

The International Diabetes Closed Loop Protocol 5 (DCLP5) Trial: Clinical Acceptance of the Artificial Pancreas in Pediatrics

Primary Study Phase

Statistical Analysis Plan

Version 2.1

December 20, 2019

Based on Protocol Version 2.5

Note: The table shells will be included in a separate document

Version History

Version	Author	Approvers	Effective Date	Study Stage	Protocol Version
1.0	Peiyao Cheng	Craig Kollman	3/26/2019	Planning, enrollment not started yet	2.3
1.1	Peiyao Cheng	Craig Kollman	3/28/2019	Planning, enrollment not started yet	2.4
2.0	Peiyao Cheng	Craig Kollman	6/7/2019	Planning, enrollment not started yet	2.5
2.1	Lauren Kanapka	Craig Kollman	12/20/2019	Enrollment complete, follow-up in progress	2.5

Version	Revision Description
1.0	Original Version
1.1	Made correction on Section 4.2.2 for HFS subscales
2.0	Moved analyses for extension phase into a stand-alone document; revised per-protocol analyses criteria, safety analyses, and subgroup analyses; clarification made on various sections
2.1	Made clarifications to the calculation of CGM metrics, insulin metrics, and analysis windows for insulin metrics; increased the minimum hours needed to calculate CGM metrics at certain time points; added the calculation of CGM metrics by 1-week periods; removed treatment group comparison for INSPIRE survey which is not given to both groups at follow-up; added some exploratory analysis for a binary CGM outcome and tabulation of additional insulin metrics

Approvals

Role	Digital Signature or Handwritten Signature/Date
Author: Lauren Kanapka, JCHR	
Senior Statistician: Craig Kollman, JCHR	
Coordinating Center Director: Katrina Ruedy, JCHR	
Protocol Chair: R. Paul Wadwa, Barbara Davis Center	
Sponsor: Marc Breton, University of Virginia	

1 **1. Study Overview**

2 This document outlines the statistical analyses to be performed for the DCLP5 Trial and covers
3 the analyses for the primary study phase. The analysis plan for the extension phase is detailed in
4 a separate document.

5 The following table gives an overview of the study.

6 **Table 1. Study Overview**

PARTICIPANT AREA	DESCRIPTION
Title	The International Diabetes Closed Loop (iDCL) trial: Clinical Acceptance of the Artificial Pancreas in Pediatrics- A study of t:slim X2 with Control-IQ Technology
Précis	A randomized controlled trial of at-home closed loop system vs. standard of care (defined as either sensor-augmented pump or any kind of low predictive low blood glucose suspend [PLGS; LGS] if participant is currently using) in youth age 6 to 13 years old.
Investigational Device	t:slim X2 with Control-IQ and Dexcom G6 system
Objectives	The objective of the study is to assess efficacy and safety of a closed loop control (CLC) system (t:slim X2 with Control-IQ Technology) in a randomized controlled trial.
Study Design	A 16-week parallel group randomized clinical trial with 3:1 randomization to intervention with the closed loop system vs. standard of care (SC).
Number of Clinical Centers	Up to 4 US clinical centers
Endpoint	The primary outcome for the first phase is time in target range 70-180 mg/dL measured by CGM in CLC group vs. SC group over 16 weeks
Population	Key Inclusion Criteria <ul style="list-style-type: none">Type 1 DiabetesAges \geq 6 and \leq 13 years old Key Exclusion Criteria <ul style="list-style-type: none">Use of any non-insulin glucose-lowering agents except metforminActively using any other closed-loop system
Sample Size	Up to 150 screened participants with the goal of randomizing 100 participants in this 16-week randomized trial.
Treatment Groups	<ul style="list-style-type: none">Intervention Group: t:slim X2 with Control-IQ Technology and Study CGM.Control Group: Standard of care (SC) (defined as either sensor-augmented pump or any kind of low or predictive low blood glucose suspend [PLGS; LGS] if participant is currently using), and study CGM
Participant Duration	16-20 weeks (depending on duration of run-in phase)
Protocol Overview/Synopsis	After consent is signed, eligibility will be assessed. Eligible participants not currently using an insulin pump and Dexcom G4, G5 or Dexcom G6 CGM with minimum data requirements will initiate a run-in phase of 2 to 4 weeks that will be customized based on whether the participant is already a pump or CGM user. Participants who skip or successfully complete the run-in will be randomly assigned 3:1 to the use of closed-loop control (CLC group) system using Tandem t:slim X2 with Control-IQ Technology vs SC for 16 weeks.

