

Design of the pilot, proof of concept REMOTE-COVID trial: REmote MOniToring usE in suspected cases of COVID-19 (SARS-CoV 2)

A trial protocol

Fahad Mujtaba Iqbal^{1*}, Meera Joshi¹, Gary Davies², Sadia Khan², Hutan Ashrafian¹, Ara Darzi¹

- 1) Division of Surgery & Cancer, 10th Floor Queen Elizabeth the Queen Mother Wing (QEQM) St Mary's Campus, London, W2 1NY
- 2) West Middlesex University Hospital, Twickenham Road, Isleworth, TW7 6AF

Clinical trials registration information: ClinicalTrials.gov Identifier: NCT04337489

16 March 2020

16 Abstract:

17 Background: The outbreak of SARS-CoV-2 (coronavirus, COVID-19), declared a pandemic by the
18 World Health Organisation (WHO) is global health problem with ever-increasing attributed deaths.
19 Vital sign trends are routinely used to monitor patients with changes in these parameters often
20 preceding an adverse event. Wearable sensors can measure vital signs continuously (e.g. heart rate,
21 respiratory rate, temperature) remotely and can be utilised to recognise early clinical deterioration.

22 Methods: We describe the protocol for a pilot, proof-of-concept, observational study to be
23 conducted in an engineered hotel near London airports, United Kingdom. The study is set to
24 continue for the duration of the pandemic. Individuals arriving to London with mild symptoms
25 suggestive of COVID-19 or returning from high risk areas requiring quarantine, as recommended by
26 Public Health England, or healthcare professionals with symptoms suggestive of COVID-19 unable to
27 isolate at home will be eligible for a wearable patch to be applied for the duration of their stay.
28 Notifications will be generated should deterioration be detected through the sensor and displayed
29 on a central monitoring hub viewed by nursing staff, allowing for trend deterioration to be noted.
30 The primary objective is to determine the feasibility of remote monitoring systems in detecting
31 clinical deterioration for quarantined individuals in a hotel.

32 Discussion: This trial should prove the feasibility of a rapidly implemented model of healthcare
33 delivery through remote monitoring during a global pandemic at a hotel, acting as an extension to a
34 healthcare trust. Potential benefits would include reducing infection risk of COVID-19 to healthcare
35 staff, with earlier recognition of clinical deterioration through ambulatory, continuous, remote
36 monitoring using a discrete wearable sensor. We hope our results can power future, robust future
37 randomised trials.

38 Trial registration: ClinicalTrials.gov Identifier: NCT04337489

39 Keywords: remote sensing technology; protocol; clinical trial; patient deterioration; monitoring,
40 ambulatory.

41 Background:
42 The recent outbreak of SARS-CoV-2 (COVID-19), declared a pandemic by the World Health
43 Organisation (WHO) and a growing global health problem, has stretched resources, creating
44 pressures within the National Health Service (NHS) with implications for patient safety.¹ UK Chief
45 Medical Officers have raised the risk to the UK to high, with ever increasing confirmed cases and
46 attributed deaths.¹

47 High risk travellers with suspected or confirmed cases of COVID-19 are likely to transferred
48 immediately to hospital. However, travellers with milder symptoms or returning from high risk
49 areas, a two-week period of observation/quarantine may be required, in accordance with Public
50 Health England recommendations.² The rate of clinical deterioration for individuals suffering with
51 COVID-19 remains unknown; given that widespread vaccine deployment remains imminently
52 unforeseeable, novel strategies are required in approaching this pandemic.

53 Vital signs trends (heart rate, respiratory rate, blood pressure, temperature, oxygen saturations) are
54 routinely used for monitoring hospital patients.³ Clinical deterioration may be recognised through
55 changes in these parameters, and often precedes an adverse event.^{4,5} As such, The National
56 Institute for Health and Care Excellence (NICE) and the Royal College of Physicians (RCP) recommend
57 that all patients have their vital signs recorded every 12h as a minimum.^{6,7}

58 Across the National Health Service (NHS), the use of the National Early Warning Score 2 (NEWS), a
59 'track and trigger' warning score, has been implemented in accordance with the RCP to guide on
60 escalation protocols and monitoring frequency of vital signs.⁷ Accordingly, heart rate (HR),
61 respiratory rate (RR), temperature, blood pressure, oxygen saturations, and level of consciousness
62 are assessed every 4-6 hours with more frequent monitoring for acutely unwell patients.

