

1 **Official Title:** Effects of Pain Neuroscience Education and Therapeutic
2 Exercise on Pain, Catastrophizing, Kinesiophobia and Upper Limb Function in
3 Patients With Non-specific Neck Pain.

4 **Brief Title:** Effects of Education and Exercise on Pain, Psychosocial Factors,
5 and Upper Limb Function in Non-specific Neck Pain.

6 **ClinicalTrials.gov Identifier:** NCT06889389

7 **Unique Protocol Id:** PI 90/2024

8

9 **Document Type:** Study Protocol and Statistical Analysis Plan

10

11 **Document Date:** 26 September 2024

27 **STUDY PROTOCOL**

28 **SUMMARY**

29 Pain neuroscience education is currently one of the techniques being explored in
30 physiotherapy for pain management. The benefits of this technique are gradually
31 becoming evident in various published studies. So far, it has been widely studied
32 for its short-term effects, but the education provided has typically been generic,
33 not focused on exercise. However, it is suggested that this technique should be
34 combined with exercise to achieve the expected outcomes. Therefore, pain
35 education should be tailored to the specific physical activities the subject will
36 perform to maximise its effectiveness. The primary aim of this study is to analyse
37 the outcome of combining exercise with tailored pain neuroscience education on
38 aspects such as pain, kinesiophobia, catastrophizing, exercise conceptualization,
39 and upper limb function in subjects with neck pain. The secondary aim is to
40 evaluate the relationship between kinesiophobia and catastrophizing and their
41 impact on the results of various upper limb performance tests. Finally, the effects
42 of therapeutic exercise alone will be compared with those of therapeutic exercise
43 combined with pain neuroscience education, focusing on pain, kinesiophobia,
44 catastrophizing, and exercise conceptualization. A double-blind, randomised
45 clinical trial has been designed, in which three intervention protocols will be
46 applied to 81 subjects with non-specific neck pain: education with exercise,
47 exercise alone, and placebo alone. Subjects with non-specific neck pain who
48 meet the inclusion criteria will be enrolled. Demographic characteristics of the
49 subjects, as well as pain, kinesiophobia, catastrophizing, and upper limb
50 performance test scores, will be assessed. This study aims to explore the
51 potential relevance of a pain neuroscience education session prior to therapeutic
52 exercise, as well as to influence the clinical recommendations made by clinicians
53 during treatment.

54

55 **INTRODUCTION**

56 Neck pain is considered the fourth leading cause of disability (Cohen, 2015), with
57 an age-standardised prevalence rate of 27 per 1,000 individuals in 2019 (Wu et
58 al., 2024). Non-specific neck pain (NNP) is the most common type, and as the
59 name suggests, the underlying mechanisms are unknown. However, it is
60 proposed that musculoskeletal factors, such as deficits and alterations in
61 proprioception of the neck muscles, which play a crucial role in motor control of
62 the head and cervical joint positioning, may be involved in the maintenance,
63 recurrence, and progression of pain (Treleaven, 2008). Furthermore,
64 psychosocial factors such as catastrophising, kinesiophobia, stress, anxiety, and
65 depression also play a significant role in influencing pain perception (Bushnell et
66 al., 2013; Ortego et al., 2016). Therefore, as reflected in the current evidence,
67 exercise and patient education are first-line interventions for managing NNP,
68 receiving high levels of recommendation for all subtypes of non-specific neck
69 pain, and across all stages of the condition, whether acute, subacute, or chronic
70 (Bier et al., 2018; Blanpied et al., 2017).

71 Exercise has an analgesic effect on pain (Senarath et al., 2023). The most
72 supported mechanism underlying the analgesic effects of exercise, according to
73 the scientific community, is the activation of the endogenous opioid system during
74 exercise of sufficient intensity. This hypothesis is based on the observation of the
75 release of beta-endorphins, which are associated with an analgesic state
76 (Goldfarb & Jamurtas, 1997; Stagg et al., 2011). However, exercise can also
77 produce pain (Sluka et al., 2018). Moreover, patients with chronic pain often
78 exhibit avoidant behaviours towards exercise and movement, a phenomenon
79 known as kinesiophobia (Luque-Suarez et al., 2019). It is therefore not surprising
80 that patients with chronic pain tend to be more inactive than those without pain
81 (Dzakpasu et al., 2021). Additionally, these patients often present other altered
82 psychosocial variables in relation to their pain, such as pain catastrophising
83 (Thompson et al., 2010). These psychosocial symptoms, in turn, influence the
84 perceived pain intensity and dysfunction (Thompson et al., 2010). Consequently,
85 cognitive and emotional factors have a significant impact on pain perception
86 (Bushnell et al., 2013), meaning that an intervention targeting these factors could
87 modify both perceived pain and the analgesic effects of exercise.