10 The following table provides overview of the schedule of study visits, phone contacts, and key procedures.

11

12 **Table 2. Schedule of Study Visits and Procedures**

	Pre	Pre	0	1w	2w	4w	6w	8w	10w	12w	14w	16w
Visit (V) or Phone (P)	V	V	V	P	V	P	P	V	P	P	P	V
Comment	Screen/ Enroll	Run-in	Rand									
Eligibility Assessment	X	X	X									
HbA1c (DCA Vantage or similar point of care device, or local lab)	X		X									X ¹⁷ 18
HbA1c (Central lab)			X									X
C-peptide (Central lab) and blood glucose assessment			X									
Pregnancy test (females of child-bearing potential)	X		X					X				X ¹
Device Data download(s)	X	X	X	X	X	X	X	X	X	X	X	X
Review diabetes management and AEs		X	X	X	X	X	X	X	X			X ²⁵ 24
Questionnaires			X									X

26 **2. Statistical Hypotheses**

27 The primary outcome for this study is CGM-measured % in range 70-180 mg/dL over a 16-week period.
28 The intervention will be considered effective if the Closed-Loop Control [CLC] is superior to the
29 Standard Care [SC] using a statistical significance of $\alpha=0.05$ and the model specified below in Section 6
30 (i.e., $p < 0.05$).

31 The null/alternative hypotheses are:

32 1. *Null Hypothesis*: There is no difference in mean CGM-measured % in range 70-180 mg/dL over
33 16 weeks between SC and CLC
34 2. *Alternative Hypothesis*: The mean CGM-measured % in range 70-180 mg/dL over 16 weeks is
35 different for SC and CLC.

36 **3. Sample Size**

37 Sample size has been computed for the primary outcome (CGM-measured % in range 70-180 mg/dL).
38 Data from IDE G170267; Device Name: t:slim X2 with Control-IQ Technology; “Real-Time Monitoring
39 and Glucose Control During Winter-Sport Exercise in Youth with Type 1 Diabetes: The AP Ski Camp
40 Continued” were used to calculate sample size specific to this age group. In this study, which was
41 completed in the winter of 2018, 24 school-aged children (6-12 years) with type 1 diabetes participated in
42 a 3-day ski camp (~5 h skiing/day), followed by an additional 72 hour at-home phase under parental
43 supervision. Study participants were randomized 1:1 to SAP and t:slim X2 with Control-IQ Technology.
44 The data from the 72-hour home phase was used for this sample size calculation – *note that the closed-
45 loop control system and the age range of the participants are identical to those proposed in this
46 application*:

Results from home phase of G170267	Control IQ	SAP	F	p value
Percent between 70 and 180mg/dl	71 ± 6.6	52.8 ± 13.5	16.4	0.001

47

48 From the DCLP1 study using the same algorithm in an older cohort, the effective standard deviation (after
49 adjusting for the correlation between baseline and follow up) for time in range 70-180 mg/dL over the
50 course of 6 months was 6% (95% CI 5% to 7%) for the CLC group and 7% (95% CI 6% to 8%) for the
51 SAP group.

52 A total sample size was computed to be N=60 for the following assumptions: (1) 3:1 [CLC:SC]
53 randomization, (2) 90% power, (3) a 10% absolute increase in % time in range 70-180 mg/dL, (4) an
54 effective SD of 10%, and (5) 2-sided type 1 error of 0.05.

55 The total sample size has been increased to N=100 to account for dropouts and to increase the number of
56 participants who will be exposed to the CLC system for an enhanced safety and feasibility assessment.

57 **4. Efficacy Outcome Measures**

58 **4.1. Primary Endpoint:**

59 • CGM-measured % in range 70-180 mg/dL

60 **4.2. Secondary Endpoints**

61

63 **4.2.1. Hierarchical Endpoints**

64 The following secondary endpoints will be tested in a hierarchical fashion between the two intervention
65 arms as described in Appendix.

