

Effect of Corneal Preservation Time on Long-Term Graft Success Cornea Preservation Time Study (CPTS) Protocol

Version 4.0

July 1, 2015

Study Chair: Jonathan Lass MD
Department of Ophthalmology & Visual Sciences
Case Western Reserve University
University Hospitals Eye Institute
11100 Euclid Ave; 4129 Lakeside
Cleveland, OH 44106

Data Management and Analysis Center (DMAC):
Director: Allison Edwards MS
Jaeb Center for Health Research
15310 Amberly Drive, Suite 350
Tampa, FL 33647

Coordinating Center (CC):
Director: Loretta Szczotka-Flynn OD, PhD
Department of Ophthalmology & Visual Sciences
Vision Research Coordinating Center
Case Western Reserve University
University Hospitals Eye Institute
11100 Euclid Ave; 4126 Lakeside
Cleveland, OH 44106

Cornea Image Analysis Reading Center (CIARC):
Director: Beth Ann Benetz, M.A.
Department of Ophthalmology & Visual Sciences
Case Western Reserve University
University Hospitals Eye Institute
11100 Euclid Ave; Wearn 646
Cleveland, OH 44106

40	TABLE OF CONTENTS	
41	<u>CHAPTER 1. BACKGROUND AND RATIONALE</u>	4
42	1.1. BACKGROUND	4
43	1.1.1 STUDIES OF PRESERVATION TIME	5
44	1.2. RATIONALE	6
45	1.3. STUDY OBJECTIVES	7
46	1.4. SYNOPSIS OF STUDY DESIGN	7
47	1.4.1. STUDY DESIGN	7
48	1.4.2. MAJOR ELIGIBILITY CRITERIA	7
49	1.4.2.1. STUDY PARTICIPANTS	7
50	1.4.2.2. DONOR CORNEAS	8
51	1.4.2.3. TREATMENT GROUPS	8
52	1.4.2.4. SAMPLE SIZE	8
53	1.4.2.5. VISIT SCHEDULE AND PROCEDURES	8
54	1.4.2.6. OUTCOMES	9
55	1.5. GENERAL CONSIDERATIONS	9
56		
57	<u>CHAPTER 2. ELIGIBILITY AND ENROLLMENT CLINICAL SITES</u>	10
58	2.1. ELIGIBILITY ASSESSMENT	10
59	2.2. ELIGIBILITY CRITERIA	10
60	2.2.1. STUDY PARTICIPANT ELIGIBILITY CRITERIA	10
61	2.2.1.1 STUDY PARTICIPANT INCLUSION CRITERIA	10
62	2.2.1.2 STUDY PARTICIPANT EXCLUSION CRITERIA	10
63	2.2.2. STUDY EYE INCLUSION CRITERIA	10
64	2.2.3. STUDY EYE EXCLUSION CRITERIA	11
65	2.3. ELIGIBILITY CRITERIA FOR SECOND STUDY EYE	11
66	2.4. SCREENING EVALUATION AND BASELINE TESTING	11
67	2.4.1. HISTORICAL INFORMATION	11
68	2.4.2. BASELINE TESTING	12
69	2.5. SUBJECT ENROLLMENT	12
70	2.6. RANDOMIZATION	12
71		
72	<u>CHAPTER 3. DONOR ELIGIBILITY AND CORNEA ASSIGNMENT</u>	
73	EYE BANKS	13
74		
75	3.1. EYE BANK PROCEDURES	13
76	3.1.1. DONOR ELIGIBILITY	13
77	3.1.2. ASSIGNMENT OF DONOR CORNEAS TO STUDY PARTICIPANTS	13
78	3.1.2.1. DONOR NOT AVAILABLE	14
79	3.1.2.2. RESCHEDULED SURGERY AND/OR REASSIGNMENT OF TISSUE	14
80	3.1.3. EYE BANK PROCEDURES FOR STUDY IMAGES	14
81	3.1.3.1 SCREENING IMAGES	14
82	3.1.3.2 PRE-OPERATIVE IMAGES	14

83	<u>CHAPTER 4. TRANSPLANTATION AND FOLLOW UP CLINICAL SITES</u>	15
84	4.1. ENDOTHELIAL KERATOPLASTY PROCEDURE	15
85	4.2. POST-OPERATIVE MANAGEMENT	15
86	4.3. FOLLOW-UP VISIT SCHEDULE	15
87	4.4. TESTING PROCEDURES	16
88	4.5. DEFINITION OF TESTING PROCEDURES	16
89	4.5.1. SLIT LAMP EXAMINATION	16
90	4.5.1.1 RECIPIENT CORNEAL STROMA CLARITY	16
91	4.5.1.2 DONOR CORNEAL STROMA CLARITY	17
92	4.5.1.3 GRAFT REJECTION ASSESSMENT	17
93	4.5.2. INTRAOCULAR PRESSURE	17
94	4.5.3. ULTRASONIC PACHYMETRY	17
95	4.5.4. SPECULAR/ CONFOCAL MICROSCOPY	17
96	4.6. ADDITIONAL PROCEDURES	17
97	4.7. GRAFT FAILURE	18
98	4.8. FINAL STATUS	19
99	<u>CHAPTER 5. ADVERSE EVENT REPORTING</u>	20
100	5.1. ADVERSE EVENT REPORTING AND REVIEW	20
101	5.2. DATA AND SAFETY MONITORING COMMITTEE REVIEW OF ADVERSE EVENTS	21
102	5.3. RISKS AND DISCOMFORTS	21
103	<u>CHAPTER 6. MISCELLANEOUS CONSIDERATIONS</u>	23
104	6.1. POTENTIAL BENEFITS TO SUBJECTS	23
105	6.2. ALTERNATIVE(S) TO PARTICIPATION	23
106	6.3. SPECIAL CONSIDERATIONS IN FOLLOW-UP	23
107	6.4. WOMEN AND MINORITIES	23
108	6.5. FINANCIAL INFORMATION	24
109	6.6. CONFIDENTIALITY	24
110	6.7. PRIVACY OF PROTECTED HEALTH INFORMATION	24
111	<u>CHAPTER 7. STATISTICAL METHODS</u>	25
112	7.1. SAMPLE SIZE	25
113	7.2. DATA ANALYSIS	25
114	7.2.1. PRIMARY ANALYSIS OF GRAFT FAILURE	25
115	7.2.1.1. UNADJUSTED ANALYSIS	26
116	7.2.1.2. ADJUSTED ANALYSIS	26
117	7.2.2. SECONDARY ANALYSES OF GRAFT FAILURE	26
118	7.2.2.1. PRESERVATION TIME	26
119	7.2.2.2. PREDICTIVE FACTORS	27
120	7.2.2.3. ECD AS TIME DEPENDENT PREDICTOR OF GRAFT FAILURE	27
121	7.2.2.4. GRAFT REJECTION	28
122	7.2.2.4.1. INCLUDED SUBJECTS	28