63 Progression in non-invasive digital technologies have renewed potential for remote monitoring
64 solutions.^{8,9} Wearable sensors offer an opportunity for sensor alerting systems to continuously
65 monitor vital parameters remotely, recognise early deterioration and support clinical decision

66 making, allowing people to receive monitoring outside of expensive hospital facilities; in resource
67 limited hospitals; and utilising alternate sites in crisis scenarios.¹⁰

68 Previous studies have demonstrated acceptability and practicability of continuous monitoring using
69 wearable sensors on general surgical and medical wards in the UK and The Netherlands.^{11,12} Initial
70 work by Downey et al. were limited by imbalanced randomisation leading to significant baseline
71 differences across the two trial arms and failure to adjust for these in their analyses.¹¹ Nevertheless,
72 the wearable sensor seemed to demonstrate feasibility in hospital settings. Qualitative analyses,
73 through semi-structured interviews for patients and healthcare staff, similarly favoured continuous
74 the notion of continuous vital sign monitoring in general wards.¹² It should be noted that many of
75 the patients interviewed were admitted for malignant disease which is likely to influence qualitative
76 outcomes. Delivery of healthcare outside of hospital facilities (e.g. in hotels) is theoretically possible
77 through continuous remote monitoring of vital signs but has yet to be studied; given the global
78 pandemic and fear of future waves, evaluation of its viability is justified.

79 Here, we describe the design of our pragmatic trial, exploring the feasibility of remote monitoring
80 systems in suspected cases of COVID-19 at a hotel, primarily as earlier recognition of clinical
81 deterioration.

82 Methods:

83 *Overall design:*

84 This pragmatically designed, pilot, proof-of-concept, observational study was reviewed and
85 approved by London – Queen Square Research Ethics Committee (IRAS: 281757) and this protocol
86 was developed in accordance with recommendations from the Standard Protocol Items:
87 Recommendations for Interventional Trials (SPIRIT) guidelines.¹³ The objective is to determine the
88 feasibility of remote healthcare delivery in a hotel with rapid implementation in the COVID-19 era.
89 Feasibility will be tested through rate of participation and number of vital alerts generated.

90 The SensiumVitals™ (Sensium Healthcare Ltd., United Kingdom) system can be engineered in the
91 building (hotel) for use with the wearable sensor. All participants would be fitted with the sensor on
92 arrival and would always be worn. A designated area within the facility would act as a central hub
93 allowing for remote monitoring to occur by healthcare staff. Alerts would be generated, in
94 accordance with NEWS parameters (Table 1) but can be individually tailored, to identify
95 deteriorating participants. Participants can be escalated to hospitals should rapid deteriorating in
96 vital signs be noted; ambulance services and paramedics will be present on site to facilitate this. The
97 decision to escalate will come from a senior nurse, present on site, or a general practitioner
98 contactable at all times.. The temperature alert threshold was lowered to the lowest score in the
99 NEWS chart, allowing for earlier detection and improved sensitivity¹⁴; this decision was made from
100 previous work which demonstrated varying limits of agreement for temperature when compared to
101 nursing observations.¹⁵ Escalation protocols will be developed and trialled, allowing staff to address
102 issues as they arise (Figure 1).

103 *Wearable sensor system*
104 SensiumVitals™ by the Surgical Company, have produced a lightweight, waterproof, single-use,
105 wearable wireless ‘patch’ with a battery life of 5 days measuring vital signs every two minutes. The
106 sensor attaches to an individual’s chest with two ECG electrodes, recording HR, RR, and a wire
107 attaches around the individual’s back, measuring axillary temperature. The sensor is FDA approved
108 and CE marked. Data are transmitted through radiofrequency and dedicated intranet hotspots.
109 Physiological parameters can be viewed by clinical staff on a mobile device/desktop computer,
110 allowing trends towards deterioration to be noted, with tailored alerts generated for deteriorating
111 individuals in accordance with NEWS (Figure 2).