66

- CGM-measured % above 180 mg/dL
- CGM-measured mean glucose
- HbA1c at 16 weeks
- CGM-measured % below 70 mg/dL
- CGM-measured % below 54 mg/dL
- CGM-measured % above 250 mg/dL
- Glucose variability measured with the coefficient of variation (CV)

74 **4.2.2. Other Secondary Endpoints**

75 The following endpoints are considered exploratory.

77

- CGM-Measured
 - % in range 70-140 mg/dL
 - glucose variability measured with the standard deviation (SD)
 - % <60 mg/dL
 - low blood glucose index (LBGI)*
 - hypoglycemia events (defined as at least 15 consecutive minutes <70 mg/dL)
 - % >300 mg/dL
 - high blood glucose index (HBGI)*
 - % in range 70-180 mg/dL improvement from baseline to 16 weeks ≥5%
 - % in range 70-180 mg/dL improvement from baseline to 16 weeks ≥10%
- HbA1c
 - HbA1c <7.0% at 16 weeks
 - HbA1c <7.5% at 16 weeks
 - HbA1c improvement from baseline to 16 weeks >0.5%
 - HbA1c improvement from baseline to 16 weeks >1.0%
 - HbA1c relative improvement from baseline to 16 weeks >10%
 - HbA1c absolute improvement from baseline to 16 weeks >1.0% or HbA1c <7.0% at 16 weeks
- Insulin
 - Total daily insulin (units/kg)
 - Basal: bolus insulin ratio
- Weight and body mass index (BMI)
- Questionnaires
 - Fear of Hypoglycemia Survey (HFS-II) – total score, 2 subscales and 4 factor scores:
 - Behavior
 - Avoidance
 - Maintain high BG
 - Worry
 - Helplessness
 - Social consequences
 - Clarke Hypoglycemia Awareness Scores

- 108 ○ Problem Areas In Diabetes Survey (PAID)
- 109 ○ INSPIRE survey scores
- 110 ○ PedsQL Diabetes Module – total score and 5 subscales:
 - 111 ➤ Diabetes
 - 112 ➤ Treatment I
 - 113 ➤ Treatment II
 - 114 ➤ Worry
 - 115 ➤ Communication
- 116 ○ Pittsburgh Sleep Quality Index (Parents only)
- 117 ○ System Usability Scale (SUS) (Closed-Loop participants only)

119 *Note that LBGI and HBGI will be calculated using all available CGM readings as described below.
120 Therefore, they may not be comparable to the same metrics calculated with SMBG data.

122 **4.3 Calculation of CGM Metrics:**

- 123 • Baseline: CGM data to calculate baseline metrics will either come from the run-in period, or
124 from the participant's personal CGM device if the run-in is not necessary:
 - 125 ○ If an enrolled participant is currently using an insulin pump and a Dexcom G4, G5 or G6
126 with CGM data captured on at least 11 out of the 14 days prior to enrollment, then he/she
127 can proceed directly to randomization.
 - 128 ○ Otherwise, the participant will need go through 2-6 weeks of run-in that includes CGM use,
129 prior to randomization.
 - 130 ○ In either case, the last 2 weeks of CGM data prior to randomization will be used in the
131 calculation of baseline CGM metrics. If <168hr of CGM data are available for any reason
132 (e.g., lost data or device failure), then the baseline metrics will not be calculated and will be
133 set to missing.
- 134 • Follow-up:
 - 135 ○ CGM metrics will be calculated by pooling all CGM readings in the 16-week period starting
136 from the randomization visit up through the 16 week visit. If a participant drops out before
137 completing the 16-week visit, all available data through the last visit date will be included
138 for calculating CGM metrics. Minimum 168 hours of CGM data will be required to
139 calculate CGM metrics.
 - 140 ○ A separate set of CGM metrics will be calculated by excluding the first two weeks of CGM
141 data following the randomization visit for sensitivity analyses only with ≥ 168 hours of
142 CGM data required.
- 143 • All CGM metrics at baseline and follow-up will be calculated giving equal weight to each sensor
144 reading for each participant.
- 145 • HIGH and LOW values will be imputed as 39 and 401, respectively.
- 146 • CGM metrics above will also be calculated for daytime period (06:00AM to 11:59PM) and
147 overnight period (00:00AM to 05:59AM) separately. Minimum 126 hours of CGM data will be
148 required to calculate daytime metrics and minimum 42 hours of CGM data will be required to
149 calculate overnight metrics. If <168 hours of CGM data available for combined day and night,
150 then CGM metrics will not be calculated separately for daytime and overnight periods.
- 151 • CGM metrics by 4-week periods: Starting from the randomization date, CGM metrics will be
152 calculated within each 4-week period (Week 1-4, Week 5-8, Week 9-12 and Week 13-16). The

153 16 weeks visit date will be used as end date of Week 13-16. Minimum 168 hours of CGM data in
154 each 4-week period will be required for the calculation.