126	7.2.4.2. OUTCOME MEASURES	28
127	7.2.4.3. DESCRIPTIVE STATISTICS	28
128	7.2.4.4. PRIMARY ANALYSIS	28
129	7.2.4.5. SECONDARY ANALYSIS	29
130	7.2.4.5.1. SENSITIVITY ANALYSIS	29
131	7.2.4.5.2. ANALYSIS WITH DONOR TISSUE PRESERVATION TIME AS CONTINUOUS/ MULTI-CATEGORICAL VARIABLE	29
132	7.2.4.5.3. LONGITUDINAL ANALYSIS	29
133	7.2.5. COURSE OF CORNEA CHANGES AFTER ENDOTHELIAL KERATOPLASTY	29
134	7.2.6. SAFETY ANALYSIS PLAN	29
135	7.2.7. ADDITIONAL TABULATION AND ANALYSES	30
136	7.2.8. DSMC INTERIM ANALYSIS PLAN	30
137		
138		
139	<u>REFERENCES</u>	31
140		
141	<u>APPENDIX A:</u>	
142	<u>PROTOCOL AMENDMENT; EXTENSION OF FOLLOW-UP TO COMMON END DATE</u>	33
143		

144
145
146

Chapter 1 BACKGROUND AND RATIONALE

147

1.1 Background

148 The Cornea Donor Study (CDS) was conceived in 1997 when a real threat to the donor pool was
149 present based on the concerns of an emerging HIV and hepatitis epidemic, the impact of
150 refractive surgery procedures, an aging population with a rise in the number of Fuchs'
151 Endothelial Corneal Dystrophy (FECD) and pseudophakic bullous keratopathy (PBK) cases in
152 the United States, and a worldwide demand for corneal tissue. This was most prescient, since the
153 number of corneas provided by eye banks in the United States subsequently rose from 43,492
154 cases in 1997 to 59,271 in 2010, a 37% increase in demand.(1) This demand has been met by
155 our phenomenal success in changing the perception among patients, surgeons, and the eye bank
156 community that older donor tissue (> 65 years of age to 75) is as suitable and successful in
157 keratoplasty as younger tissue, at least for the management of FECD and PBK cases. The use of
158 older donor tissue has resulted in opening up a whole pool of tissue that would not have been
159 used by many surgeons in the United States. This change in perception is the result of a simple,
160 but powerful, evidence-based prospective, masked clinical trial, which showed 86% graft success
161 following penetrating keratoplasty (PKP) for endothelial dysfunction conditions at 5 years in
162 both the ≥ 65 to 75 year donor group and the <65 donor group. As an aside, the CDS also
163 demonstrated the tremendous value of an academic and community network of well trained
164 corneal surgeons and their ability to work with a coordinating center and corneal endothelial
165 image analysis reading center to produce high quality and reliable data with a tremendous impact
166 on practice patterns in corneal transplantation.

167 Several factors which had the potential to impact the donor supply in 1997 still remain, new
168 issues have arisen, and all impact the future efficient provision donor tissue and need for
169 increasing the donor supply:

170

- 171 1. The donor pool is impacted by a continued threat from common viral infections, in particular
172 Hepatitis B, with 2,698 donors alone rejected in 2008 and 3,631 donors in 2010 (a 34%
173 increase in unusable tissue from the previous year) based on a positive Hepatitis B Core
174 (HBcAB) antibody test.(1)
- 175 2. With increasing FDA regulations towards testing for emerging infections, such as West Nile
176 Virus (from 6 cases in 2008 to 97 cases in 2010, a more than 15 fold increase,(1) and Chagas
177 Disease,(2,3) more tissue will be rejected, or delays in test results will result in cancellation
178 of transplants. In addition, as additional serologic testing is added, the test could delay tissue
179 release or result in false positives that could even decrease tissue supply.
- 180 3. For serious potentially transmissible diseases, such as Prion agents, no reliable laboratory test
181 currently exists and only historical screening can be used to safeguard transplant recipients.
182 This strategy is justified only as long as the general population prevalence rate of Prion
183 disease is small. If testing for potential slow virus diseases disqualifies a substantial number
184 of donors, this could have a tremendous negative impact on the donor pool.
- 185 4. The impact of an expanding aging population over 65 with the addition of the baby boomers
186 will result in a greater number of FECD and PBK cases, and increased demand for tissue.
- 187 5. The phenomenal growth of endothelial keratoplasty (EK), specifically Descemet Stripping
188 Endothelial Keratoplasty (DSEK) or Descemet Stripping Automated Endothelial