88 In line with the previous discussion, Pain Neuroscience Education (PNE) is
89 increasingly used as part of the treatment for patients with pain, especially in
90 cases of non-specific low back pain (Clarke et al., 2011). This approach, in
91 accordance with the biopsychosocial model, involves providing pain
92 neuroscience information to the patient in order to enhance their understanding
93 of their condition, change their beliefs, facilitate return to activity, and reduce
94 unnecessary medical attention (Louw et al., 2016). The literature now
95 recommends combining PNE with exercise, due to favourable results with this
96 combination of therapies. However, there remains a need for further research in
97 this field (Javdaneh et al., 2021).

98 NNP is often associated with upper extremity dysfunction (Osborn & Jull, 2013),
99 as patients with severe neck pain or disability also report significant disability in
100 the upper limbs (Mclean et al., 2010a). Furthermore, those patients with greater
101 upper limb disability tend to avoid or abandon painful tasks due to the potential
102 of pain (Ayre & Tyson, 2001; Levin et al., 1996).

103 Additionally, when patients believe that pain is directly linked to injury or tissue
104 damage, they exhibit a reduced ability to control this pain (Louw et al., 2016). This
105 observation supports the notion that patient beliefs not only influence pain
106 intensity but also their level of disability. Thus, pain neuroscience education may
107 have a positive effect on pain intensity, dysfunction levels, and fear of movement,
108 particularly when combined with therapeutic exercise (Louw et al., 2011).

109 Most of the current scientific evidence regarding pain neuroscience education
110 (PNE) has been explored in patients with chronic low back pain, with less focus
111 on other types of pain, such as NNP. Consequently, there is less information
112 available to support the role of education combined with exercise for these
113 patients, particularly in terms of perceived pain, kinesiophobia, catastrophising,
114 and even the conceptualisation of exercise itself. The potential relationship
115 between upper extremity dysfunction, as measured by functional or performance
116 tests, and the aforementioned parameters is also not extensively studied.

117 Addressing these issues is the primary motivation for conducting the present
118 study.

119

120

121

122 **JUSTIFICATION AND OBJECTIVES**

123 In recent years, education in pain neuroscience has been shown to have a
124 positive impact on pain subjects. However, the education provided is often
125 generic and not adapted to exercise, although it is recommended that this therapy
126 should be combined with exercise. Therefore, the aim of this study is to assess
127 the results of the combination of exercise and pain neuroscience education
128 focused on the exercise to be performed by subjects in pain or kinesiophobia.
129 Therefore, the main objective of the study is to evaluate the effects of pain
130 neuroscience education in non-specific neck pain on pain intensity,
131 kinesiophobia, catastrophizing, exercise conceptualization and upper limb
132 functionality itself in subjects with non-specific neck pain. The specific objective
133 is to compare the effect of therapeutic exercise alone with the effect of therapeutic
134 exercise in combination with pain neuroscience education on pain, kinesiophobia,
135 catastrophizing and exercise conceptualization. Similarly, the aim is to determine
136 the relationship between kinesiophobia and catastrophism and the results
137 obtained in upper limb performance tests. For this purpose, the Closed Kinetic
138 Chain Upper Extremity Stability Test (CKCUEST), the Seated Medicine Ball
139 Throw test (SMBT) and the Single Arm Military Press (SAMP) have been chosen,
140 the first two of which have not been studied in patients with non-specific neck
141 pain to date. This study aims to have an impact on the possible relevance of a
142 pain neuroscience education session prior to therapeutic exercise, as well as on
143 the clinical recommendations made by healthcare professionals during treatment.

144

145 **DESIGN**

146 The study consists of a randomised, double-blind clinical trial. Subjects will be
147 randomised into 3 groups: control group, where subjects will receive a placebo
148 (TENS off, in this case); intervention group 1, where pain neuroscience education
149 (PNE) and exercise will be applied; and intervention group 2, to which only
150 exercise will be applied. The allocation will be blinded to the subject and to one
151 of the two investigators.

152

153 **SELECTION CRITERIA**

154 Inclusion criteria: o Adults aged between 18 and 65 years. o Subjects with non-
155 specific neck pain at the time of the intervention reaching at least a 3 on the

156 Numerical Pain Rating Scale (NPRS scale). Exclusion criteria: o Pregnancy o
157 Severe illnesses: diabetes, cancer, neurological, depression, etc... o Cognitive
158 disorders or illnesses. o Subjects who have received physiotherapy treatment in
159 the last month. o Subjects who are receiving concomitant physiotherapy
160 treatment for this pathology. o Subjects with specific neck pain, such as any
161 traumatic pathology, whiplash or with a diagnosis associated with neurological
162 compromise or peripheral nerve damage. o Physiotherapy students or
163 professional physiotherapists. Subjects included in the study must complete the
164 informed consent form, meet the inclusion criteria and not meet the exclusion
165 criteria. Prior to any type of procedure, subjects will be informed about the study
166 and about their right to discontinue their participation and/or request the
167 withdrawal of their data at any time.