155 • CGM metrics by 1-week periods: Starting from the randomization date, CGM metrics will be
156 calculated within each 1-week period. The 16 weeks visit date will be used as end date of Week
157 13-16. Minimum 132 hours of CGM data in each 1-week period will be required for the
158 calculation.

159
160 **4.4 Calculation of Insulin Metrics**

161 • Insulin metrics will be calculated at randomization and 16 weeks using Tandem pump data
162 where available, otherwise using data reported on the CRF.
163 • Insulin metrics will be calculated from the pump data using data in the 7 days prior to the visit.

164
165 **4.5. Questionnaires**

166 All questionnaires will be administered online and participants/parents can skip specific questionnaires
167 or items within a questionnaire. All questionnaires will be scored according to the instructions given in
168 the manual. In case no manual exists for a given questionnaire or the manual does not provide guidance
169 on how to handle missing data, then the following criteria will be applied:

170 • At least 75% of the questions must be completed to be included in the analysis.
171 • This 75% rule will be applied separately for the total score and each subscale so it is possible the
172 sample size will be different for some subscales.
173 • The score used for analysis will be based on the average among the questions that were answered
174 and then scaled accordingly.

175 **4.6 Analysis Windows**

176 Analysis windows apply to the following outcomes measured at 16 week visit:

177 • HbA1c
178 • Insulin metrics if calculated from CRF data
179 • Weight/BMI
180 • Questionnaires

181
182 This does not apply to the CGM metrics which are calculated as described above.

183
184 Data from 16 weeks visit occurring in the following windows will be included in analysis:

Visit (Target Date)	Metrics ^a	From Day ^b	Thru Day ^b
16 weeks (112 days)	H,I,B,Q	98	126

185 a – H = HbA1c, I = Insulin metrics, B=BMI (and weight), Q = Questionnaires.

186 b – Days from randomization, inclusive.

187
188 **5. Analysis Datasets and Sensitivity Analyses**

189 **5.1 Analysis Datasets**

190 All analyses comparing the CLC arm with SC arm will follow intention-to-treatment approach, which
191 means participants will be analyzed in the treatment arm assigned by randomization regardless of
192 compliance. All randomized participants will be included in the primary analysis and secondary

193 hierarchical analyses of CGM metrics. For other secondary outcomes, only participants with non-
194 missing outcome data will be included.

195 Safety outcomes will be reported for all enrolled participants, irrespective of whether the participants
196 was randomized or the study was completed.

197 **5.2 Sensitivity Analyses**

198 The following sensitivity analyses (except for the per-protocol analyses) will be conducted for primary
199 endpoint only.

200 *Per Protocol (PP) Analyses:*

201 The following per-protocol analyses will be performed for the primary outcome and secondary
202 hierarchical outcomes only if >5% of participants will be excluded:

- 203 • CLC group: Closed loop mode active for at least 80% of the time
- 204 • SC group: CGM use for at least 80% of the time

205 *Confounding:*

206 A sensitivity analysis will also be conducted if potential confounding factors collected at baseline are
207 detected. The baseline factors listed in Section 11 will be assessed for imbalance between treatment
208 groups.

209 The imbalance will be assessed based on clinical judgement reviewing the distributions in the two
210 treatment arms, not on a p-value. The person making this judgement will be unaware of whether there is
211 an association between baseline variables and study outcome. All variables obtained on a continuous
212 scale will be entered into the models as continuous variables, unless it is determined that a variable does
213 not have a linear relationship with the outcome. In such a case, categorization and/or transformation will
214 be explored.

216 *Exclude First 2 Weeks of CGM Data*

217 The primary analysis will be repeated by excluding the first 2 weeks of post-randomization CGM data.

218 *Missing Data:*

219 Missing data will be handled using direct likelihood method for the primary analysis. It is worth noting
220 that all statistical methods for handling missing data rely on untestable assumptions and there is no one
221 correct way to handle missing data. Our goal is to minimize the amount of missing data so that the
222 results will not be sensitive to which statistical method is used.

223 To that end, sensitivity analyses will be performed to explore whether results are similar for primary
224 analysis when using different methods. The following methods will be applied:

- 225 • Rubin's multiple imputation with treatment group in the imputation model
- 226 • Available cases only
- 227 • Multiple imputation with pattern mixture model assuming the dropout trajectory of the CLC
228 group was that of the SC group (Mallinckrodt and Clark, 2003)

229 **6. Efficacy Analysis**

230 **6.1 Primary Analysis**

231 This study primary outcome is CGM measured % time in range 70-180 mg/dL over 16 weeks.

232
233 Summary statistics (mean \pm SD or median (quartiles)) will be reported by treatment group for the CGM-
234 measured % in range 70-180 mg/dL at baseline, 16 weeks intervention and change from baseline to 16-
235 week intervention.

