzed according to the treatment assigned by randomization.
1505 All randomized participants will be included in the primary and secondary hierarchical analyses.

1506 Safety outcomes will be reported for all enrolled participants, irrespective of whether the
1507 participants was randomized or the study was completed.

1508 **11.5.1 Per Protocol Analyses**

1509 Per-protocol analyses will be performed for primary outcome and secondary hierarchical
1510 outcomes only if >5% of participants will be excluded:

- 1511 • CLC arm: Closed loop mode active for at least 80% of the time
- 1512 • SC arm: CGM use for at least 80% of the time

1513 **11.5.2 Other Sensitivity Analyses**

1514 Confounding

1515 The primary analysis described below will include a pre-specified list of covariates. As an
1516 additional sensitivity analysis, any baseline demographic or clinical characteristics observed to
1517 be imbalanced between treatment groups will be added as covariates to the analyses of the
1518 primary endpoint. The determination of a meaningful baseline imbalance will be based on
1519 clinical judgement and not a p-value.

1520 Exclude First 2 Weeks of CGM Data

1521 As noted above in Section 11.4.3, calculation of CGM metrics will include all available post-
1522 randomization CGM data. As a sensitivity analysis, CGM metrics will be recalculated by
1523 excluding the first two weeks of CGM data following the randomization visit. The primary
1524 analysis will be replicated based on the recalculated outcome.

1525 Missing Data

1526 It is worth emphasizing that any statistical method for handling missing data makes a number of
1527 untestable assumptions. The goal will be to minimize the amount of missing data in this study so
1528 that results and conclusions will not be sensitive to which statistical method is used. To that end,

1529 sensitivity analyses will be performed to explore whether results are similar for primary analysis
1530 when using different methods. The following methods will be applied:

- 1531 • Direct likelihood (primary analysis described below)
- 1532 • Rubin's multiple imputation
- 1533 • Multiple imputation with pattern mixture model
- 1534 • Available cases only

1535 **11.6 Analysis of the Primary Efficacy Endpoint**

1536 Summary statistics (mean \pm SD or median (quartiles)) will be reported for the CGM-measured %
1537 in range 70-180 mg/dL and for differences from pre-randomization by treatment group.

1538 Changes from run-in pre-randomization CGM wear to the 16-week post-randomization period in
1539 CGM-measured % in range 70-180 mg/dL between two treatment arms will be compared using a
1540 linear mixed effects regression model while adjusting for baseline CGM-measured % in range
1541 70-180 mg/dL, age, prior CGM and pump use, and clinical center (random effect). Missing data
1542 will be handled using direct likelihood. Residual values will be examined for an approximate
1543 normal distribution. If residuals are highly skewed, then a transformation or robust statistical
1544 method (e.g., non-parametric or MM estimation) will be used instead. It is expected that the
1545 residual values for CGM-measured % in range 70-180 mg/dL will follow an approximate normal
1546 distribution.

1547 **11.7 Analysis of the Secondary Endpoints**

1548 Point estimated and confidence intervals for the treatment arm differences will be presented for
1549 all secondary metrics. The models will adjust for the corresponding baseline metric, age, prior
1550 CGM and pump use, and clinical center (random effect).

1551 **11.7.1 Hierarchical Analyses**

1552 To preserve the overall type 1 error for selected key secondary endpoints, a hierarchical testing
1553 procedure will be used. If the primary analysis for time in range described above results in a
1554 statistically significant result ($p < 0.05$), then testing (similar with the model described above
1555 for the primary outcome) will proceed to the next outcome metric in the following order:

- 1556 • CGM-measured % in range 70-180 mg/dL (primary outcome)
- 1557 • CGM-measured % above 180 mg/dL
- 1558 • CGM-measured mean glucose
- 1559 • HbA1c at 16 weeks
- 1560 • CGM-measured % below 70 mg/dL
- 1561 • CGM-measured % below 54 mg/dL
- 1562 • CGM-measured % above 250 mg/dL

1563 • Glucose variability measured with the coefficient of variation (CV)

1564 This process continues iteratively moving to the next variable down on the list until a non-
 1565 significant result ($p \geq 0.05$) is observed, or all eight variables have been tested. If a non-
 1566 significant result is encountered, then formal statistical hypothesis testing is terminated and
 1567 any variables below on the list are not formally tested.

1568 For example, in the hypothetical scenario depicted in the table below, the first four outcome
 1569 variables all have a significant result so testing continues to the fifth variable (CGM % below 70
 1570 mg/dL). The result is not significant for that fifth variable ($p = 0.06$) so testing stops. No formal
 1571 hypothesis test is conducted for the last three variables on the list in this example scenario.