190 Keratoplasty with the use of an automated microkeratome (DSAEK), in the past five years
191 with a more than three-fold increase from 6,027 cases in 2006 to 19,159 in 2010(1) has
192 opened up a new pool of patients in which endothelial dysfunction cases are being treated
193 surgically before structural damage occurs.(4) This growth has been assisted by improved
194 efficiency as a result of an increasing number of eye banks preparing the donor tissue for the
195 EK procedure, rather than in the operating room by the surgeon. At the same time, the
196 primary donor failure rate for EK has been reported as high as 5% on average(4) is 10x as
197 high as in PKP (e.g. in the CDS, reference 5). As this procedure gains even wider acceptance,
198 further impact on the donor pool will occur. Although donors that have anterior scars or
199 have undergone refractive surgical procedures may now be used for EK,(6) this positive
200 impact on the donor pool is offset by the earlier implementation of a surgical approach with
201 EK and a higher primary donor failure rate.

202 6. More tissue will also be needed in the future due to a potentially higher % yield loss of tissue
203 during the process of tissue cutting either for DSAEK or new procedures still under
204 development, including Descemet Membrane Automated Endothelial Keratoplasty
205 (DMAEK) and Descemet Membrane Endothelial Keratoplasty (DMEK).
206 7. An increasing number of donors are being rejected because of cataract surgery incisions that
207 are too close to the central cornea. As the use of older donor tissue from previous cataract
208 surgery patients becomes more commonplace, prior endothelial damage from these cataract
209 incision wounds will impact the use of the larger donor EK grafts which are commonly up to
210 9 mm in diameter (personal communication, Gerald Cole, Tissue Banks International).
211 8. Unlike Canada, where transplant recipients must be on a long waiting list, American
212 surgeons and their patients have been fortunate to generally have their transplant surgical
213 cases on a scheduled basis. With all the issues above, cancelled surgeries due to the lack of
214 tissue could occur frequently, resulting in lost revenues and added cost to the facility, the
215 surgeon, and in some cases the patient and families who have taken off work for the
216 procedure.

217
218 With all these concerns listed above, flexibility with the use of longer preserved corneas within
219 the FDA guidelines will help increase the donor tissue used domestically and help to obviate
220 these concerns as they may arise.

221
222 The status of the national donor supply remains dynamic with fluctuations on a daily, weekly,
223 and monthly basis depending on donor, surgeon, and patient supply and demand. It is these
224 dynamic fluctuations and the various threats that loom to the donor supply listed above,
225 including emerging infections, which have driven the eye banking community to continually find
226 better ways to have a more orderly donor tissue supply with maximum flexibility within FDA
227 limits for tissue usage. This continuing desire has led to the strong reaffirmation of this proposal
228 by the eye bank and surgeon community to help assure that there will be an adequate supply of
229 transplantable donor tissue when the study would be completed and results publicized in 2016-
230 17.

231
232 **1.1.1 Studies of Preservation Time**

233 Most studies have examined either death to surgery or time from preservation in medium to
234 surgery (preservation time) as a possible confounding variable or potential factor influencing
235 corneal clarity without it being the primary variable of interest; thus, the clinical outcome of

236 graft success and its relation to preservation time has been unclear. In fact, there have been no
237 prospective masked trials that have randomized donor groups on this basis.

238

239 PKP Findings:

240 • Chang et al(7) and Abbott et al(8) indicate that death-to-surgery times were not positively
241 correlated with graft clarity following PKP.

242 • Wagoner et al(9) showed in a retrospective study of 234 PKPs utilizing donor tissue
243 ranging in preservation time from 168 to 348 hours in Optisol GS that the likelihood of graft
244 survival was not statistically significantly affected by progressively longer periods of donor
245 storage time with no primary donor failures.

246 • Doganay et al(10) with a group of 48 patients undergoing PKP for keratoconus, FECD,
247 and PBK, examined preservation time in one group up to an average of 233 hours in Optisol GS
248 (n=18) compared to another group on average of 21 hours. No difference on graft survival was
249 noted in this small series.

250 • Sugar et al(11) noted that an increase in stromal edema and Descemet folds increased
251 with higher death-to-preservation time following PKP in the CDS, but death-to-surgery was not
252 a variable of interest and the time from death to use was limited to 5 days.

253

254 EK Findings:

255 • Guttman(12) in a small, non-peer reviewed report, found greater cell loss at six months
256 following EK in those corneas that were used over 96 hours with the correlation lost at 12
257 months. The highest death to use time observed in the study was 182 hours (7.6 days).

258 • Price et al(13) showed with EK that ECD was not found to be significantly correlated
259 with death to preservation or death to use time.

260 • Chen et al(14) and Terry et al(15) found no influence of the time from death to
261 implantation on graft success following EK, but mean time was approximately 95 hours. This
262 lack of correlation of storage time with graft success was also emphasized in an editorial by
263 Terry.(16)

264 • Terry et al(17) in 362 eyes following EK with storage time averaging 99 hours (range 21
265 to 186 hrs), showed no difference in cell loss at 2 years for those stored up to 4 days compared
266 to those stored up to 8 days.