236 Changes from run-in pre-randomization CGM wear to the 16-week post-randomization period in CGM-
237 measured % in range 70-180 mg/dL between two treatment arms will be compared using a linear mixed
238 effects regression model while adjusting for baseline CGM-measured % in range 70-180 mg/dL, age,
239 prior CGM and pump use, and clinical center (random effect). A point estimate, 95% confidence interval
240 and two-sided p-value will be reported for the treatment effect based on the linear regression model and
241 a 5% level will be used to declare statistical significance. Residual values will be examined for an
242 approximate normal distribution. If values are highly skewed then a transformation or robust statistical
243 methods will be used instead. However, previous experience suggests that the residual values for % time
244 glucose in target range will follow an approximately normal distribution.

245 Imbalances between groups in important covariates are not expected to be of sufficient magnitude to
246 produce confounding. However, the presence of confounding will be evaluated in the sensitivity
247 analyses by including factors potentially associated with the outcome for which there is an imbalance
248 between groups (Section 5).

249 Missing Data

250 In the primary analysis, any missing data at baseline or follow-up will be handled using direct
251 likelihood. A longitudinal linear regression model will be fit with the percent of time in range at
252 baseline and follow-up as the dependent variable. This model will adjust for age, prior CGM use and
253 pump use as fixed effects and clinical center as a random effect. This model adjusts for baseline time in
254 range by forcing the treatment groups to have the same mean value at baseline.

255

256 **6.2 Analysis of the Secondary Endpoints**

257 **6.2.1 Hierarchical Analyses**

258 To preserve the overall type 1 error for selected key secondary endpoints, a hierarchical testing
259 procedure will be used. If the primary analysis for time in range described above results in a statistically
260 significant result ($p < 0.05$), then testing (similar to the model described above for the primary outcome)
261 will proceed to the next outcome metric in the following order:

- 262 • CGM-measured % in range 70-180 mg/dL (primary outcome)
- 263 • CGM-measured % above 180 mg/dL
- 264 • CGM-measured mean glucose
- 265 • HbA1c at 16 weeks
- 266 • CGM-measured % below 70 mg/dL
- 267 • CGM-measured % below 54 mg/dL
- 268 • CGM-measured % above 250 mg/dL
- 269 • Glucose variability measured with the coefficient of variation (CV)

270

271 This process continues iteratively moving to the next variable down on the list until a non-significant
272 result ($p \geq 0.05$) is observed, or all eight variables have been tested. If a non-significant result is
273 encountered, then formal statistical hypothesis testing is terminated and any variables below on the list
274 are not formally tested (see example in the Appendix).

275 Regardless of the results of the hierarchical testing, summary statistics appropriate to the distribution
276 will be tabulated by treatment arm for each hierarchical outcome. A 95% confidence interval for the
277 treatment arm difference will also be calculated for all seven hierarchical secondary outcomes listed
278 above. However, a confidence interval that excludes zero will not be considered a statistically
279 significant result if an outcome variable higher on the hierarchical list failed to reach statistical
280 significance.

281 Analysis for each of the CGM metrics listed above for the hierarchical analysis will parallel the analysis
282 described for the primary outcome in Section 6.1.

283 For the HbA1c analysis, change in HbA1c from baseline to 16 weeks will be compared between the two
284 treatment arms using a linear model while adjusting for baseline HbA1c, age, prior CGM and pump use,
285 and clinical center (random factor). Missing data will be handled using direct likelihood in a regression
286 model including all available central laboratory HbA1c measurements at baseline and 16-week visits.
287 When available, the local HbA1c measurement will be included in the regression model as an auxiliary
288 variable.

289 For all above analyses, regression diagnostics will be employed analogous to as described in Section 6.1
290 for the primary outcome.

291 **6.2.2 Other Secondary Analyses**

292 For all other secondary endpoints, only participants with non-missing data will be included in analyses
293 (available cases method). Summary statistics (mean \pm SD, median (IQR) or n (%)) appropriate to the
294 distribution will be tabulated for them at baseline, 16 weeks and for the changes from baseline to 16
295 weeks. For continuous outcomes, linear regression models will be used to compare the treatment effects
296 while adjusting for corresponding baseline values (e.g., baseline % in range 70-140 mg/dL for
297 comparing change in % in range 70-140 mg/dL from pre-randomization CGM wear to 16 weeks post-
298 randomization period), age, prior CGM and pump use, and clinical center as a random effect.
299 Comparisons of body weight and BMI will also be adjusted for gender.