HIERARCHICAL ORDER	OUTCOME VARIABLE	TREATMENT ARM P-VALUE	SIGNIFICANT?	ACTION
1 st	CGM % 70-180 mg/dL (primary outcome)	0.001	Yes	Test next variable
2 nd	CGM % above 180 mg/dL	0.02	Yes	Test next variable
3 rd	CGM mean glucose	0.007	Yes	Test next variable
4 th	HbA1c at 16 weeks	0.03	Yes	Test next variable
5 th	CGM % below 70 mg/dL	0.06	No	Stop formal testing
6 th	CGM % below 54 mg/dL	Not tested	Unknown	N/A
7 th	CGM % above 250 mg/dL	Not tested	Unknown	N/A
8 th	Glucose CV	Not tested	Unknown	N/A

1572 **Table 6. Example Hypothetical Hierarchical Test Results**

1573 Regardless of the results of the hierarchical testing, summary statistics appropriate to the
 1574 distribution will be tabulated by treatment arm for each hierarchical outcome. A 95% confidence
 1575 interval for the treatment arm difference will also be calculated for all seven secondary
 1576 hierarchical outcomes listed above. However, a confidence interval that excludes zero will not
 1577 be considered a statistically significant result if an outcome variable higher on the hierarchical
 1578 list failed to reach statistical significance.

1579 **11.7.2 Other Endpoint Analyses**

1580 *CGM-Measured Outcomes*

1581 The analyses for the secondary CGM-measured outcomes will parallel those mentioned above
 1582 for the primary outcome. For the binary CGM outcomes, risk-adjusted percentages by treatment
 1583 group will be calculated from a logistic regression model.

1584 *HbA1c*

1585 Summary statistics ($\text{mean} \pm \text{SD}$) will be reported for the central lab HbA1c at baseline, 16 weeks
 1586 and for differences from pre-randomization by treatment group.

1587 Change in HbA1c from baseline to 16 weeks will be compared between the two treatment arms
1588 using a linear model while adjusting for baseline HbA1c, age, prior CGM and pump use, and
1589 clinical center (random factor).

1590 For extension phase, efficacy of the AP will be compared by using the final 12 weeks of the
1591 control period vs. the 12-week AP extension phase. Each participant will be their own control.

1592 Missing data will be handled using direct likelihood in a regression model including all available
1593 central laboratory HbA1c measurements at baseline and 16-week visits. When available, the
1594 local HbA1c measurement will be included in the regression model as an auxiliary variable.

1595 For the binary HbA1c outcomes listed above, risk-adjusted percentages by treatment group will
1596 be computed from a logistic regression model. The logistic regression will adjust for the same
1597 factors mentioned above for the analysis with HbA1c as a continuous factor (i.e., baseline
1598 HbA1c, age, prior CGM and pump use, and clinical center as a random effect).

1599 **Questionnaires and Other Outcomes**

1600 For questionnaires administered to both randomization groups, comparisons will be made using
1601 similar linear models as described above for the primary outcomes. Separate models will be run
1602 for the total score and each of the subscales listed above.

1603 Similarly, for insulin, weight and BMI metrics comparisons will be made using similar linear
1604 models as described above for the primary HbA1c analysis.

1605 **11.8 Safety Analyses**

1606 All randomized participants will be included in these analyses and all their post-randomization
1607 safety events will be reported.

1608 Safety analyses of the main study (randomized trial phase) will include events occurring on or
1609 after randomization until and including the 16-week visit or Day 126 from randomization,
1610 whichever occurs first. Safety analyses of the extension phase will include subsequent events
1611 until the last visit date or the last event date (whichever is later).

1612 Any pre-randomization adverse events will be tabulated separately and will include all
1613 participants even if never randomized.

1614 For the following outcomes, mean \pm SD or summary statistics appropriate to the distribution will
1615 be tabulated by treatment group and formal statistical comparisons (main study phase only) will
1616 be performed if there are enough events (at least 5 events combined between the two treatment
1617 groups):

- 1618 • Number of SH events and SH event rate per 100 person-years
- 1619 • Number of DKA events and DKA event rate per 100 person-years
- 1620 • Any adverse event' rate per 100 person-years

1621 • Number of calendar days with any ketone level ≥ 1.0 mmol/L
1622 • CGM-measured hypoglycemic events (≥ 15 minutes with glucose concentration < 54 mg/dL)
1623 • CGM-measured hyperglycemic events (≥ 15 minutes with glucose concentration > 300
1624 mg/dL)

1625

1626 If enough events, the numbers of SH/DKA events will be compared between the two treatment
1627 arms during the main study phase using a robust Poisson regression. The regression will adjust
1628 for the participant-reported number of events prior to the start of the study and clinical center as
1629 random effect. The amount of follow up will be included as an offset covariate to compare the
1630 rates. Similar analyses will be done for comparing any adverse event and number of calendar
1631 days with ketone events between the two treatment groups, except that clinical center will be the
1632 only covariate to be adjusted in the model.