112 All sensor data collected by the SensiumVitals® system will be stored on a created secured hotel
113 network; access to which is restricted to research personnel. Given that the hotel acts as an

114 extension to a healthcare trust, the SensiumVitals® system inherits all the hospital procedures and
115 data backup policies, ensuring data access and servers are secured.

116 In line with the principles of Good Clinical Practice guidelines, data will be securely archived for a
117 minimum of 5 years.

118 Following the completion of quarantine, participants will be invited to share their experiences
119 through using semi-structured interviews and questionnaires. Individual interviews allow for
120 anonymity and truthful perceptions/attitudes. This method enables narratives to be elicited through
121 guided but open questioning.

122 *Hypotheses:*

123 1) Continuous remote monitoring with wearable sensors of vital signs will identify
124 deteriorating patients.
125 2) Healthcare provision in a hotel will be feasible and acceptable amongst healthcare staff
126 and participants.

127 *Sequence of events:*

128 Patching patients and using data for academic research

129 1. Eligible participants from the airport will be transferred to the hotel by paramedics.
130 2. Upon arrival to the engineered hotel, an initial assessment of all participants will be
131 undertaken. A study information sheet will be provided, and informed consent taken for
132 wearable sensors to be applied, allowing remote monitoring of vital signs. To ensure
133 appropriate quarantine.
134 3. In a designated area within the building, a central monitoring hub will be set up to monitor
135 the recorded parameters by National Health Service (NHS) healthcare staff from a local
136 Trust. The hub contains a site manager, porters, security staff, nurses, ambulance services,
137 professional cleaners, and hotel staff.

138 4. If a participant deteriorates, an alert should be generated on a smartphone device/desktop
139 computer; following this, an escalation protocol will be trialled to action the alert in an
140 appropriate manner; hospitalisation may be necessary. Initially, nursing staff will gather
141 more information through telephone review. Following this, a virtual GP can be contacted
142 for further advice. Ambulance services and paramedics will be on-site to facilitate
143 hospitalisation should rapid deterioration occur. These healthcare professionals are
144 independent and can provide oversight.

145 5. Participants will be invited for an interview and be asked to complete a survey on their
146 experiences following quarantine completion.

147 6. Participant care records will be stored on an online Care Information Exchange system
148 (compliant with General Data Protection Regulation) that is currently in place across the
149 trust. Electronic health records and patient notes will be reviewed to determine clinically
150 relevant events if transfer to hospital occurs (e.g. hospital length of stay, mortality,
151 escalation to ITU).

152 7. Sensor data will be extracted from the central servers containing sensor data for appropriate
153 statistical analyses for associated clinical efficacy of health outcomes in COVID-19.

154

155 Semi-structured interviews/Questionnaires (mixed methods)

156 1. All participants alongside healthcare staff will be invited to take part in semi-structured
157 interviews and be given questionnaires. These will take place by the primary lead researcher
158 using prepared topic guides.

159 2. Written consent will be obtained from those who agree to participate.

160 3. An audio recording will be made of the interviews. Notes reflecting verbal responses may be
161 taken. The interviews will be conducted at the engineered hotel.

162 4. The recordings will be transcribed, and the data will undergo thematic analyses.

5. Validated and unvalidated questionnaires will also be given enquiring about experiences (e.g. PHQ-9¹⁶, GAD-7¹⁷, satisfaction, anxiety related to the devices).

165

166 *Outcomes and progression criteria:*

167 Feasibility outcomes:

1. Rate of participation
Using the confidence interval approach¹⁸, for a minimum sample size of 10 individuals, we estimate a rate of participation of 90% with a 95% confidence interval of +/- 18%.
2. Generation of an alert following abnormal vital signs (e.g. raised temperature).
We aim for a minimum of 5 vital alerts to be generated to demonstrate feasibility.
3. Missing data recorded from sensor limited to less than 20% attrition will be a criterion for progression.
4. Number of adverse events relating to the sensor system (e.g., skin reaction to sensor preventing trial continuation)

178 Exploratory clinical outcomes:

1. Actions following alert generation (e.g., phone consultation, virtual general practitioner review, transfer to hospital).
2. Acceptability and usability of the SensiumVitals™ system by healthcare staff and participants (mixed methods analysis)

184 *Participant eligibility:*

185 The study will recruit flight arrivals returning to the UK in London. High risk travellers are screened
186 at the airport and tested for COVID-19, with transfer to hospital if appropriate; this cohort would be
187 ineligible for the study.