300 *Binary CGM and HbA1c Outcomes*

301 For the binary HbA1c outcomes listed in Section 4, risk-adjusted percentages by treatment group will be
302 computed at 16 weeks from a logistic regression model. The logistic regression will adjust for baseline
303 HbA1c (as a continuous factor), age, prior CGM and pump use as fixed effects, and clinical site as a
304 random effect. Similar analyses will be done for the binary CGM outcomes in Section 4.

305 *Questionnaires*

306 For each questionnaire, mean \pm SD or percentiles appropriate to the distribution will be given by
307 treatment group at baseline and 16 weeks. Group comparisons will be conducted for the total score
308 (mean score) and subscales from participant version and parent version separately using similar linear
309 models as described above. The SUS survey and the INSPIRE post-treatment survey will only be
310 administered to the CLC group at the 16-week visit, and thus the scores will only be tabulated.

311 *Boxplots*

312 Boxplots stratified by treatment group will be given for the primary outcome and each of the key
313 secondary endpoints listed in Section 6.2.1 in 4week and 1-week periods over the course of 16 weeks
314 intervention.

315 **7. Safety Analyses**

316 All randomized participants will be included in these analyses and all their post-randomization safety
317 events will be tabulated. Events occurring from the randomization date until and including the 16-week
318 visit date or randomization date + 126 days whichever is earlier will be included.

319 Any pre-randomization adverse events will be tabulated separately and will include participants who
320 were never randomized.

321 For the following outcomes, mean \pm SD or summary statistics appropriate to the distribution will be
322 tabulated by treatment group and formal statistical comparisons will be performed if there are enough
323 events (at least 5 events combined over both treatment groups):

- 324 • Number of SH events and SH event rate per 100 person-years
- 325 • Number of DKA events and DKA event rate per 100 person-years
- 326 • Any adverse event rate per 100 person-years
- 327 • Number of calendar days with any ketone level ≥ 1.0 mmol/L (if ≥ 5 total calendar days
328 combined)
- 329 • CGM-measured hypoglycemic events (≥ 15 minutes with glucose concentration < 54 mg/dL)
- 330 • CGM-measured hyperglycemic events (≥ 15 minutes with glucose concentration > 300 mg/dL)

332 If there are at least 5 SH events combined over both treatment groups, the rates will be compared using a
333 robust Poisson regression. The regression will adjust for the participant-reported number of SH events
334 12 months prior to the start of the study and clinical center as random effect. The amount of follow up
335 will be included as an offset covariate to compare the rates. If one of the treatment groups has zero
336 events then a Poisson model will not converge and Fisher's exact test will be used instead. A similar
337 analysis will be done for DKA if there are at least 5 total DKA events among both treatment groups
338 combined. For any adverse event and number of calendar days with ketone event, similar analyses will
339 be done except that clinical center will be the only covariate to be adjusted in the model.

340 The calculation for the two continuous CGM-measured outcomes will be based on the same inclusion
341 criteria mentioned above for the primary outcome. The event rates per week will be compared using
342 similar linear mixed effects regression models as described above for the primary outcome.

343 The following will be summarized and tabulated by treatment group:

- 344 • Other serious adverse events (SAE)
- 345 • BG-measured hypoglycemic events (days with at least one BG record < 54 mg/dL)
- 346 • BG-measured hyperglycemic events (days with at least one BG record > 350 mg/dL)
- 347 • Worsening of HbA1c from baseline to 16 weeks by $> 0.5\%$
- 348 • Related to Investigational Device Usage (intervention group only):
 - 349 ○ Adverse device effects (ADE)
 - 350 ○ Serious adverse device events (SADE)

351 ○ Unanticipated adverse device effects (UADE)

352 **8. Intervention Adherence**

353 *Closed Loop System*

354 The amount of closed loop system use for the CLC group will be calculated from downloaded data over
355 the period from the day after randomization until the day before the 16 week visit. Any dropouts will be
356 counted as zero use for the remainder of the study.

357 Percent time in different operation modes overall and by 4-week periods will be tabulated and boxplots
358 will be created by 4-week periods.

359 *CGM Use*

360 The amount of CGM sensor use for both treatment groups will be calculated from downloaded data in
361 the same way as closed-loop system use described above.