1633 For CGM-measured hypoglycemia/hyperglycemia events, event rates per week will be compared
1634 using similar linear mixed effects regression models as described above for the primary outcome.

1635

1636 For both the main study and extension phases, the following safety outcomes will be tabulated by
1637 treatment group without a formal statistical comparison:

1638 • Other serious adverse events (SAE)
1639 • BG-measured hypoglycemic events (days with at least one BG record < 54 mg/dL)
1640 • BG-measured hyperglycemic events (days with at least one BG record > 350 mg/dL)
1641 • Worsening of HbA1c from baseline to 16 weeks by $> 0.5\%$
1642 • Investigational device related (intervention group only):
1643 ○ Adverse device effects (ADE)
1644 ○ Serious adverse device events (SADE)
1645 ○ Unanticipated adverse device effects (UADE)

1646

1647 **11.9 Intervention Adherence**

1648 The following tabulations and analyses will be performed by treatment group to assess
1649 intervention adherence for the study:

1650 • Sensor use –percent time of use, overall and by 4-weekly
1651 • The daily frequency of downloaded BGM use overall and by 4-weekly
1652 For CLC arm only, the following will be tabulated to assess adherence:
1653 • % time in different operational modes - overall and by 4-weekly

1654 **11.10 Adherence and Retention Analyses**

1655 The following tabulations and analyses will be performed by treatment group to assess protocol
1656 adherence for the study:

1657 • Number of protocol and procedural deviations per participant along with the number and
1658 percentage of participants with each number of deviations

1659 • Number of protocol and procedural deviations by severity with brief descriptions listed

1660 • Flow chart accounting for all participants at all scheduled visits and phone contacts post
1661 treatment initiation to assess visit and phone completion rates

1662 • Number of and reasons for unscheduled visits and phone calls

1663 • Number of participants who stopped treatment and reasons

1664 **11.11 Baseline Descriptive Statistics**

1665 Baseline demographic and clinical characteristics of the cohort of all randomized participants
1666 will be summarized in a table using summary statistics appropriate to the distribution of each
1667 variable. Descriptive statistics will be displayed by treatment group.

1668 Will include:

1669 • Age

1670 • HbA1c

1671 • Gender

1672 • Race/Ethnicity

1673 • Family income, education, and/or insurance status

1674 • Insulin method before enrollment (pump vs. MDI)

1675 • CGM use before enrollment

1676 • Diabetes duration

1677 • BMI (height and weight)

1678 • C-peptide

1679 • Participant-reported number of SH and DKA 12 months prior to the start of the study

1680 **11.12 Device Issues**

1681 The following tabulations and analyses will be performed by treatment group to assess device
1682 issues:

1683 • Device malfunctions requiring study team contact and other reported device issues

1684 • Sensor performance metrics (difference, absolute relative difference, and International
1685 Organization for Standardization criteria) – if applicable, by sensor version.
1686 • Rate of different failure events and alarms per 24 hours recorded by the Control-IQ system –
1687 overall and by month

1688 **11.13 Planned Interim Analyses**

1689 All above efficacy and safety analyses will be conducted after all subjects completed the primary
1690 study phase. No sample size re-estimation will be needed for the extension phase. The data may
1691 be used for PMA, with no interruption on the extension phase.

1692 In addition, the DSMB will review safety data at intervals, with no formal stopping rules other
1693 than the guidelines provided in the participant-level and study-level stopping criteria (as defined
1694 in Section 9.5 of the protocol).

1695 **11.14 Subgroup Analyses**

1696 In exploratory analyses, the primary outcome (time 70-180 mg/dL), % time <70 mg/dL and HbA1c
1697 at 16 weeks will be assessed separately in various subgroups and for continuous variables
1698 according to the baseline value as defined below. Tests for interaction with treatment group will
1699 be performed and further explored if an interaction will be found in the first place.