168

169 **DESCRIPTION OF THE PROCEDURE**

170 At the beginning, all subjects will sign the informed consent form, demographic
171 data will be recorded by means of an interview and a questionnaire specifically
172 designed for the work. After that, baseline measurements of outcome variables
173 will be taken. Fear of movement and kinesiophobia will be measured with the
174 Tampa Scale of Kinesiophobia (TSK- 11SV), pain catastrophizing with the Pain
175 and Castastrophizing Scale (PCS), and subject's beliefs about pain with the Pain
176 Beliefs Questionnaire (PBQ). The Spanish validated versions of all the
177 aforementioned scales will be used. The Numerical Pain Rating Scale (NPRS)
178 will be used to assess subjects' current pain and spontaneous or evoked pain
179 intensity. Researcher A will then show each subject images of the 3 performance
180 tests they will have to perform, as well as provide an explanation of their
181 execution: Closed Kinetic Chain Upper Extremity Stability Test (CKCUEST),
182 Single Arm Military Press (SAMP) and Seated Medicine Ball Throw Test (SMBT).
183 Regardless of whether subjects are later assigned to the exercise group or not.
184 These tests are among the most widely used tests to measure upper limb
185 function, although they have not been studied in subjects with non-specific neck
186 pain. The Single Arm Military Press (SAMP) test is the only performance-based
187 measure of upper limb disability that was designed specifically for subjects with
188 neck pain. All these tests involve active movements that could be conditioned by
189 the subject's pain and beliefs related to kinesiophobia, so they could be of great
190 use to observe whether an educational approach decreases upper limb
191 dysfunction. Finally, subjects' beliefs about the exercises explained in relation to
192 their pathology will be assessed by means of a questionnaire specifically
193 designed for this purpose. After this procedure is completed by all participants,
194 they will be randomised into three groups, using a randomisation website
195 (Research Randomizer, n.d.) and will undergo a physiotherapy session that
196 includes different approaches for each group.

197 In the PNE and exercise group the investigator will proceed with pain
198 neuroscience education focused on concepts related to movement-related fear
199 and the benefits of exercise for 20 minutes. Specifically, the exercises presented
200 in the generic part of the procedure will be discussed. To assess whether the
education has resulted in changes to the subjects' beliefs, they will be reassessed

202 regarding their beliefs about the exercises in relation to their neck pain following
203 the education session. Afterward, subjects will complete psychosocial scales and
204 rate their pain and evoked pain at that moment independently, without the need
205 for the researcher to be present, in order to ensure blinding. Subsequently, the
206 subject will undergo the performance tests in a randomised order (Closed Kinetic
207 Chain Upper Extremity Stability Test, Single Arm Military Press, and Seated
208 Medicine Ball Throw), which will be conducted by a second investigator who is
209 unaware of whether the subject has received education. The exercise
210 intervention will then proceed using variations of the performance tests, also
211 carried out by the second investigator. Specifically, the load or execution time will
212 be increased until the participant reports a perceived fatigue of 4-6 (moderate to
213 strong) on the modified Borg scale. Finally, the participant will autonomously
214 complete the scales, rate their pain and exercise-related questions for the final
215 time.

216 The exercise group does not include pain neuroscience education. Following the
217 initial assessment, the subject will be left alone for 20 minutes with instructions to
218 think about the exercises but not to perform them. Afterward, subjects will
219 complete psychosocial scales and will rate their pain and evoked pain at that
220 moment independently, without the need for the researcher to be present, in order
221 to ensure blinding. Subsequently, the subject will undergo the performance tests
222 in a randomised order (Closed Kinetic Chain Upper Extremity Stability Test,
223 Single Arm Military Press, and Seated Medicine Ball Throw), which will be
224 conducted by a second investigator who is unaware of whether the subject has
225 received education. The exercise intervention will then proceed using variations
226 of the performance tests, also carried out by the second investigator. Specifically,
227 the load or execution time will be increased until the participant reports a
228 perceived fatigue of 4-6 (moderate to strong) on the modified Borg scale. Finally,
229 the participant will independently complete the scales, rate their pain, evoked
230 pain, and exercise-related questions one final time.

231 The control group does not receive pain neuroscience education or exercise.
232 Following the initial assessment, the subject will be left alone for 20 minutes with
233 instructions to think about the exercises but not to perform them. Afterward,
234 subjects will independently complete psychosocial scales and will rate their pain
235 and evoked pain at that moment, without the need for the researcher to be
236 present, in order to ensure blinding. Subsequently, participants in this group will
237 receive a placebo intervention administered by a second investigator. A TENS
238 device will be placed on them and kept turned off for 15 minutes. subjects will be
239 informed that the device is operating at a very low intensity, too weak to be
240 perceived. Additionally, performance tests will not be assessed in this group.
241 Finally, the participant will autonomously complete the scales, rate their pain and
242 exercise-related questions for the final time. Therefore, all groups will be
243 assessed 3 times during the session. The first time they will be accompanied by
244 the first investigator, who will answer any questions that may arise. The second
245 and third time the subject will do it autonomously, unaccompanied by any
246 researcher, to avoid bias.