267

268 1.2 Rationale

269 This study addresses an important public health issue related to the utilization of donor tissue for
270 corneal transplantation and the need to increase and secure the donor pool. Similar to the bias
271 which existed regarding donor age prior to the initiation of the CDS, the majority of corneal
272 surgeons in the United States do not accept tissue with preservation time longer than 7 to 8 days,
273 even though the FDA approval of Optisol GS, since its introduction in the early 90's, is for a
274 preservation time of up to 14 days. Instead these corneas are exported to the international
275 community where they are routinely transplanted up to 14 days of storage. A lack of
276 information, particularly on a preservation time over 7 days, has likely contributed to a bias
277 against using corneal tissue beyond this time. This study will address this bias by examining two
278 parameters of long-term success: recipient corneal (stromal) clarity and endothelial cell density
279 following EK (4) for the endothelial dysfunction conditions that have moderate risk for failure,
280 FECD and PBK. Demand for corneas has substantially increased with the advent of EK.(1) In
281 addition to the increased demand, there are additional areas of concern which may impact the

282 future donor supply including potential changes in the cornea evaluation process such as
283 increased regulations and more extensive laboratory requirements to test for emerging infections,
284 e.g. Hepatitis B and C, West Nile Virus, Chagas Disease.(2.3) By changing the practice pattern
285 and increasing utilization of tissue beyond 7 days up to the FDA approved, 14 days from
286 preservation to surgery, this will facilitate increasing the domestic donor supply enabling easier
287 distribution of tissue and more time for tissue evaluation to rule out emerging infections with
288 suspected donors.

289

290 **1.3 Study Objectives**

291 The primary objectives of the “Effect of Corneal Preservation Time on Long-Term Graft
292 Success” (CPTS) study are:

- 293 • To determine if the 3-year graft failure rate following EK performed with donor corneas with
294 a preservation time of 8 to 14 days is non-inferior to the failure rate when donor corneas with
295 a preservation time of 7 or fewer days are used.
- 296 • To determine if the central corneal endothelial cell density 3-years after EK is related to
297 preservation time.
- 298 • To evaluate the effect of donor, operative and postoperative factors on graft failure and
299 endothelial cell density three years following EK.

300

301 **1.4 Synopsis of Study Design**

302

303 **1.4.1. Study Design**

304 The CPTS is a randomized, controlled clinical trial examining the impact of preservation time on
305 graft failure and endothelial cell density following EK. The study has been designed so that the
306 surgeons and eye banks can follow and provide their usual surgical and post-operative
307 procedures and care to study participants with the exception of assignment of donor tissue.
308 Study eyes will be randomly assigned to receive a donor cornea from preservation date to
309 surgery date of 8 to 14 days or a donor cornea from preservation date to surgery date of 7 or
310 fewer days, with a comparable death to preservation time for both groups. Surgeons and study
311 participants are masked to time from preservation to surgery.

312

313 **1.4.2. Major Eligibility Criteria**

314 **1.4.2.1. Study Participants**

315

316 Major eligibility criteria include:

- 317 • Study participant age between 30 and <91 years with a minimum life expectancy of 3 years
318 and at least one eligible eye
- 319 • Study eye is a candidate for EK due to one of two conditions related to endothelial
320 dysfunction:
 - 321 ○ Fuchs' Endothelial Corneal Dystrophy (FECD)
 - 322 ○ Aphakic/pseudophakic corneal edema
- 323 • Eyes with anterior chamber intraocular lens (IOL) are excluded

324

325 Specific eligibility criteria are listed in Section 3.1. The determination of eye eligibility is
326 performed at the time EK surgery is planned. A participant can have two study eyes if both eyes
327 are eligible. The eligibility of the second eye would be assessed at the time surgery on the

328 second eye is being scheduled. Surgery on the second study eye can be performed no sooner
329 than 6 weeks after EK on the first study eye.

330

331

332 **1.4.2.2. Donor Corneas**

333 Eye banks will follow their procedural routine for procurement of tissue and determining its
334 suitability for EK, including prior LASIK or photorefractive keratectomy donors, in accordance
335 with the Medical Standards and Procedure Manual of the EBAA(19,20). This includes standard
336 serologic testing, specular microscopy, and slit lamp examination.

337

338 The following major eligibility criteria will apply to all donor tissue assigned to study eyes:

- 339 • Meets current EBAA and eye bank standards for human transplantation
- 340 • Age of donor at time of death 10-75 years
- 341 • If the donor body was refrigerated or eyes on ice within 10 hours of death, the body or
342 eye may stay refrigerated up to \leq 20 hrs; if no refrigeration then the death to preservation
343 time should be \leq 10 hrs
- 344 • Eye bank determined minimum ECD of \geq 2300 cells/mm² (upon the initial screening
345 determination of ECD)
- 346 • Polymorphism/Polymorphism: None to no more than mild changes (slight)
- 347 • Guttae: no true guttae present
- 348 • No evidence of central endothelial cell damage/trauma or dystrophy, such as FECD

349

350 **1.4.2.3. Treatment Groups**

351 Enrolled eyes of study participants will be randomly assigned to receive either a donor cornea
352 with a preservation time of 8 to 14 days or a donor cornea with a preservation time of 7 or fewer
353 days.

354

355 **1.4.2.4. Sample Size**

356 1,330 study eyes from up to 1,330 study participants, depending on what proportion of
357 participants elect and are eligible to enroll both eyes.

358

359 **1.4.2.5. Visit Schedule and Procedures**

360 Enrolled eyes of study participants will be examined at a baseline/enrollment visit, at the time of
361 EK surgery, and at post-operative visits at 1 day, 1 week, 1 month, 6, 12, 24, and 36 months in
362 addition to any routine care visits. Participants with two study eyes will follow a modified visit
363 schedule to minimize return visits for participants that had bilateral EK as part of the study.

364

365 Procedures at each protocol visit will follow the surgeon's standard of care in addition to detailed
366 and standardized measurements of recipient and donor corneal stroma clarity, pachymetry, and
367 central endothelial cell density as outlined in the Table in Section 4.3. Non-protocol visits will
368 follow the surgeon's standard of care.