1700 Interpretation of subgroup analyses will depend on whether the overall analysis demonstrates a
1701 significant treatment group difference. In the absence of such an overall difference and if
1702 performed, subgroup analyses will be interpreted with caution. For continuous variables, results
1703 will be displayed in subgroups based on cutpoints although the analysis will utilize the variable as
1704 continuous, except for age which will be analyzed both as a continuous variable and in two age
1705 groups. If there is insufficient sample size in a given subgroup, the cutpoints for continuous
1706 measures may be adjusted per the observed distribution of values. Cutpoint selection for display
1707 purposes will be made masked to the outcome data.

1708 • Baseline HbA1c
1709 • Baseline CGM time spent <70 mg/dL
1710 • Baseline CGM time spent >180 mg/dL
1711 • Baseline CGM time 70-180 mg/dL
1712 • Device use before the enrollment: pump/MDI, CGM/no CGM, and combinations of both
1713 • Age
1714 • Sex
1715 • Race/ Ethnicity
1716 • Clinical center
1717 • BMI (Height and weight)
1718 • Family income, education, and/or insurance status

1719 • C-peptide level

1720 **11.15 Multiple Comparison/Multiplicity**

1721 Primary Analysis

1722 Since there will be a single comparison for the primary outcome (CGM-measured % 70-180
1723 mg/dL), no adjustment is needed.

1724 Secondary Hierarchical Analyses

1725 The hierarchical testing procedure described above in section 11.7.1 will be used to control the
1726 overall type 1 error for the primary outcome plus seven key secondary outcomes identified above.

1727 All Other Secondary Analyses

1728 For all above-mentioned secondary analyses, the false discovery rate will be controlled using the
1729 adaptive Benjamini-Hochberg procedure.

1730 **11.16 Exploratory Analyses**

1731 In addition to the analysis for the CGM-measured endpoints described earlier, separate analyses
1732 will be conducted for daytime and nighttime.

1733 The CGM-measured analyses will be replicated with only CGM data when the closed-loop was
1734 active for the CLC group. The CGM data for the SC group will be the same as mentioned above
1735 in the CGM Metrics Calculation section 11.4.3.

1736

Chapter 12: Data Collection and Monitoring

1737 **12.1 Case Report Forms and Device Data**

1738 The main study data are collected through a combination of electronic case report forms
1739 (CRFs) and electronic device data files obtained from the study software and individual hardware
1740 components. These electronic device files and electronic CRFs from the study website are
1741 considered the primary source documentation.

1742 When data are directly collected in electronic case report forms, this will be considered the source
1743 data. Each participating clinical center will maintain appropriate medical and research records for
1744 this trial, in compliance with ICH E6 and regulatory and institutional requirements for the
1745 protection of confidentiality of participants.

1746 **12.2 Study Records Retention**

1747 Study documents should be retained for a minimum of 2 years after the last approval of a marketing
1748 application in an ICH region and until there are no pending or contemplated marketing applications
1749 in an ICH region or until at least 2 years have elapsed since the formal discontinuation of clinical
1750 development of the investigational product. These documents should be retained for a longer
1751 period, however, if required by local regulations. No records will be destroyed without the written
1752 consent of the sponsor, if applicable. It is the responsibility of the sponsor to inform the
1753 investigator when these documents no longer need to be retained.

1754 **12.3 Quality Assurance and Monitoring**

1755 Designated personnel from the Coordinating Center will be responsible for maintaining quality
1756 assurance (QA) and quality control (QC) systems to ensure that the clinical portion of the trial is
1757 conducted and data are generated, documented and reported in compliance with the protocol, Good
1758 Clinical Practice (GCP) and the applicable regulatory requirements. Adverse events will be
1759 prioritized for monitoring.

1760 A risk-based monitoring (RBM) plan will be developed and revised as needed during the course
1761 of the study, consistent with the FDA “Guidance for Industry Oversight of Clinical Investigations
1762 — A Risk-Based Approach to Monitoring” (August 2013). Study conduct and monitoring will
1763 conform with 21 Code of Federal Regulations (CFR) 812.

1764 The data of most importance for monitoring at the clinical center are participant eligibility and
1765 adverse events. Therefore, the RBM plan will focus on these areas. As much as possible, remote
1766 monitoring will be performed in real-time with on-site monitoring performed to evaluate the verity
1767 and completeness of the key clinical center data. Elements of the RBM may include:

- 1768 • Qualification assessment, training, and certification for clinical centers and clinical center
1769 personnel
- 1770 • Oversight of Institutional Review Board (IRB) coverage and informed consent procedures
- 1771 • Central (remote) data monitoring: validation of data entry, data edits/audit trail, protocol

1772 review of entered data and edits, statistical monitoring, study closeout

1773 • On-site monitoring (site visits): source data verification, site visit report

1774 • Agent/Device accountability

1775 • Communications with clinical center staff

1776 • Participant retention and visit completion

1777 • Quality control reports

1778 • Management of noncompliance

1779 • Documenting monitoring activities

1780 • Adverse event reporting and monitoring

1781 Coordinating Center representatives or their designees may visit the study facilities at any time
1782 in order to maintain current and personal knowledge of the study through review of the records,
1783 comparison with source documents, observation and discussion of the conduct and progress of the
1784 study.

