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Introduction

Artificially intelligent (AI) systems are increasingly common and competent collaborators for
humans performing a variety of everyday tasks. There are Al systems designed to help us park
our cars, translate our voices into text messages, and filter out our spam email. Al collaborators
have also been integrated into the workflows of expert humans performing socially important,
and even potentially dangerous, jobs — e.g., assisting air traffic controllers in preventing midair
collisions. Interestingly, some Al systems are designed to act as second observers to assist
humans in making important perceptual decisions: Airport baggage screeners use Al support to
decide whether there is a weapon in a bag; radiologists use Al support to decide whether a
suspicious region on an X-ray is cancer; and law enforcement use Al support to identify suspects
in surveillance video. What makes these examples different from Al sorting our email, or
calculating flight paths, is that they all involve a human and a machine making a decision about

the same perceptual stimulus (e.g., “Is that object in this suitcase a weapon or a dumbbell?”).

If humans and Al are working together, even the most talented Al is only useful if its human
collaborator can and will take advantage of its information. If the human does not trust the Al, she
may ignore its advice (Beck et al., 2007). There are many different possible rules for combining
the same human and Al information (e.g. Does the Al offer its information before, during, or after
the human’s initial decision?). These rules can produce different outcomes. We frame this situation
in terms of signal detection theory (Hautus et al., 2021; Macmillan & Creelman, 2005). In that

context, changing interaction rules can shift d’, criterion, or both!. Moreover, the rules interact

1 Note: In the psychophysical literature, d’ is often called “sensitivity”. However, in the
medical literature, “sensitivity” refers to the true positive (TP) or hit rate. Accordingly, we
will try to avoid using the term, “sensitivity” at all.



strongly with task variables (e.g. How prevalent are positive cases?). The interaction of task and
rule can change the human user’s attitude / trust in the Al (Hoff & Bashir, 2015). This, in turn,
influences the combined results for human plus Al.

Al support for perceptual decision making is wide-spread. We will focus our discussion on
medical images (Greenes, 2014) recognizing that the issues are similar in other domains from
conversing with your car (Strayer et al., 2016) to automating airport screening [Héttenschwiler,
2017 #13395]. In medical image interpretation, much of this work falls under the heading of
Computer-Aided Detection (CADe) and Computer-Aided Diagnosis (CADx) (Li & Nishikawa,
2015).

If experts were perfect at detecting and identifying clinically relevant findings in images, there
would be no interest in CAD, but experts evaluating medical images make more mistakes that we
would like, and CAD helps less than we would hope. Precise error rates in actual clinical practice
are hard to establish though 20-30% appears to be a reasonable estimate in many radiologic
domains (reviewed in Berlin, 2007). Some of these errors are, in a sense, desirable. For instance,
a suspicious spot on a mammogram should be referred for further testing, even if it subsequently
turns out to be a false positive. Of course, if Al could reduce these ‘desirable’ false positive errors,
that would save unnecessary testing, expense, and worry. False negative / miss errors can have a

higher cost in cases where early detection improves outcomes (Monticciolo et al., 2017).




Kundel and colleagues (1978) provided a useful 3-part taxonomy for false negative (“miss”
errors, dividing them into search, recognition, and decision errors, based on eye movements
recordings. Search errors are those where the eyes never fixate on the target at all. In recognition
errors, the eyes briefly (<500 msec) fixate the target but then move on, as if the observer failed to
recognize that something interesting had been fixated. Decision errors are those where the observer

(and the observer’s eyes) scrutinize the relevant stimulus location but fail to identify the target.

Figure 1: Two-alternative forced-choice decisions as signal detection problems.
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In their simplest form, decision errors can arise when the observer is faced with a two-alternative
forced-choice decision (e.g. Is this cancer or not?). In the terms of signal detection theory, as
cartooned in Figure 1, truly negative and positive cases can be thought to produce overlapping
distributions of internal response values within the observer. To make a decision, the observer
must establish some ‘criterion’, ‘c’; declaring all values above criterion to be positive and those

below to be negative. The separation between the positive and negative distributions determines

the difficulty of the decision and can be quantified by the parameter, D’ (though the situation is



more complex and other metrics are more useful if, for example, the variance of the two
distributions is not the same). When the distributions overlap, the observer must make errors: False
positive (FP) or False alarm errors, shaded red, and False Negative (FN) or miss errors, shaded
green. Shifting criterion can change the mix of errors but cannot eliminate them. A manipulation
that increases D’ reduces errors.