362 Percent time sensor use overall and by 4-week periods will be tabulated by treatment group and boxplots
363 will be created by 4-week periods.

364 *Blood Glucose Monitoring*

365 Average daily frequency of downloaded BGM use for both treatment groups will be calculated similarly
366 in the same time window. If a participant drops out of the study or no meter download is available for a
367 specific period, average daily BGM use will be set to missing for that period.

368 The average daily frequency of downloaded BGM use overall and by 4-week periods will be tabulated
369 by treatment group.

370 **9. Protocol Adherence and Retention**

371 The following tabulations and analyses will be performed by treatment group to assess protocol
372 adherence for the study:

373 • Number of protocol and procedural deviations
374 • Flow chart accounting for all enrolled participants up to randomization
375 • Flow chart of all randomized participants at all scheduled visits and phone contacts post
376 treatment initiation
377 • Number of and reasons for unscheduled visits and phone calls
378 • Number of participants who stopped treatment and reasons

379 **10. Baseline Descriptive Statistics**

380 Baseline demographic and clinical characteristics of the cohort of all randomized participants will be
381 summarized in a table using summary statistics appropriate to the distribution of each variable.
382 Descriptive statistics will be displayed by treatment group for the following:
383

384 • Age

385 • Gender
386 • Race/ethnicity
387 • Income, education, and/or insurance status
388 • Diabetes duration
389 • Insulin method before enrollment (pump vs. MDI)
390 • CGM use before enrollment
391 • HbA1c
392 • BMI
393 • C-peptide
394 • Participant-reported number of SH and DKA 12 months prior to the start of the study
395 • Baseline CGM metrics including:
396 ➤ % in range 70-180 mg/dL
397 ➤ % time >180 mg/dL
398 ➤ mean glucose
399 ➤ % time <70 mg/dL
400 ➤ % time <54 mg/dL

401 **11. Device Issue**

402 The following tabulations and analyses will be performed by treatment group to assess device issues:
403 • Device malfunctions requiring study team contact and other reported device issues.
404 • Sensor performance metrics (difference, absolute relative difference, and International
405 Organization for Standardization criteria) – if applicable, by sensor version. All BGM values
406 except those for QC tests will be used as reference and CGM data within ± 5 minutes of each
407 BGM value will be paired together. Each BGM value will be paired only to one sensor value and
408 vice versa.
409 • Rate of different failure events and alarms per 24 hours recorded by the Control-IQ system –
410 overall and by month.

411 **12. Planned Interim Analyses**

412 No formal interim efficacy analyses are planned. The analysis of the RCT will be performed on
413 completion of the RCT prior to the completion of the extension phase.

414
415 The DSMB will review safety data at intervals, with no formal stopping rules other than the guidelines
416 provided in the participant-level and study-level stopping criteria (as defined in the protocol).

417 **13. Subgroup Analyses**

418 In exploratory analyses, the primary outcome (% time 70-180 mg/dL), % time <70 mg/dL and HbA1c at
419 16 weeks will be assessed separately in various subgroups. Subgroups will be defined according to the
420 baseline value of the factors listed below. Statistical analysis will involve tests for interaction
421 with treatment group.

422 Interpretation of subgroup analyses will be viewed with caution, particularly in the absence of an overall
423 significant difference. For continuous variables, results will be displayed in subgroups based on
424 cutpoints although the analysis will utilize the variable as continuous, except for age which will be

425 analyzed both as a continuous variable and in two age groups. If there is insufficient sample size in a
426 given subgroup, the cutpoints for continuous measures may be adjusted per the observed distribution of
427 values. Cutpoint selection for display purposes will be made masked to the outcome data.

- 428 • Baseline HbA1c
- 429 • Baseline CGM time spent <70 mg/dL
- 430 • Baseline CGM time spent >180 mg/dL
- 431 • Baseline CGM time 70-180 mg/dL
- 432 • Device use before the enrollment: pump/MDI, CGM/no CGM, and combinations of both
- 433 • Age (<10 vs. \geq 10)
- 434 • Sex
- 435 • Race/Ethnicity
- 436 • Clinical center (test for random effects interaction with treatment group)
- 437 • Body mass index
- 438 • Income, education, and/or insurance status
- 439 • C-peptide level

440 **14. Multiple Comparisons**

441 Primary Analysis

442 Since there will be a single comparison for the primary outcome (CGM-measured % 70-180 mg/dL), no
443 adjustment is needed.