1785 **12.4 Protocol Deviations**

1786 A protocol deviation is any noncompliance with the clinical trial protocol, GCP, or procedure
1787 requirements. The noncompliance may be either on the part of the participant, the investigator, or
1788 the clinical center staff. As a result of deviations, corrective actions are to be developed by the
1789 clinical center and implemented promptly.

1790 The clinical center PI/study staff is responsible for knowing and adhering to the IRB requirements.
1791 Further details about the handling of protocol deviations will be included in the monitoring plan.

1792

Chapter 13: Ethics/Protection of Human Participants

1793 **13.1 Ethical Standard**

1794 The investigator will ensure that this study is conducted in full conformity with Regulations for
1795 the Protection of Human Participants of Research codified in 45 CFR Part 46, 21 CFR Part 50, 21
1796 CFR Part 56, and/or the ICH E6.

1797 **13.2 Institutional Review Boards**

1798 The protocol, informed consent form(s), recruitment materials, and all participant materials will
1799 be submitted to the IRB for review and approval. Approval of both the protocol and the consent
1800 form must be obtained before any participant is enrolled. Any amendment to the protocol will
1801 require review and approval by the IRB before the changes are implemented to the study. All
1802 changes to the consent form will be IRB approved; a determination will be made regarding whether
1803 previously consented participants need to be re-consented.

1804 **13.3 Informed Consent Process**

1805 **13.3.1 Consent Procedures and Documentation**

1806 Informed consent is a process that is initiated prior to the individual's agreeing to participate in the
1807 study and continues throughout the individual's study participation. Extensive discussion of risks
1808 and possible benefits of participation will be provided to the participants and their families.
1809 Consent forms will be IRB-approved and the participant will be asked to read and review the
1810 document. The investigator will explain the research study to the participant and answer any
1811 questions that may arise. All participants will receive a verbal explanation in terms suited to their
1812 comprehension of the purposes, procedures, and potential risks of the study and of their rights as
1813 research participants. Participants will have the opportunity to carefully review the written consent
1814 form and ask questions prior to signing.

1815 The participants should have the opportunity to discuss the study with their surrogates or think
1816 about it prior to agreeing to participate. The participant will sign the informed consent and child
1817 assent documents prior to any procedures being done specifically for the study. The participants
1818 may withdraw consent at any time throughout the course of the trial. A copy of the informed
1819 consent and child assent documents will be given to the participants for their records. The rights
1820 and welfare of the participants will be protected by emphasizing to them that the quality of their
1821 medical care will not be adversely affected if they decline to participate in this study.

1822 **13.3.2 Participant and Data Confidentiality**

1823 The study monitor, other authorized representatives of the sponsor, representatives of the IRB or
1824 device company supplying study product may inspect all documents and records required to be
1825 maintained by the investigator, including but not limited to, medical records (office, clinic, or
1826 hospital) for the participants in this study. The clinical center will permit access to such records.

1827 The study participant's contact information will be securely stored at each clinical center for
1828 internal use during the study. At the end of the study, all records will continue to be kept in a
1829 secure location for as long a period as dictated by local IRB and Institutional regulations.

1830 Study participant research data, which is for purposes of statistical analysis and scientific reporting,
1831 will be transmitted to and stored at the Jaeb Center for Health Research and the University of
1832 Virginia Center for Diabetes Technology. This will not include the participant's contact or
1833 identifying information. Rather, individual participants and their research data will be identified
1834 by a unique study identification number. The study data entry and study management systems
1835 used by clinical centers and by Jaeb research staff will be secured and password protected. At the
1836 end of the study, all study databases will be de-identified and archived at Jaeb Center for Health
1837 Research and the University of Virginia Center for Diabetes Technology. Permission to transmit
1838 data will be included in the informed consent.