248 **OUTCOME MEASURES**

249 **Primary outcome measures**

250 **Kinesiophobia:** The level of kinesiophobia will be assessed using the Tampa
251 Scale for Kinesiophobia (TSK-11SV). This scale evaluates kinesiophobia (fear of
252 movement) through 11 statements, which participants must rate on a Likert scale
253 from 1 to 4, where 1 indicates strongly disagree and 4 indicates strongly agree.
254 Higher scores reflect greater kinesiophobia (minimum score: 11; maximum score:
255 44). The validated Spanish version of the scale will be used. Measurements will
256 be collected at baseline, after the education session or waiting period (depending
257 on the assigned group), and after the exercise intervention or placebo (depending
258 on the assigned group).

259

260

261 **Pain beliefs:** Pain beliefs will be assessed using the Pain Beliefs Questionnaire
262 (PBQ), which evaluates beliefs regarding the causes, consequences, and
263 necessary treatment of pain. The questionnaire is divided into two subscales:
264 "organic" and "psychological." It consists of 12 items, with 8 items belonging to
265 the "organic" subscale and 4 to the "psychological" subscale. The PBQ uses a 6-
266 point Likert scale ranging from "Always" to "Never," corresponding to scores of 6
267 and 1, respectively. Higher scores on each subscale indicate that the respondent
268 considers the corresponding pain-related beliefs to be of greater importance.
269 Measurements will be collected at baseline, after the education session or waiting
270 period (depending on the assigned group), and after the exercise intervention or
271 placebo (depending on the assigned group).

272

273 **Catastrophizing:** The level of catastrophizing will be assessed using the Pain
274 and Catastrophizing Scale (PCS). This scale evaluates catastrophizing in
275 response to pain and the negative and exaggerated perception of the painful
276 experience. It consists of 13 statements describing different thoughts and feelings
277 that may be associated with pain. The participant is required to indicate the extent
278 to which they experience these thoughts and feelings when they are in pain. Each
279 statement is rated on a Likert scale from 0 to 4, where 0 means "not at all" and 4
280 means "all the time." Higher scores indicate a higher degree of catastrophizing.
281 The validated Spanish version of the scale will be used. Measurements will be
282 collected at baseline, after the education session or waiting period (depending on
283 the assigned group), and after the exercise intervention or placebo (depending
284 on the assigned group).

285

286 **Pain intensity:** Pain intensity will be assessed using the Numerical Pain Rating
287 Scale (NPRS). This scale evaluates the intensity of pain experienced by the
288 participant, using a 10-point scale, where 0 represents no pain and 10 represents
289 the maximum possible pain. Higher scores correspond to greater pain intensity.
290 Measurements will be collected at baseline, after the education session or waiting

291 period (depending on the assigned group), and after the exercise intervention or
292 placebo (depending on the assigned group).

293

294 **Evoked pain intensity:** Evoked pain will be assessed using the Numerical Pain
295 Rating Scale (NPRS). Participants will be asked to perform a movement that
296 evokes pain related to their condition. Pain intensity will then be evaluated on a
297 10-point scale, where 0 represents no pain and 10 represents the maximum
298 possible pain. Higher scores correspond to greater pain intensity. Measurements
299 will be collected at baseline, after the education session or waiting period
300 (depending on the assigned group), and after the exercise intervention or placebo
301 (depending on the assigned group).

302

303 **Secondary outcome**

304 **Demographic data:** Participants will complete a demographic questionnaire,
305 including descriptive variables such as age, sex, weight, height, level of physical
306 activity, comorbidities, duration of pain, side of pain, and smoking status. **Data**
307 **Will be collected** at baseline (before any intervention).

308

309 **Beliefs about specific exercises:** Beliefs about specific exercises in relation to
310 pain will be assessed using a custom questionnaire. The questionnaire evaluates
311 the participants' beliefs regarding the specific exercises they will perform.
312 Participants will first be shown photographs of the exercises they are required to
313 do, and then they will respond to the questionnaire by selecting a number on a visual
314 analogue scale from 1 to 10, where 1 indicates "strongly disagree" and 10 indicates
315 "strongly agree." Higher scores reflect stronger beliefs about the
316 exercises in relation to their pain. This questionnaire was specifically designed
317 for this study and is being used for data collection. Measurements will be
318 collected at baseline, after the education session or waiting period (depending on
319 the assigned group), and after the exercise intervention or placebo (depending
320 on the assigned group).