369

370 **1.4.2.6. Outcomes**

371 **Primary Outcome Measure:** Graft failure, defined as the occurrence of one of the following
372 within 3 years of surgery:

373 • Regrafting of the study eye for any reason

374 • Cornea which remains cloudy without clearing, according to the following:

375 (1) cloudy cornea on the first postoperative day which does not clear within 8 weeks

376 OR

377 (2) cloudy cornea which was initially clear postoperatively but becomes and remains
378 cloudy for 3 months without clearing.

379 **Secondary Outcome Measure:** Endothelial cell density at 3 years from surgery, conditional on
380 graft survival at 3 years from surgery.

381

382 **1.5 General Considerations**

383 The study is being conducted in accordance with the ethical principles that have their origin in
384 the Declaration of Helsinki, with the protocol described herein, and with the standards of Good
385 Clinical Practice. The CPTS Procedures Manuals provide details of the procedures followed by
386 the eye banks and by the clinical sites. Data will be directly collected in electronic case report
387 forms, which will be considered the source data.

388

389

Chapter 2

ELIGIBILITY AND ENROLLMENT

CLINICAL SITES

2.1 Eligibility Assessment

Eligibility is assessed during a routine examination by an investigator, as there are no examination procedures required to assess patient eligibility other than those that are part of standard patient care.

A participant can have two study eyes if both eyes are eligible at the time of enrollment or if the second eye becomes eligible at a later time. The determination of eye eligibility is performed at the time EK surgery is planned, meaning that the eligibility of the second eye will be assessed at the time surgery on the second eye is being scheduled. Surgery on the second eye can be performed no sooner than 6 weeks after EK on the first eye. Participants with two eligible eyes will have the option of deciding whether to include one or both eyes in the study.

2.2 Eligibility Criteria

To be eligible, a study participant must meet the participant inclusion criteria and have at least one eye meeting the study eye inclusion criteria and none of the exclusion criteria.

2.2.1. Study Participant Eligibility Criteria

2.2.1.1 Study Participant Inclusion Criteria

- 1) Age range between 30 and <91 years with minimum life expectancy of at least 3 years.
- 2) Willingness to return for follow-up study visits at 1 day, 1 week, 1 month, 6 months, 1 year, 2 years and 3 years.
- 3) Fluent in English or Spanish.

2.2.1.2 Study Participant Exclusion Criteria

1) Decisionally and/or cognitively impaired

2.2.2 Study Eye Inclusion Criteria

- 1) EK is scheduled between 10 and 60 days after enrollment
 - *The 10-day requirement relates to the need to be able to randomly assign the eye to either intervention group.*
 - *The 60-day requirement relates to the need to have current eligibility and enrollment data at the time of surgery. If surgery is postponed to >60 days after the initial enrollment visit, a new Baseline Visit and eligibility assessment will have to be performed.*
- 2) Presence of a condition related to endothelial dysfunction which will be treated by EK.
 - Eligible indications for EK include:
 - a. Presence of FECD meeting at least one of the following:
 - Phakic FECD
 - Phakic FECD with cataract
 - Triple procedure including EK for FECD, cataract extraction and posterior chamber intraocular lens implantation (IOL) is allowed

435 ➤ Aphakic FECD
436 ➤ Pseudophakic FECD with posterior capsule supported, suture-fixed, or
437 sulcus-supported posterior chamber IOL
438 b. Aphakic or pseudophakic corneal edema with posterior capsule supported, suture-
439 fixed, or sulcus-supported posterior chamber IOL without FECD
440

441 **2.2.3 Study Eye Exclusion Criteria**

442 1) Prior EK
443 2) Indication for surgery that is not suitable for EK (e.g., keratoconus, stromal dystrophies and
444 scars)
445 3) Presence of a condition that has a very high probability for failure (e.g., failed EK or PKP,
446 heavily vascularized cornea, uncontrolled uveitis)
447 4) Other primary endothelial dysfunction conditions including posterior polymorphous corneal
448 dystrophy and congenital hereditary corneal dystrophy
449 5) Anterior chamber IOL in study eye prior to or anticipated during EK
450 6) Planned intraocular lens exchange of an anterior chamber IOL with a posterior chamber IOL
451 in study eye at time of study EK
452 7) Pre-operative central sub-epithelial or stromal scarring that the investigator believes is
453 visually significant and could impact post-operative stromal clarity assessment
454 8) Stromal vascularization that is visually significant (by investigator's judgment)
455 9) Presence of anterior synechiae (iris to cornea)
456 10) Peripheral anterior synechiae (iris to angle) in the angle greater than a total of three clock
457 hours
458 11) Hypotony (Intraocular pressure <10 mm Hg)
459 12) Uncontrolled (defined as intraocular pressure > 25 mm Hg) glaucoma with or without prior
460 filtering surgery or shunt or mini-shunt placement.

461 *A shunt or mini-shunt is any device implanted to lower intraocular pressure through an external route
462 (e.g. Ahmed) or internal route (e.g. Glaukos) that is present in the anterior chamber angle or extends into
463 the anterior chamber.*

464 13) Controlled glaucoma with prior shunt or mini-shunt placement for glaucoma
465 ○ Note: FECD or pseudophakic/aphakic corneal edema with posterior chamber IOL that
466 also have undergone filtering surgery (without shunt or mini-shunt) in which
467 glaucoma is currently considered under control will be eligible
468 14) Fellow eye visual acuity < 20/200 that is not correctable with EK
469

470 **2.3 Eligibility Criteria for Second Study Eye**

471 1) Study participant has already enrolled one eye
472 2) The second eye meets all study eye inclusion and exclusion criteria (2.2.2 and 2.2.3)
473 3) EK surgery in second eye is not planned within 6 weeks of EK on first study eye

474 **2.4 Screening Evaluation and Baseline Testing**

476 **2.4.1 Historical Information**

477 A history will be elicited from the potential study participant and extracted from available
478 medical records. It is anticipated that potential participants will be patients within the practices

479 of the site investigator who are deciding to undergo EK with the respective surgeon. Thus,
480 obtaining histories relevant to the CPTS eligibility criteria will be part of routine care.