Two observers will typically perform better than either alone, especially if the ‘noise’ that
degrades their performance is not identical. The relationship of two observers in SDT terms has
been formalized by Sebastian and Geisler (2018). A CAD Al that offers its own assessment of the
stimulus can be thought of as a second observer. The focus of our interest is in the interaction of

that second observer with a human who is making the ultimate decision.

Search and recognition errors can arise when the perceptual task involves spatial uncertainty. If
the task involves a search for possible targets (e.g. signs of breast cancer), it is possible to fail
because you never looked at the target (search errors) or because, when you looked at the target,
its importance was not registered (recognition errors). The use of Al to reduce these errors is

important but not considered in this experiment.

As we are framing the Human-AlI interaction in perceptual decision making, there is an error-
prone human observer and an Al that might be useful. The resulting human-Al interaction can be
formalized as a signal detection problem with two observers (Bartlett & McCarley, 2017; Bechar
etal., 2009). For example, take a human and an Al, each with d’ of 2.5 (comparable to performance
in screening mammography). If the two observers are uncorrelated, the optimal joint d” would be

about 3.5. As Bartlett and McCarley (2017) note, however, “In practice, unfortunately, people



often interact with automated aids in a suboptimal way”. They may overweight or underweight the
Al advice. The core problem is that there is no one optimal solution that covers all Human-Al
interactions. To offer a trivial illustration, if the human is simply guessing and the Al is perfect,
the obvious rule is to use the Al If the situation is reversed, the obvious rule is to ignore the Al.
The optimal use of the Al therefore, depends on the details of the specific Human-AlI interaction.
Unfortunately, it is not practical to test a range of modes of interaction in real-world clinical
situations. Expert observers are a limited resource and interventions (e.g. don’t use Al on the next
N patients) are often unethical or impractical in the real world. Our goal is to develop a “Human-
Al Collaboration Test (HAICT) that can be used in the lab to identify candidate interventions that

could be practically tried in real-world settings.

We can identify a non-exhaustive set of factors that will influence the AI-human interaction.

1) Absolute and relative skill of the human and Al: This defines a 2D space of conditions where

the human and AI might both be very skilled or not or where one is more skilled than the
other.

2) Signal & noise variability: The physical signal, presented to the human and/or the Al has

some intrinsic variability. That variability could be different for signals (Do all masses look
alike and are they all imaged with equal fidelity?) and for ‘noise’ (Do other possible masses
all look alike or do they come in a wide range of forms?).

3) Correlation of Al and human responses; Are the human and Al responding in the same way

to the same thing? The potential benefit of an Al declines as its correlation with the human
increases. Thus, the situation is different if both parties are limited by the same physical

signal/noise ratio as opposed to a condition where the human is looking at an X-ray while



the Al is basing its response on some entirely different measurement. Sebastian and Geisler
(2018) have provided an SDT-based method for estimating the correlation between two
observers.

4) Feedback: In many real-world settings, it is not available or available only incompletely, in
aggregate, and/or after a significant delay. Consider screening mammography where some
Al true positives will provide an immediate form of feedback when the radiologist clearly
sees that CAD has marked something they found or missed. Feedback about other CAD
responses would have to wait for subsequent follow-up (e.g. Was it a hit or a false alarm?).
In the case of miss errors, by either the human or the Al, it is possible there is no feedback.

5) Costs and benefits of different outcomes: In mammography, for example, FP errors carry

modest risk and some real psychological and financial costs. The costs of FN errors are much
greater. A similar situation applies to airport security screening. The could also be
operational costs if, for example, adding Al doubled the time or the cost of an exam.

6) Target Prevalence: Particularly in screening situations, target prevalence is an important

variable. Breast cancer is rare in a screening population. Real threats are even rarer at the
airport checkpoint. This obviously interacts with costs and benefits. Are 100 or 1000 FP
errors more or less expensive than one FN error? Prevalence is known to influence human

behavior (Levari et al., 2018; Wolfe et al., 2005).

This partial list describes a vast dataspace. It would be neither practical or fruitful to systematically
cover it with experiments. One possible solution would be to model the effects. A valiant effort
was made by Bechar et al (2009) who proposed to compute “An Objective Function to Evaluate

Performance of Human-Robot Collaboration in Target Recognition Tasks” (Bechar et al., 2009).