321

322 **Pain intensity and worst pain intensity over last 7 days:** Pain intensity will be
323 assessed using the Numerical Pain Rating Scale (NPRS). This scale evaluates
324 both the average and worst pain intensity experienced by the participant over the
325 last 7 days, using a 10-point scale where 0 represents no pain and 10 represents
326 the maximum possible pain. Higher scores correspond to greater pain intensity.
327 **Data Will be collected** at baseline (before any intervention).

328

329 **Functional performance of the upper extremities (CKCUEST):** Functional
330 performance of the upper extremities will be assessed using the Closed Kinetic
331 Chain Upper Extremity Stability Test (CKCUEST), a test designed to evaluate

332 upper limb stability and control. During the test, male participants will adopt a
333 push-up position, while female participants will assume a modified push-up
334 position (knees on the ground). Both hands will be placed on two strips on the
335 floor at the same height, with a distance of 91.4 cm between them. In these
336 positions, participants will be required to move one hand to touch the back of the
337 opposite hand, then return to the starting position, repeating the movement with
338 the other hand, for 15 seconds. The test will be performed for three 15-second
339 repetitions at maximum effort, with a 45-second rest between each repetition. The
340 outcome measure will be the average number of touches (mean of the number
341 of touches from the three attempts). Data Will be collected after the education
342 session or waiting period (depending on the assigned group) for the Education
343 and Exercise and Exercise groups

344

345 **Functional performance of the upper extremity (SAMP test):** Functional
346 performance of the upper extremity will be assessed using the Single Arm Military
347 Press (SAMP). This performance-based measure is designed to assess upper
348 extremity strength during an overhead activity, aimed at differentiating between
349 healthy individuals and those with varying levels of nonspecific neck pain and
350 upper extremity disability. The exercise is performed with participants standing,
351 with their feet shoulder-width apart, holding a 1 kg dumbbell at shoulder height
352 with their dominant hand. Participants are instructed to lift the dumbbell overhead,
353 performing a full shoulder flexion and elbow extension. The test consists of
354 repeating this motion as quickly as possible for 30 seconds with maximal effort.
355 The SAMP score is determined by counting the number of correct repetitions
356 completed in 30 seconds. The test is stopped if the participant is unable to
357 complete another correct repetition. Data Will be collected after the education
358 session or waiting period (depending on the assigned group) for the Education
359 and Exercise and Exercise groups.

360

361 **Functional performance of the upper extremities (SMBT):** Functional
362 performance of the upper extremities will be assessed using the Seated Medicine
363 Ball Throw Test (SMBT). Participants will sit with their back against the wall, legs
364 extended, holding a 2 kg medicine ball with arms at 90° shoulder abduction and
365 elbows flexed at chest height. They will throw the ball forward as far as possible
366 without losing contact with the wall. The distance will be measured by a tape
367 placed 10 meters from the subject's starting point. Three maximum effort throws
368 will be performed with 1-minute rests between each, and the result will be the
369 average of the three throws. Data Will be collected after the education session or
370 waiting period (depending on the assigned group) for the Education and Exercise
371 and Exercise groups

372

373 **HYPOTHESIS**

374 We hypothesize that pain neuroscience education focused on movement and
375 exercise will significantly reduce both kinesiophobia and catastrophising, as well
376 as improve the conceptualisation of exercise and upper limb functionality.
377 Therefore, pain neuroscience education will modify the subjects' beliefs regarding
378 exercise participation.

379 Additionally, the group receiving both education and exercise will achieve better
380 performance test results compared to the group that only receives exercise and
381 the placebo group.

382

383

384 **SAMPLE SIZE**

385 To perform the sample size calculation, an independent measures ANOVA was
386 used on the primary variable: the Tampa Scale of Kinesiophobia (TSK-11SV).
387 The effect size estimation was based on a previous study with an experimental
388 design similar to our proposed one (Beltran-Alacreu et al., 2015). We used
389 G*Power 3.1.14 software (Erdfelder et al., 2009; Faul et al., 2007). An effect
390 size of $F = 0.36$ was estimated for the primary variable (TSK-11SV), assuming a
391 random error of 5% and a minimum statistical power of 80%. The result was a
392 sample size of 27 subjects per group, i.e., 81 subjects in total.

393

394 **STADISTICAL ANALISIS PLAN**

395 Once all data have been coded, the normality of the distribution will be assessed
396 using the Shapiro-Wilk test and histogram visualisation. If the data do not follow
397 a normal distribution, the corresponding non-parametric tests will be used
398 instead.

399 To examine changes in the variables for each protocol, pre-intervention
400 measurements will be compared with post-intervention measurements within
401 each protocol. A repeated measures ANOVA will be used for this comparison (or
402 the Friedman test if normality is not met).

403 To determine whether the intervention groups differ from the TENS control group
404 or from each other, a two-way ANOVA will be performed. This analysis will
405 consider the within-subjects factor (time), the between-subjects factor
406 (intervention), and their interaction. If normality is not met, the corresponding non-
407 parametric test (Kruskal-Wallis) will be conducted.