481 **2.4.2 Baseline Testing**

482 Potential eligibility will be assessed as part of a routine-care examination as stated above.
483 However, prior to completing any procedures or collecting any data that are not part of usual
484 care, written informed consent will be obtained.

485 In addition to the usual assessment for candidates for EK for the two acceptable conditions for
486 the CPTS, the surgeons will grade disease severity in those study participants who have FECD
487 employing the FECD Genetics Multi-center Study Grading Assessment Guide (18). Family
488 history of FECD will be solicited.

489 **2.5 Subject Enrollment**

490 A maximum of 1330 participants will be enrolled, depending on the number of participants who
491 enroll both eyes into the study to reach the recruitment goal of 1330 study eyes with a goal to
492 enroll an appropriate representation of minorities. As the enrollment goal approaches, sites will
493 be notified of the end date for recruitment. Study participants who have signed an informed
494 consent form can be randomized up until the end date.

495

496 After the informed consent form is signed, enrollment will be accomplished using the study
497 website. Enrollment must be completed at least 10 days prior to the date of surgery. The study
498 participant is then managed according to the investigator's usual routine without regard to the
499 fact that the study participant is participating in the trial.

500 **2.6 Randomization**

501

502 Randomization of participant eyes will occur via an automated computer program. The
503 randomization schedule will be stratified by surgeon using a permuted blocks design. The
504 randomization groups are as follows:

505 • Preservation Time Group: ≤ 7 days
506 • Preservation Time Group: 8-14 days

507

508

509 A study participant may have both eyes enrolled in the study. The eye scheduled for surgery
510 which will occur first will be assigned randomly to a preservation time group, and the eye
511 scheduled for surgery which will occur second will be assigned to the alternate group.

512

513

Chapter 3

DONOR ELIGIBILITY AND CORNEA ASSIGNMENT

EYE BANKS

3.1 Eye Bank Procedures

With the exception of procedures related to assignment of a cornea to a participant eye, specular microscopy external calibration and technician certification procedures and study procedures for obtaining specular images, eye bank procedures will mimic standard procedures as closely as possible to minimize disruption to their normal routine. Eye banks will be able to use any FDA-approved media for intermediate term storage up to 14 days at 4°C.

3.1.1 Donor Eligibility

526 All eye banks will follow their procedural routine for procurement of tissue and determination of
527 suitability for EK, including prior LASIK or PRK donors, in accordance with the Medical
528 Standards and Procedure Manual of the EBAA(19,20). This includes standard serologic testing,
529 specular microscopy, and slit lamp examination.

531 The following eligibility criteria will apply to all donor tissue assigned to participant eyes:

- Obtained from an EBAA accredited eye bank
- Meets current EBAA and eye bank standards for human transplantation
- Age of donor at time of death 10-75 years
- If the donor body was refrigerated or eyes on ice within 10 hours of death, the body or eye may stay refrigerated up to ≤ 20 hrs; if no refrigeration then the death to preservation time should be ≤ 10 hrs
- Eye bank determined minimum ECD of ≥ 2300 cells/mm² (upon the initial screening determination of ECD)
- Polymorphism/Polymegethism: None to no more than mild changes (slight)
- Guttae: no true guttae present
- No evidence of central endothelial cell damage/trauma or dystrophy, such as FECD.

3.1.2 Assignment of Donor to Study Eyes

545 The primary eye bank, as designated by the clinical site, will receive a notification when there is
546 a pending donor assignment. The Eye Bank Procedures Manual provides details regarding the
547 assignment process. When the eye bank submits an assignment request, a computer program
548 will use a minimization algorithm to evaluate all available donors and ensure a balance of
549 subgroups (0-4 days, 5-7 days, 8-11 days, 12-14 days from preservation to surgery) within the
550 primary randomization groups. Time from preservation to scheduled surgery date will be
551 calculated as whole days for the purpose of assignment into the appropriate randomized
552 preservation time group. As surgeons will be masked to all donor information, the label and
553 report that accompanies the donor will be generated from the study website in such a way to
554 maintain masking.

556 After the donor assignment procedure is completed, the eye bank will complete a donor
557 information form on the study website, which includes information about the retrieval of the
558 cornea (date/time of death, date/time of retrieval, aspects of the processing), cause of death, age
559 of the donor, and ECD.

560

561 For those assignments where pre-cut tissue has been requested, the eye bank will cut and prepare
562 the tissue on the same day that they would cut tissue if the donor was being assigned to a non-
563 study participant for that particular surgeon, and will complete a cutting information form.

564

565 **3.1.2.1 Donor Not Available**

566 If an eligible donor in the correct preservation time window is not available at the primary eye
567 bank on the date of assignment, attempts will be made by the primary eye bank to import tissue
568 from another EBAA accredited eye bank. If tissue in the correct preservation time window is
569 still not available, it will be up to the surgeon to either (1) reschedule the surgery or (2) inform
570 the participant that they will receive a donor that is otherwise healthy but does not meet criteria
571 to be in the study and that they will be discontinued from the study.

572

573 **3.1.2.2 Rescheduled Surgery and/or Reassignment of Tissue**

574 If the surgeon rejects the assigned donor cornea for any reason, surgery will be rescheduled, and
575 a new assignment will be completed.