Chapter 14: References

1. Kovatchev, B.P., Breton, M.D., Keith-Hynes, P.T., Patek, S.D. The Diabetes Assistant (DiAs) – Unified platform for monitoring and control of blood glucose levels in diabetic patients; PCT/US12/43910, 2012.
2. Keith Hynes, P., Guerlain, S., Mize, L.B., Hughes Karvetski, C., Khan, M., McElwee Malloy, M. & Kovatchev, B.P. DiAs user interface: A patient-centric interface for mobile artificial pancreas systems. *J Diabetes Sci Technol*, 7, 1416–1426 (2013). PMID: 24351168
3. Place, J., Robert, A., Ben Brahim, N., Keith Hynes, P., Farret, A., Pelletier, M.J., Buckingham, B., Breton, M., Kovatchev, B.P. & Renard, E. DiAs web monitoring: A real-time remote monitoring system designed for artificial pancreas outpatient trials. *J Diabetes Sci Technol*, 7, 1427–1435. (2013). PMID: 24351169
4. Keith-Hynes, P., Mize, B., Robert, A., Place, J. The Diabetes Assistant: A smartphone-based system for real-time control of blood glucose. *Electronics* 2014, 3, 609–623; doi:10.3390/electronics3040609
5. Kovatchev, B.P., Renard, E., Cobelli, C., Zisser, H., Keith-Hynes, P., Anderson, S.M. Brown, S.A. Chernavvsky, D.R., Breton, M.D., Farret, A., Pelletier, M.J., Place, J., Bruttomesso, D., Del Favero, S., Visentin, R., Filippi, A., Scotton, R., Avogaro, A. & Doyle III, F.J. Feasibility of outpatient fully integrated closed-loop control: First studies of wearable artificial pancreas. *Diabetes Care*, 36, 1851–1858 doi: 10.2337/dc12-1965 (2013). PMID: 23801798, PMCID: PMC3687268
6. Kovatchev, B.P., Renard, E., Cobelli, C., Zisser, H., Keith-Hynes, P., Anderson, S.M., Brown, S.A., Chernavvsky, D.R., Breton, M.D., Mize, L.B., Farret, A., Place, J., Bruttomesso, D., Del Favero, S., Boscari, F., Galasso, S., Avogaro, A., Magni, L., Di Palma, F., Toffanin, C., Messori, M., Dassay, E., Doyle, F. III. Safety of outpatient closed-loop control: First randomized crossover trials of a wearable artificial pancreas. *Diabetes Care*, 37, 1789–1796 doi: 10.2337/dc13-2076 (2014). PMID: 24929429, PMCID: PMC4067397
7. DeSalvo, D., Keith-Hynes, P., Peyser, T., Place, J., Caswell, K., Wilson, D., Harris, B., Clinton, P., Kovatchev, B.P., Buckingham, B.A. Remote glucose monitoring in camp setting reduces the risk of prolonged nocturnal hypoglycemia. *Diabetes Technol Ther*, 16, 1–7 doi:10.1089/dia.2013.0139 (2013). PMID: 24168317
8. Ly, T.T., Breton, M.D., Keith-Hynes, P., De Salvo, D., Clinton, P., Benassi, K., Mize, L.B., Chernavvsky, D.R., Place, J., Wilson, D.M., Kovatchev, B.P., Buckingham, B.A. Overnight glucose control with an automated, unified safety system in children and adolescents with type 1 diabetes at diabetes camp. *Diabetes Care*, 37, doi: 10.2337/dc14-0147 (2014). PMID: 24879841, PMCID: PMC4179507
9. Kropff, J., Del Favero, S., Place, J., Toffanin, C., Visentin, R., Monaro, M., Messori, M., Di Palma, F., Lanzola, G., Farret, A., Boscari, F., Galasso, S., Magni, P., Avogaro, A., Keith-Hynes, P., Kovatchev, B.P., Bruttomesso, D., Cobelli, C., DeVries, J.H., Renard, E., Magni, L., for the AP@home consortium. 2 month evening and night closed-loop glucose control in patients with Type 1 Diabetes under free-living conditions: A randomised crossover

1879 trial. *Lancet Diabetes Endocrinol*, 3(12):939-47 dx.doi.org/10.1016/S2213-8587(15)00335-6
1880 (2015).

1881 10. Renard, E et al. Reduction of hyper- and hypoglycemia during two months with a wearable
1882 artificial pancreas from dinner to breakfast in patients with type 1 diabetes. 2015-A-3083-
1883 Diabetes. American Diabetes Association 75th Scientific Sessions, Boston, MA, poster 940-P.

1884 11. Anderson, S et al. First New Year's Night on closed-loop control (CLC) at home: Case reports
1885 from a multi-center international trial of long-term 24/7 CLC. 2015-A-4763-Diabetes.
1886 American Diabetes Association 75th Scientific Sessions, Boston, MA, presentation 223-OR.

1887 12. Kovatchev BP. JDRF Multi-Center 6-Month Trial of 24/7 Closed-Loop Control. Advanced
1888 Technologies and Treatments for Diabetes (ATTD), Plenary Session, Milan, Italy, 2016.