408 If significant differences are found in the ANOVA tests, post hoc comparisons will
409 be explored using Dunnett's or Bonferroni tests, depending on the nature of the
410 comparison.

411

412

413 **BIBLIOGRAPHY**

414 Alreni, A. S. E., Aboalmaty, H. R. A., De Hertogh, W., Wakwak, O. S. M., &
415 McLean, S. M. (2023). Construct validity of the Single Arm Military Press
416 (SAMP) test for upper limb function in patients with neck pain. *Musculoskeletal*
417 *Science and Practice*, 63. <https://doi.org/10.1016/j.msksp.2022.102707>

418 Ayre, M., & Tyson, G. A. (2001). The role of self-efficacy and fear-avoidance
419 beliefs in the prediction of disability. *Australian Psychologist*, 36(3), 250–253.
420 <https://doi.org/10.1080/00050060108259663>

421 Beltran-Alacreu, H., López-de-Uralde-Villanueva, I., Fernández-Carnero, J., &
422 La Touche, R. (2015). Manual therapy, therapeutic patient education, and
423 therapeutic exercise, an effective multimodal treatment of nonspecific chronic
424 neck pain: A randomized controlled trial. *American Journal of Physical*
425 *Medicine and Rehabilitation*, 94(10), 887–897.
426 <https://doi.org/10.1097/PHM.0000000000000293>

427 Bier, J. D., Scholten-Peeters, W. G. M., Staal, J. B., Pool, J., Van Tulder, M.
428 W., Beekman, E., Knoop, J., Meerhoff, G., & Verhagen, A. P. (2018). Clinical
429 Practice Guideline for Physical Therapy Assessment and Treatment in Patients
430 With Nonspecific Neck Pain. In *Original Research 162 Physical Therapy* (Vol.
431 98). <https://academic.oup.com/ptj>

432 Blanpied, P. R., Gross, A. R., Elliott, J. M., Devaney, L. L., Clewley, D., Walton,
433 D. M., Sparks, C., & Robertson, E. K. (2017). Clinical practice guidelines linked
434 to the international classification of functioning, disability and health from the
435 orthopaedic section of the American physical therapy association. In *Journal*
436 *of Orthopaedic and Sports Physical Therapy* (Vol. 47, Issue 7, pp. A1–A83).
437 Movement Science Media. <https://doi.org/10.2519/jospt.2017.0302>

438 Borms, D., Maenhout, A., & Cools, A. M. (2016). Upper Quadrant Field Tests
439 and Isokinetic Upper Limb Strength in Overhead Athletes. *Journal of Athletic*
440 *Training*, 51(10), 789–796. <https://doi.org/10.4085/1062-6050-51.12.06>

441 Burdon, J. G. W., Juniper, E. F., Killian, K. J., Hargreave, F. E., & Campbell,
442 E. J. (1982). The perception of breathlessness in asthma. *The American*
443 *Review of Respiratory Disease*, 126(5), 825–828.
444 <https://doi.org/10.1164/ARRD.1982.126.5.825>

445 Bushnell, M. C., Čeko, M., & Low, L. A. (2013). Cognitive and emotional control
446 of pain and its disruption in chronic pain. *Nature Reviews. Neuroscience*, 14(7),
447 502–511. <https://doi.org/10.1038/NRN3516>

448 Clarke, C. L., Ryan, C. G., & Martin, D. J. (2011). Pain neurophysiology
449 education for the management of individuals with chronic low back pain:
450 systematic review and meta-analysis. *Manual Therapy*, 16(6), 544–549.
451 <https://doi.org/10.1016/J.MATH.2011.05.003>

452 Cohen, S. P. (2015). Epidemiology, diagnosis, and treatment of neck pain.
453 *Mayo Clinic Proceedings*, 90(2), 284–299.
454 <https://doi.org/10.1016/j.mayocp.2014.09.008>

455 Decleve, P., Cant, J. Van, de Buck, E., van Doren, J., Verkouille, J., & Cools,
456 A. M. (2020a). The Self-Assessment Corner for Shoulder Strength: Reliability,
457 Validity, and Correlations With Upper Extremity Physical Performance Tests.
458 *Journal of Athletic Training*, 55(4), 350–358. <https://doi.org/10.4085/1062-6050-471-18>

460 Decleve, P., Cant, J. Van, de Buck, E., van Doren, J., Verkouille, J., & Cools, A.
461 M. (2020b). The Self-Assessment Corner for Shoulder Strength: Reliability,
462 Validity, and Correlations With Upper Extremity Physical Performance Tests.
463 *Journal of Athletic Training*, 55(4), 350–358. <https://doi.org/10.4085/1062-6050-471-18>