444 Secondary Hierarchical Analyses

445 The hierarchical testing procedure described above will be used to control the overall type I error for the
446 primary outcome plus seven key secondary outcomes identified above.

447 All Other Secondary Analyses

448 For comparison of all other efficacy endpoints, the false discovery rate (FDR) will be controlled using
449 the adaptive Benjamini-Hochberg procedure (Benjamini and Hochberg, 2000). FDR adjusted p-values
450 will be calculated separately for the following categories:

- 451 • All other CGM metrics
- 452 • HbA1c analyses
- 453 • Insulin, weight and BMI
- 454 • Questionnaires
- 455 • Subgroup analyses for % time 70-180 mg/dL
- 456 • Subgroup analyses for % time <70 mg/dL
- 457 • Subgroup analyses for HbA1c at 16 weeks

458 P-values from safety analyses, sensitivity analyses and per-protocol analyses will not be adjusted for
459 multiple comparisons.

461 **15. Exploratory analyses**

462 CGM Metrics

463 The following composite binary outcome will be tabulated at baseline and follow-up and compared
464 between treatment groups in a logistic model as described in section 6.2.2.
465 • % time in range 70-180 mg/dL > 70% and % time <70 mg/dL <4%

466

467 The following selected CGM metrics will be reported with the appropriate statistics for daytime (6:00am
468 – 11:59pm) and nighttime (00:00am – 5:59am) separately. No p-values will be calculated for following
469 analyses.

470 • % time in range 70-180 mg/dL
471 • mean glucose
472 • % above 180 mg/dL
473 • % below 70 mg/dL
474 • coefficient of variation

475

476 Above selected CGM metrics will also be reported by restricting the CGM data in the CLC arm based
477 on following criteria. No p-values will be calculated for following analyses.
478 • using only the CGM data when the closed-loop is active

479

480 *Additional Insulin Metrics*

481

482 The following insulin metrics will be calculated using data described in section 4.4 and tabulated by
483 treatment groups at baseline, 16 weeks and for the changes from baseline to 16 weeks. No p-values will
484 be calculated for these metrics.

485 • Total daily basal insulin (units/kg)
486 • Total daily bolus insulin (units/kg)
487 ○ Total daily manual bolus (units/kg)
488 ○ Total daily automated bolus (units/kg)

489

490 The following will be calculated for the CLC group in the 1-week prior to randomization and by 1-week
491 follow-up periods from pump data only:

492 • Total daily insulin (units/kg)
493 • Total daily basal insulin (units/kg)
494 • Total daily bolus insulin (units/kg)
495 ○ Total daily manual bolus (units/kg)
496 ○ Total daily automated bolus (units/kg)
497 • Number of manual insulin doses per day
498 • Number of manual insulin doses with carb announcement per day

499 **References**

500 Benjamini, Y. and Hochberg, Y.: On the adaptive control of the false discovery rate in multiple testing
501 with independent statistics, *Journal of Educational and Behavioral Statistics*, 2000; 25: 60–83.

502

503 Mallinckrodt CH, Clark WS, et al: Assessing responses profiles from incomplete longitudinal clinical
504 trial data under regulatory considerations, *J. Biopharm. Stat.*, 2003; 13(2): 179-190.

505

506

507

Appendix: Example for Hierarchical Testing

508

509 In the hypothetical scenario depicted in the table below, the first four outcome variables all have a
 510 significant result so testing continues to the fifth variable (CGM % below 70 mg/dL). The result is not
 511 significant for that fifth variable ($p = 0.06$) so testing stops. No formal hypothesis test is conducted for
 512 the last three variables on the list in this example scenario.

513

514 **Table. Example Hierarchical Test Results**

HIERARCHICAL ORDER	OUTCOME VARIABLE	TREATMENT ARM P-VALUE	SIGNIFICANT?	ACTION
1 st	CGM % 70-180 mg/dL (primary outcome)	0.001	Yes	Test next variable
2 nd	CGM % above 180 mg/dL	0.02	Yes	Test next variable
3 rd	CGM mean glucose	0.007	Yes	Test next variable
4 th	HbA1c at 16 weeks	0.03	Yes	Test next variable
5 th	CGM % below 70 mg/dL	0.06	No	Stop formal testing
6 th	CGM % below 54 mg/dL	Not tested	Unknown	N/A
7 th	CGM % above 250 mg/dL	Not tested	Unknown	N/A
8 th	Glucose CV	Not tested	Unknown	N/A

515