1889 13. Kovatchev, B.P. Closed-loop control modalities in type 1 diabetes: Efficacy and system
1890 acceptance. Advanced Technologies and Treatments for Diabetes (ATTD), Paris, France,
1891 2015.

1892 14. Del Favero S. A multicenter randomized cross-over Italian pediatric summer camp: AP vs SAP
1893 in 5-8 year old children. Advanced Technologies and Treatments for Diabetes (ATTD),
1894 Plenary Session, Milan, Italy, 2016.

1895 15. Cherñavvsky, D. et al. Closed-loop control during extended winter-sport exercise in youth with
1896 T1DM: Results from the first AP ski camp. ATTD Data Club Session, Milan, (2016).

1897 16. Chernavvsky, D.R., DeBoer, M.D., Keith-Hynes, P., Mize, B., McElwee, M., Demartini, S.,
1898 Dunsmore, S.F., Wakeman, C., Kovatchev, B.P., Breton, M.D. Use of an artificial pancreas
1899 among adolescents for a missed snack bolus and an underestimated meal bolus. *Pediatric
1900 Diabetes*, doi:10.1111/pedi.12230 (2014). PMID: 25348683

1901 17. Brown, S.A., Kovatchev, B.P., Breton, M.D., Anderson, S.M., Keith-Hynes, P., Patek, S.D.,
1902 Jiang, B., Ben Brahim, N., Vereshchetin, P., Bruttomesso, D., Avogaro, A., Del Favero, S.,
1903 Boscari, F., Galasso, S., Visentin, R., Monaro, M., Cobelli, C. Multinight "bedside"
1904 closed-loop control for patients with type 1 diabetes. *Diabetes Technol Ther* 17(3),
1905 doi:10.1089/dia.2014.0259 (2015). PMID: 25594434, PMCID: PMC4346235

1906 18. Kovatchev BP, Tamborlane WV, Cefalu WT, Cobelli C. The Artificial Pancreas in 2016:
1907 A Digital Treatment Ecosystem for Diabetes. *Diabetes Care* 2016; 39:1123-27. PMID:
1908 27330124

1909 19. Del Favero S, Boscari F, Messori M, Rabbone I, Bonfanti R, Sabbion A, IaFusco D, Schiaffini
1910 R, Visentin R, Calore R, Moncada YL, Galasso S, Galderisi A, Vallone V, Di Palma F, Losiouk
1911 E1, Lanzola G1, Tinti D, Rigamonti A, Marigliano M, Zanfardino A, Rapini N, Avogaro A,
1912 Chernavvsky D, Magni L, Cobelli C, Bruttomesso D. Randomized Summer Camp Crossover
1913 Trial in 5- to 9-Year-Old Children: Outpatient Wearable Artificial Pancreas Is Feasible and
1914 Safe. *Diabetes Care*. 2016;39:1180-5. PMID: 27208335

1915 20. Renard E, Farret A, Kropff J, Bruttomesso D, Messori M, Place J, Visentin R, Calore R,
1916 Toffanin C, Di Palma F, Lanzola G, Galasso S, Avogaro A, Keith-Hynes P, Kovatchev BP,
1917 Del Favero S., Cobelli C, Magni L, DeVries HJ. AP@home Consortium. Day and night closed
1918 loop glucose control in patients with type 1 diabetes under free-living conditions: comparison

1919 of a single-arm, 1-month experience to results of a previously reported feasibility study of
1920 evening and night at home. *Diabetes Care* 2016; 39:1151-60. PMID: 27208331

1921 21. Anderson SM, Raghinaru D, Pinsker JE, Boscarini F, Renard E, Buckingham BA, Nimri R,
1922 Doyle FJ III, Brown SA, Keith-Hynes P, Breton MD, Chernavsky D, Bevier WC, Bradley
1923 PK, Bruttomesso D, Del Favero S, Calore R, Cobelli C, Avogaro A, Farret A, Place J, Ly TT,
1924 Shanmugham S, Phillip M, Dassau E, Dasanayake IS, Kollman C, Lum JW, Beck RW, and
1925 Kovatchev BP. Multinational home use of closed-loop control is safe and effective.
1926 *Diabetes Care* 2016; 39:1143-1150. PMID: 27208316

1927 22. DeBoer MD, Chernavsky DR, Topchyan K, Kovatchev BP, Francis GL, Breton MD. Heart
1928 rate informed artificial pancreas system enhances glycemic control during exercise in
1929 adolescents with T1D. *Pediatr Diabetes*. 2016; doi: 10.1111/pedi.12454. PMID: 27734563