465 Dzakpasu, F. Q. S., Carver, A., Brakenridge, C. J., Cicuttini, F., Urquhart,
466 D. M., Owen, N., & Dunstan, D. W. (2021). Musculoskeletal pain and
467 sedentary behaviour in occupational and non-occupational settings: a
468 systematic review with meta-analysis. *The International Journal of
469 Behavioral Nutrition and Physical Activity*, 18(1).
470 <https://doi.org/10.1186/S12966-021-01191-Y>

471 Erdfelder, E., Faul, F., Buchner, A., & Lang, A. G. (2009). Statistical power
472 analyses using G*Power 3.1: tests for correlation and regression analyses.
473 *Behavior Research Methods*, 41(4), 1149–1160.
474 <https://doi.org/10.3758/BRM.41.4.1149>

475 Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: a flexible
476 statistical power analysis program for the social, behavioral, and biomedical
477 sciences. *Behavior Research Methods*, 39(2), 175–191.
478 <https://doi.org/10.3758/BF03193146>

479 García Campayo, J., Rodero, B., Alda, M., Sobradiel, N., Montero, J., &
480 Moreno, S. (2008). [Validation of the Spanish version of the Pain
481 Catastrophizing Scale in fibromyalgia]. *Medicina Clinica*, 131(13), 487–492.
482 <https://doi.org/10.1157/13127277>

483 Goldfarb, A. H., & Jamurtas, A. Z. (1997). Beta-endorphin response to
484 exercise. An update. *Sports Medicine (Auckland, N.Z.)*, 24(1), 8–16.
485 <https://doi.org/10.2165/00007256-199724010-00002>

486 Gómez-Pérez, L., López-Martínez, A. E., & Ruiz-Párraga, G. T. (2011).
487 Psychometric properties of the spanish version of the Tampa Scale for
488 Kinesiophobia (TSK). *Journal of Pain*, 12(4), 425–435.
489 <https://doi.org/10.1016/j.jpain.2010.08.004>

490 Hjermstad, M. J., Fayers, P. M., Haugen, D. F., Caraceni, A., Hanks, G. W., Loge,
491 J. H., Fainsinger, R., Aass, N., & Kaasa, S. (2011). Studies comparing
492 Numerical Rating Scales, Verbal Rating Scales, and Visual Analogue Scales
493 for assessment of pain intensity in adults: a systematic literature review.

494 *Journal of Pain and Symptom Management*, 41(6), 1073–1093.
495 <https://doi.org/10.1016/J.JPAINSYMMAN.2010.08.016>

496 Javdaneh, N., Saeterbakken, A. H., Shams, A., & Barati, A. H. (2021). Pain
497 Neuroscience Education Combined with Therapeutic Exercises Provides
498 Added Benefit in the Treatment of Chronic Neck Pain. *International Journal
499 of Environmental Research and Public Health*,

500 18(16). <https://doi.org/10.3390/IJERPH18168848>

501 Lee, D. R., & Kim, L. J. (2015a). Reliability and validity of the closed kinetic
502 chain upper extremity stability test. *Journal of Physical Therapy Science*, 27(4),
503 1071–1073. <https://doi.org/10.1589/JPTS.27.1071>

504 Lee, D. R., & Kim, L. J. (2015b). Reliability and validity of the closed kinetic
505 chain upper extremity stability test. *Journal of Physical Therapy Science*, 27(4),
506 1071–1073. <https://doi.org/10.1589/JPTS.27.1071>

507 Levin, J. B., Lofland, K. R., Cassisi, J. E., Poreh, A. M., & Blonsky, E. R. (1996).
508 The relationship between self-efficacy and disability in chronic low back pain
509 patients. *International Journal of Rehabilitation and Health*, 2(1), 19–28.
510 <https://doi.org/10.1007/BF02213561>/METRICS

511 Louw, A., Diener, I., Butler, D. S., & Puentedura, E. J. (2011). The effect of
512 neuroscience education on pain, disability, anxiety, and stress in chronic
513 musculoskeletal pain. *Archives of Physical Medicine and
514 Rehabilitation*, 92(12), 2041–2056.
515 <https://doi.org/10.1016/J.APMR.2011.07.198>

516 Louw, A., Zimney, K., Puentedura, E. J., & Diener, I. (2016a). The efficacy of
517 pain neuroscience education on musculoskeletal pain: A systematic review of
518 the literature. *Physiotherapy Theory and Practice*, 32(5), 332–355.
519 <https://doi.org/10.1080/09593985.2016.1194646>

520 Louw, A., Zimney, K., Puentedura, E. J., & Diener, I. (2016b). The efficacy of
521 pain neuroscience education on musculoskeletal pain: A systematic review of
522 the literature. In *Physiotherapy Theory and Practice* (Vol. 32, Issue 5, pp. 332–
523 355). Taylor and Francis Ltd. <https://doi.org/10.1080/09593985.2016.1194646>

524 Luque-Suarez, A., Martinez-Calderon, J., & Falla, D. (2019). Role of
525 kinesiophobia on pain, disability and quality of life in people suffering
526 from chronic musculoskeletal pain: a systematic review. *British Journal of
527 Sports Medicine*, 53(9), 554–559. <https://doi.org/10.1136/BJSports-2017-098673>

529 Mclean, S. M., Taylor, J., Balassoubramanien, T., Kulkarni, M., Patekar, P.,
530 Darne, R., & Jain, V. (2010a). 52 Measuring upper limb disability in non-specific
531 neck pain: A clinical performance measure Measuring upper limb disability in
532 non-specific neck pain: A clinical performance measure. In *International
533 Journal of Physiotherapy and Rehabilitation* (Vol. 1).