188 Additionally, healthcare professionals who display symptoms of COVID-19 and are unable to isolate
189 safely at home (e.g. lodging with vulnerable persons) would be eligible to take part in the study and
190 invited to stay at the hotel.

191 Inclusion Criteria

192 • Aged 18 years or over.

- Able to provide written consent.
- Travellers returning with milder symptoms suggestive of COVID-19 or returning from high risk areas requiring quarantine, as recommended by Public Health England.
- Healthcare professionals with milder symptoms suggestive of COVID-19 unable to isolate at home.

198 Exclusion Criteria

- Any participants that withdraw their consent.
- A skin condition/reaction preventing wearing the wearable sensor (these can be communicated by the participant to the researcher or healthcare staff at the hotel).
- The presence of a permanent pacemaker or cardiac defibrillator.
- Any form of psychiatric disorder or a condition that, in the opinion of the investigator, may hinder communication with the research team.
- Inability to cooperate or communicate with the research team.

209 Descriptive statistics will be obtained about the baseline characteristics of participants. Continuous
210 variables will be presented as mean \pm standard deviation or medians and ranges, depending on
211 distribution. Categorical variables will be reported as numbers and percentages. The total
212 frequencies of alerts, proportion of actioned alerts, and resultant actions will be described.
213 Outcome measures (e.g. phone consultation, virtual GP review, transfer to hospital) will be reviewed
214 from case notes should escalation occur and described in absolute frequencies. Questionnaire data
215 will be presented using frequency distributions. Data will be analysed using SPSS, Stata, and
216 GraphPad.

217 Qualitative analyses:

218 Semi structured interviews will take place by the primary lead researcher using the prepared topic
219 guides. An audio recording will be made of all interviews. The interviewer may also take field notes
220 reflecting the verbal responses and reflections to be used to adapt the topic/study direction. The
221 audio recordings will be transcribed. The data will be analysed appropriately using thematic analysis.

222 To ensure confidentiality and anonymity, each interview will be allocated a pseudonym, to be
223 applied to the corresponding consent form, topic guide form/field notes and audio file. Their name
224 will not be included in the audio recording; the pseudonym will be used.

225 Summaries of interview field notes will be typed into a word processor. All paper and soft copies of
226 field notes, audio files and consent forms will be kept securely in a locker within a locked office and
227 if in digital format, on a password protected computer and backed up regularly. Information will only
228 be shared within the study team.

229 Audio recordings will be professionally transcribed verbatim, and a random selection of transcripts
230 will be checked against recordings for accuracy. Interview transcripts will be analysed using Braun
231 and Clarke's thematic analysis by two independent researchers; disagreements will be resolved
232 through discussion.¹⁹ Power considerations:

233 As a pilot study in an unknown viral pandemic, the progression of which is not well established, this
234 study will appraise the feasibility for hotel remote sensing under these circumstances. Sufficient
235 other data do not exist to allow for power calculations.

236

237 *Patient and public involvement:*

238 Due to the nature of the pandemic and the current climate (national lockdown advised from the
239 government) with COVID-19, patient and public involvement was not undertaken for this

240 observational trial. All eligible participants will be approached to enter the study and all recruited
241 participants can provide email addresses should they wish for dissemination of results.

242 Discussion:

243 To the best of our knowledge, this is the first remote monitoring study focussing on healthcare
244 delivery during a global pandemic at a remote site (i.e. hotel), acting as an extension to a healthcare
245 trust. Apart from reducing infection risk to healthcare staff, continuous remote monitoring using a
246 discrete wearable sensor has the potential to detect earlier clinical deterioration allowing for earlier
247 intervention and provide further insight into the clinical course of COVID-19 in regards to vital signs.

248 Our pilot study design will test the viability of using a remote site for healthcare delivery during
249 times of crisis. Continuous vital sign monitoring should provide insight to determine whether vital
250 sign trends can detect clinical deterioration for COVID-19, requiring hospitalisation. Furthermore,
251 questionnaires and semi-structured interviews of participants will provide insight into wider
252 implementation of this technology and provide feedback for improvements. Similarly, semi-
253 structured interviews of staff will provide a healthcare perspective, particularly thoughts on reducing
254 potential infection risk through remote monitoring services.