1930 23. Kovatchev BP, Cheng P, Anderson SM, Pinsker JE, Boscarini F, Buckingham BA, Doyle FJ.
1931 III, Hood KK, Brown SA. Breton MD, Chernavsky DR, Bevier WC, Bradley PK,
1932 Bruttomesso D, Del Favero S, Calore R, Cobelli C, Avogaro A, Ly TT, Shanmugham S,
1933 Dassau E, Kollman C, Lum JW, Beck RW, for the Control to Range Study Group. Feasibility
1934 of Long-Term Closed-Loop Control: A Multicenter 6-Month Trial of 24/7 Automated Insulin
1935 Delivery. *Diabetes Technol Ther* 2017; 19: 18-24. doi:10.1089/dia.2016.0333. PMID:
1936 27982707

1937 24. DeBoer MD, Breton MD, Wakeman CA, Schertz EM, Emory EG, Robic JL, Kollar LL,
1938 Kovatchev BP, Chernavsky DR. Performance of an Artificial Pancreas System for Young
1939 Children with Type 1 Diabetes. *Diabetes Technol Ther* 2017; 19, DOI: 10.1089/dia.2016.0424.
1940 PMID: 28426239

1941 25. Breton MD, Chernavsky DR, Forlenza GP, DeBoer MD, Robic J, Wadwa RP, Messer LH,
1942 Kovatchev BP, Maahs DM. Closed Loop Control During Intense Prolonged Outdoor Exercise
1943 in Adolescents With Type 1 Diabetes: The Artificial Pancreas Ski Study. *Diabetes Care* 2017
1944 Aug; dc170883. <https://doi.org/10.2337/dc17-0883>

1945 26. Ly TT, Gallego PH, Davis EA, Jones TW: Impaired Awareness of Hypoglycemia in a
1946 Population-Based Sample of Children and Adolescents With Type 1 Diabetes. *Diabetes Care*
1947 32(10):1802-1806, 2009

1948 27. Shepard JA, Vajda KA, Nyer M, Clarke WL, Gonder-Frederick LA, : Understanding the
1949 Construct of Fear of Hypoglycemia in Pediatric Type 1 Diabetes. *J Pediatr Psychol* 39(10):
1950 1115-1125, 2014

1951 28. Markowitz JT, Volkening LK, Butler DA, Antisdel-Lomaglio J, Anderson BJ, Laffel LM. Re-
1952 examining a measure of diabetes-related burden in parents of young people with Type 1
1953 diabetes: the Problem Areas in Diabetes Survey - Parent Revised version (PAID-PR). *Diabet
1954 Med*. 2012;29(4):526–530. doi:10.1111/j.1464-5491.2011.03434.

1955 29. Varni, J. W., Delamater, A.M., Hood, K.K., Raymond, J.K., Chang, N.T., Driscoll, K.A.,
1956 Wong, J.C., Yi-Frazier, J.P., Grishman, E.K., Faith, M.A., Corathers, S.D., Kichler, J.C.,
1957 Miller, J.L., Doskey, E.M., Aguirre, V.P., Heffer, R.W., & Wilson, D. P. (in press). Pediatric
1958 Quality of Life Inventory (PedsQL) 3.2 Diabetes Module for youth with Type 2 diabetes:
1959 Reliability and validity. *Diabetic Medicine*.

1960 30. J. Weissberg-Benchell, J.B. Shapiro, K. Hood, L.M. Laffel, D. Naranjo, K. Miller, K. Bernard:
1961 Assessing patient-reported outcomes for automated insulin delivery systems: the psychometric
1962 properties of the INSPIRE measures. *Diabet. Med.* 00: 1– 9 (2019)

1963 31. Buysse DJ¹, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ: The Pittsburgh Sleep
1964 Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989
1965 May;28(2):193-213

1966 32. Brown S, Raghinaru D, Emory E, Kovatchev B: First Look at Control-IQ: A New-Generation
1967 Automated Insulin Delivery System. *Diabetes Care* Oct 2018, dc181249; DOI: 10.2337/dc18-
1968 1249. PMID: 30305346

1969 33. Ekhlaspour L, Wadwa RP, Chernavsky D, Forlenza GP, Messer L, Town M, Swanson V,
1970 Maahs DM, Kovatchev B, Buckingham B, Breton M: Artificial Pancreas (AP) Ski Camp 2018:
1971 Successful Use of the Tandem Control-IQ AP System in Adolescents and Children During
1972 Winter Sports and at Home (abstract). *Pediatric Diabetes* 2018;17