576 If surgery is rescheduled for any reason, and an already assigned donor cornea is no longer in the
577 correct preservation time window, a new assignment will be completed.

578

579 **3.1.3 Eye Bank Procedures for Study Images**

580 Detailed procedures for obtaining best image quality and transmission to the DMAC will be
581 provided in the CPTS-CIARC Calibration, Certification, and Study Imaging Clinical Procedure
582 Manual and the technician(s) performing this procedure will be certified by the Cornea Image
583 Analysis Reading Center (CIARC).

584

585 **3.1.3.1 Screening Images**

586 Up to 3 screening images of the central donor corneal endothelium obtained according to the eye
587 bank's usual procedure should be submitted to the DMAC.

588

589 **3.1.3.2 Pre-Operative Images**

590 Three pre-operative images of the central donor corneal endothelium should be obtained in a
591 viewing chamber by a certified technician, and submitted to the DMAC. If the eye bank is
592 performing the cutting, the eye bank should obtain these pre-operative images after the tissue has
593 been cut. If the surgeon is performing the cutting, the eye bank should obtain these pre-operative
594 images as close as possible prior to shipment to the surgeon following appropriate warming to
595 room temperature.

596

597
598
599
600

Chapter 4 TRANSPLANTATION AND FOLLOW UP CLINICAL SITES

601
602
603
604
605
606
607

4.1 Endothelial keratoplasty procedure

Surgery (DSEK, DSAEK) will be performed according to the investigator's usual routine. Aspects of the surgical technique and procedure will be tracked, but not standardized. Data to be collected will include incision size, insertion method, air usage, other procedures (e.g. cataract surgery), and operative complications (e.g., difficult donor preparation, difficult placement). *As a reminder, the DMAEK and DMEK procedures will not be acceptable endothelial keratoplasty procedures for the CPTS nor will be PKP.*

608
609
610
611
612

The surgeon will be masked to donor parameters (e.g. donor age, donor ECD), except the FDA-approved 4°C preservation medium being employed (Optisol GS, Life 4°C, etc.) and parameters needed to perform the surgery (e.g. post-cut thickness). Most importantly the surgeon and study participant will be masked to preservation time.

613
614
615
616
617

4.2 Post-operative Management

Postoperative management will be at the discretion of the surgeon based on his/her usual practices. Key aspects of pharmacologic management (e.g. topical corticosteroid usage) will be collected on the data forms.

618
619
620

4.3 Follow-up visit schedule

Protocol-specified follow-up visits (and visit windows) for the first eye, established to conform to the usual practice and timed from surgery date, will be as follows:

621
622
623
624
625
626
627

- Day 1 (1-2 days)
- Day 7 (5 – 9 days)
- Day 30 (20-40 days)
- 6 months (4-8 months)
- 12 months (10-14 months)
- 24 months (20 - 28 months)
- 36 months (35 – 42 months)

628
629
630
631

Additional visits can be performed more often at the discretion of the investigator. A data form will be completed for each protocol and non-protocol visit. For example, if graft failure is determined and a regraft is required on a non-protocol visit, the appropriate follow-up visit form and graft failure form should be completed if and when this occurs.

632 If the second eye of an active participant is enrolled, a modified visit schedule will be allowed
633 to minimize return visits for participants that had bilateral EK as part of the study. For example,
634 sites will be allowed to follow standard of care practices to avoid unnecessary visits linked to
635 targeting each eye within its respective windows as listed above. Sites are encouraged to
636 schedule both eyes within their respective windows when the windows overlap, but at minimum
637 at least one eye must be within its target visit window at each visit. The only exception to this is
638 the 36 month visit which must be completed for each eye within its respective window, even if
639 an extra return visit is required.

640 **4.4 Testing procedures**

641 The Table below shows the key elements of data collection at each study visit. Additional visits
642 may occur as needed for the usual care of the participant.

643

Parameters	Pre-op	1 Day	1 Week	1 Month	6 Months	12 Months	24 Months	36 Months
Medication History	X	X	X	X	X	X	X	X
Slit lamp examination	X	X	X	X	X	X	X	X
Intraocular pressure	X		X	X	X	X	X	X
Ultrasonic pachymetry			X	X	X	X	X	X
Endothelial imaging					X	X	X	X
Post-op complications and other untoward events		X	X	X	X	X	X	X

644

645 **4.5 Definition of testing procedures**

646 **4.5.1 Slit Lamp Examination**

647 The slit lamp examination should be performed per the investigator's usual routine. Specific
648 details of the data collected during the slit lamp examination are found in the site procedures
649 manual.

650

651 **4.5.1.1 Recipient corneal stroma clarity**

652 The recipient corneal stroma clarity will be assessed by slit lamp examination using the
653 following 3-level classification:

654

655 • clear central recipient stroma;
656 • equivocally cloudy central recipient stroma
657 • clouded central recipient stroma.

658

659 Specific details regarding the grading of recipient corneal stroma clarity are found in the Site
660 Procedures Manual. Investigators will be provided a high resolution color standard scale and will
661 be trained and certified on this classification scheme prior to enrolling participants.

662
663 **4.5.1.2 Donor corneal stroma clarity**
664 Donor corneal stroma clarity will be assessed by slit lamp examination. Specific details
665 regarding the grading of donor corneal stroma clarity are found in the Site Procedures Manual.
666

667 **4.5.1.3 Graft rejection assessment**

668 Graft rejection will be assessed during the slit lamp examination using a modification of the
669 Collaborative Corneal Transplantation Studies (CCTS) classification (21,22). Graft rejection will
670 be classified as definite, probable/ possible, or not present. Details of the assessment of graft
671 rejection are found in the Site Procedures Manual.