Bechar et al created a linear model that incorporates many (but not all) of the variables described
above and they could draw some interesting conclusions from the output. For instance, for their
conditions, the utility of the Al increases as target prevalence increases; a potentially depressing
conclusion for CAD systems deployed to help with the detection of rare targets. Their conclusions
include the statement, “Since the number of parameters is large and, in addition, there are
interactions between the parameters, it is difficult to predict the system performance”.

How, then, can progress be made on deciding on the best use of an Al system? In this project,
we propose a testbed that captures critical aspects of human-Al interaction in a signal detection
paradigm. The idea is that a simple, 2-alternative forced-choice (2AFC) task can be tailored to
have the properties of the real-world situation. Stimuli can be created to constrain the d’ of the
observer and the Al The prevalence of targets can be set along with a reward structure for different
types of correct and incorrect responses. Feedback can approximate the real-world situation.
Having built a task with critical similarities to the real-world task, it is possible to test non-expert
observers in relatively short experiment that manipulate factors like the timing of presentation of
Al information or the criterion used by the Al. Such experiments will not eliminate the need to test
hypotheses with real experts doing the real task. However, results from this Human-Al

Collaboration Test (HAICT) can guide clinical testing to the more promising possibilities.

In the experiment described here, we take a single, hypothetical Al and use it as a second reader

— presenting the Al opinion after the human has offered an initial reading.

HAICT methodology



HAICT treats the human-Al interaction as a signal detection problem with two observers. We
generated a set of visual stimuli that both our human and “AI” observer must evaluate. This is
analogous to a CADXx situation where a human reader might use a CAD system to help determine

1f a mass is cancerous.

At the heart of the HAICT method is the use of artificial stimuli that can be precisely controlled
in ways that real medical images cannot be. Thus, as shown in Figure 2, the stimuli were 20x20

square grids in which each square was a shade of red or green.
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Figure 2: Construction of HAICT stimuli

stimulus. For a negative trial, the number of red cells is derived from one normal distribution.
For positive trials, the number is derived from another distribution with a higher mean. The
difference in those means, converted to d’ puts an upper limit on performance. That is, if the
distributions are separated by d’=2.5, as they are in this case, even the most ‘expert’ observer
cannot produce results with d’ better than 2.5, except by chance. This method means that some
positive cases will look negative and vice versa. It is important to explain this to participants,

especially if the experiment involves feedback in order to avoid confusion and frustration.
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Human and Al stimuli can be the same or they could be generated separately so that the
maximum performance of the two observers can be independently varied. In this experiment,

both the Al and human have a maximum performance of a d’ of 2.5.

Specific Method
We tested 13 naive observers (avg age 31, 8 female, 5 male). All had normal color vision as

assessed by Ishihara color plates and acuity of 20/25 or better.

Two conditions were be tested:

1. Baseline - No Al input. Observer classifies each case as "bad" or "not" bad on their own.
2. Second Reader - The observer makes an initial decision about every case. The simulated
Al silently classifies stimuli using a “conservative criterion” (¢ = 0.5). The logic for the
conservative criterion is that the second reader is being used to cut down on false positive
responses and so it is intended to raise questions about positive human responses that might be
marginal. If the observer and Al disagree, then the Al informs the human observer. The observer

is then given a chance to either change their response or go with their first opinion.

In each of these conditions, the prevalence of “positive cases” is varied in separate blocks. The
percentage of targets could be 10%, 33%, 67% or 90%. Humans are known to become more
conservative at low prevalence, missing more targets (Horowitz, 2017). Thus, there were 8
blocks per Observer (2 conditions X 4 levels of prevalence). Each Observer ran 200 trials in each

block. Block order was randomized.
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Stimuli were present in a darkened room on Macintosh desktop computers with Os at an

approximate 60 cm viewing distance.

Data analysis

One observer was removed for poor performance. For the remaining 12 Os, we performed
standard signal detection analysis. For each condition, we computed the probability of a “hit” or
true positive response (correct positive responses / total positive trials) and “false alarms” or
false positive response (false positive responses / total negative trials). These values are
converted to “z-scores” (=inverse of the standard normal cumulative distribution), zHit & zFA.
From those values, d’ = zHit-zFA and criterion, ‘c’, = (zHit-zFA)/-2. Response time can also be

looked at but is not of particular interest in this experiment.
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