255 Despite the strengths of our study, the design presents inherent limitations. Mainly, the lack of
256 randomisation and control arm to compare remote monitoring services to 'standard care'.

257 However, to maximise capacity at the hotel given the unknown of the pandemic, a pragmatic,
258 observational design was favoured; randomisation was not deemed appropriate. Government
259 restrictions are rapidly changing for air travel, which could significantly alter our sample size,
260 increasing the risk of type II errors. The inclusion of healthcare professionals may bias the
261 description of favourable experiences, owing to their familiarity of continuous monitoring of
262 physiological parameters. In addition, implementing remote monitoring systems entails an initial
263 financial cost with new logistical and legal considerations; given the early phase of work, the true
264 extent of these issues remains unknown. If the trial is proven to be feasible, this work could power

265 future randomised trials to explore for cause-effect relationships and describe cost-
266 utility/effectiveness of remote monitoring solutions.

267 In conclusion, the results of our study would have potential to demonstrate the feasibility of remote
268 monitoring during a pandemic and may provide insight into earlier recognition of clinical
269 deterioration in individuals suspected with COVID-19.

270

271 **Declarations**

272 *Ethics approval and consent to participate*

273 All participants must provide consent to participate. This study has been received ethical approval
274 by London – Queen Square Research Ethics Committee (IRAS: 281757).

275 *Consent for publication*

276 Consent will be taken for publication.

277 *Availability of data and materials*

278 The datasets used and/or analysed during the current study are available from the corresponding
279 author on reasonable request. Only the authors have access to the dataset.

280 *Competing interests*

281 The authors declare that they have no competing interests

282 *Funding*

283 This work was supported by a grant provided through CW+ (the official charity of Chelsea and
284 Westminster Hospital). The funding body will play no role in the design of the study and collection,
285 analysis, and interpretation of data and in writing this manuscript.

286 *Authors' contributions*

287 FMI drafted the manuscript. Amendments were made by MJ, SK, HA, GD, and AD. Statistical
288 considerations were discussed with MJ, SK and HA. The idea was conceived by MJ and SK.

289 *Acknowledgements*

290 Infrastructure support for this research was provided by the NIHR Imperial Biomedical Research
291 Centre (BRC) and the NIHR Imperial Patient Safety Translational Research Centre (PSTRC).

292

293 **References:**

- 294 1. Department of Health and Social Care; Public Health England. Coronavirus (COVID-19): latest
295 information and advice - GOV.UK. <https://www.gov.uk/guidance/coronavirus-covid-19-information-for-the-public>. Accessed March 6, 2020.
- 297 2. Public Health England. Stay at home: guidance for households with possible coronavirus
298 (COVID-19) infection - GOV.UK. <https://www.gov.uk/government/publications/covid-19-stay-at-home-guidance/stay-at-home-guidance-for-households-with-possible-coronavirus-covid-19-infection>. Published 2020. Accessed May 6, 2020.
- 301 3. Kenzaka T, Okayama M, Kuroki S, et al. Importance of vital signs to the early diagnosis and
302 severity of sepsis: association between vital signs and sequential organ failure assessment
303 score in patients with sepsis. *Intern Med*. 2012;51(8):871-876.
- 304 4. Smith GB. In-hospital cardiac arrest: is it time for an in-hospital 'chain of prevention'?
305 *Resuscitation*. 2010;81(9):1209-1211.
- 306 5. DeVita MA, Smith GB, Adam SK, et al. "Identifying the hospitalised patient in crisis"—a
307 consensus conference on the afferent limb of rapid response systems. *Resuscitation*.
308 2010;81(4):375-382.
- 309 6. National Institutes of Clinical Excellence. *Acutely Ill Patients in Hospital: Recognition of and*

346 Figure legends:

347 Figure 1: Potential escalation pathway; NEWS: National Early Warning Score; GP: general

348 practitioner.

349 Figure 2: Monitoring system for SensiumVitals™ Wearable Sensor

350 Table:

351 *Table 1: Criteria for generating vitals alert*

Parameter	Alert threshold
Respiratory rate (breaths per minute)	≥ 25
Temperature (Celsius)	≥ 38.1
Heart rate (beats per minute)	≥ 131

352