534 Mclean, S. M., Taylor, J., Balassoubramanien, T., Kulkarni, M., Patekar, P.,
535 Darne, R., & Jain, V. (2010b). 52 Measuring upper limb disability in non-specific
536 neck pain: A clinical performance measure Measuring upper limb disability in
537 non-specific neck pain: A clinical performance measure. In *International
538 Journal of Physiotherapy and Rehabilitation* (Vol. 1).

539 Muza, S. R., Silverman, M. T., Gilmore, G. C., Hellerstein, H. K., & Kelsen, S.
540 G. (1990). Comparison of scales used to quantitate the sense of effort to
541 breathe in patients with chronic obstructive pulmonary disease. *The American
542 Review of Respiratory Disease*, 141(4 Pt 1), 909–913.
543 https://doi.org/10.1164/AJRCCM/141.4_PT_1.909

544 Ortego, G., Villafaña, J. H., Doménech-García, V., Berjano, P., Bertozzi, L., &
545 Herrero, P. (2016). Is there a relationship between psychological stress or
546 anxiety and chronic nonspecific neck- arm pain in adults? A systematic review
547 and meta-analysis. *Journal of Psychosomatic Research*, 90, 70–81.
548 <https://doi.org/10.1016/J.JPSYCHORES.2016.09.006>

549 Osborn, W., & Jull, G. (2013). Patients with non-specific neck disorders
550 commonly report upperlimb disability. *Manual Therapy*,
551 18(6), 492–497. <https://doi.org/10.1016/j.math.2013.05.004>

552 Research Randomizer. (n.d.). Retrieved June 30, 2024, from
553 <https://www.randomizer.org/>

554 Senarath, I. D., Chen, K. K., Weerasekara, I., & de Zoete, R. M. J. (2023).
555 Exercise-induced hypoalgesic effects of different types of physical exercise in
556 individuals with neck pain: A systematic review and meta-analysis. *Pain
557 Practice*, 23(1), 110–122. <https://doi.org/10.1111/PAPR.13150>

558 Sluka, K. A., Frey-Law, L., & Bement, M. H. (2018). Exercise-induced pain and
559 analgesia? Underlying mechanisms and clinical translation. *Pain*, 159 Suppl
560 1(Suppl 1), S91–S97. <https://doi.org/10.1097/J.PAIN.0000000000001235>

561 Stagg, N. J., Mata, H. P., Ibrahim, M. M., Henriksen, E. J., Porreca, F., Vanderah,
562 T. W., & Malan,
563 T. P. (2011). Regular exercise reverses sensory hypersensitivity in a rat
564 neuropathic pain model: role of endogenous opioids. *Anesthesiology*,
565 114(4), 940–948. <https://doi.org/10.1097/ALN.0B013E318210F880>

566 Thompson, D. P., Urmston, M., Oldham, J. A., & Woby, S. R. (2010). The
567 association between cognitive factors, pain and disability in patients with
568 idiopathic chronic neck pain. *Disability and Rehabilitation*, 32(21), 1758–1767.
569 <https://doi.org/10.3109/09638281003734342>

570 Treleaven, J. (2008). Sensorimotor disturbances in neck disorders affecting
571 postural stability, head and eye movement control. *Manual Therapy*, 13(1), 2–
572 11. <https://doi.org/10.1016/J.MATH.2007.06.003>

573 Tucci, H. T., Martins, J., Sposito, G. D. C., Camarini, P. M. F., & De Oliveira, A.
574 S. (2014a). Closed Kinetic Chain Upper Extremity Stability test (CKCUES test):

575 a reliability study in persons with and without shoulder impingement syndrome.
576 *BMC Musculoskeletal Disorders*, 15(1). <https://doi.org/10.1186/1471-2474-15-1>

578 Tucci, H. T., Martins, J., Sposito, G. D. C., Camarini, P. M. F., & De Oliveira, A.
579 S. (2014b). Closed Kinetic Chain Upper Extremity Stability test (CKCUES test):
580 a reliability study in persons with and without shoulder impingement syndrome.
581 *BMC Musculoskeletal Disorders*, 15(1). <https://doi.org/10.1186/1471-2474-15-1>

583
584
585