672 The management of suspected graft rejection episodes will be according to the investigator
673 prerogative, but documented in the medication history.
674

675 **4.5.2 Intraocular pressure**

676 Intraocular pressure will be measured using the investigator's usual routine.

677 **4.5.3 Ultrasonic pachymetry**

678 Corneal thickness will be measured by a CPTS-provided ultrasonic pachymeter to ensure
679 standardization of this measurement across sites. Technical staff acquiring this measurement will
680 be trained and certified on study pachymeter use. If no measurement can be obtained (e.g. if the
681 cornea is too thick), this will be noted on the data form. Measurements taken on other
682 pachymeters will only be allowed if the study pachymeter is temporarily not functional.

683 **4.5.4 Specular/confocal microscopy**

684 Specular or confocal microscopy of the central endothelium will be obtained on all participants
685 that have not experienced graft failure to determine ECD by CIARC. Detailed procedures for
686 obtaining best image quality and transmission to the DMAC will be provided in the CPTS-
687 CIARC Calibration, Certification, and Study Imaging Clinical Procedure Manual and the
688 technician(s) performing this procedure will be certified by the CIARC.

689 **4.6 Additional procedures**

690 Data on all additional procedures performed on the study eye will be collected, including:

691 • air bubbling/repositioning in the first month
692 • cataract surgery and placement of intraocular lens (anterior chamber, posterior chamber)
693 • YAG capsulotomy

694 • refractive procedure (e.g. limbal relaxing incision, LASIK)
695 • glaucoma surgery (e.g. trabeculectomy, laser trabeculoplasty, tube shunt, mini-shunt, other)

696 Additionally, data on donor tissue rim cultures may be collected if performed as part of standard
697 of care.

698

699 **4.7 Graft Failure**

700 Graft failure will be assessed and defined as the occurrence of one of the following:

701 • Cornea which requires regrafting for any reason
702 • Cornea which remains cloudy without clearing, according to the following:
703 (1) cloudy cornea on the first postoperative day which does not clear within 8 weeks
704 OR
705 (2) cloudy cornea which was initially clear postoperatively but becomes and remains
706 cloudy for 3 months without clearing.
707 ■ *A study participant whose cornea becomes cloudy (clouded recipient
708 central stroma, based on the modified CDS grading scale) will be treated
709 by the investigator's usual routine.*

710 For eyes meeting the definition of graft failure above, the principal cause of graft failure will be
711 classified as one of the following:

712 • Early failure (cloudy cornea on the first postoperative day which does not clear or
713 requires a regraft within 8 weeks), associated with surgical complications
714 • Primary donor failure (cloudy cornea on the first postoperative day which does not
715 clear or requires a regraft within 8 weeks), in the absence of surgical complications
716 • Graft rejection (defined as a clouded recipient central stroma following an allograft
717 reaction);
718 • Non-rejection graft failure (defined as a graft that initially had a clear central recipient
719 stroma and becomes cloudy due to causes other than an immune event. These include:
720 surface failure, infection, glaucoma/hypotony, endothelial decompensation, interface
721 irregularity or opacity, pre-existing stromal scarring, blunt or penetrating trauma, and
722 other causes);

723 • Refractive/visual graft failure (defined as a graft that requires regrafting due to
724 inadequate vision while the recipient central stroma remains clear).

725

726

727 **4.8 Final Status**

728 A Participant Final Status Form will be completed if the participant dies, withdraws, or is
729 deemed to be lost to follow-up by the CC staff. An Eye Final Status Form will be completed if a
730 study eye is re-grafted, receives an AC IOL during surgery, experiences a suprachoroidal
731 hemorrhage during surgery, receives a non-study donor cornea, will no longer have surgery, or
732 experiences enucleation, phthisis, graft failure due to blunt trauma, or graft failure due to
733 penetrating trauma,.

734

CHAPTER 5

ADVERSE EVENT REPORTING

5.1 Adverse Event Reporting and Review

Adverse event information will be captured on the electronic case report forms or separate adverse event forms completed after surgery and at all post-op visits. Adverse events can be systemic or ocular. Death will be reported whether study related or not, with cause of death if known; systemic events will be reported only if related or possibly related to study procedures. Related and unrelated ocular adverse events will be reported only in the study eye as there is no plausible reason to believe that the EK procedure could affect a non-study eye.

Each site will be responsible for informing the CC of any reportable adverse events as outlined in the Site Procedures Manual. The study chair will be responsible for abiding by reporting requirements within the necessary time frames to the UHCMC IRB, NEI program officer, and FDA, as required. Each Principal Investigator is responsible for abiding by reporting requirements specific to his/her IRB.

Certain adverse events may require expedited reporting. Since this study does not involve investigational drugs or devices and participants in this study would have undergone EK regardless of study participation, expedited reporting of serious adverse events will be limited to unanticipated and/or serious events in the study eye that are related or possibly related to preservation time. A list of events that require expedited reporting was determined in conjunction with the DSMC. The following events require separate adverse form completion and expedited reporting by the site to the CC within 1 working day of learning of the event, and then subsequently by the CC to the Medical Monitor on the same working day of notification and to the NEI Program Office and designated DSMC member(s) within 1 week of notification:

- Endophthalmitis
- Microbial keratitis (bacterial, fungal, parasitic) within 3 months of EK
- Other unexpected, serious adverse events related or possibly related to preservation time

Operative and post-operative complications and all other adverse ocular findings will be recorded on the case report forms and tabulated in semi-annual DSMC reports. Adverse events presumed related to preservation time, study follow-up procedures of specular microscopy and pachymetry, or systemic events related to EK will be captured on separate adverse event forms. The DSMC will be provided the expedited adverse event reports and the tabulated semi-annual reports in a manner that will enable them to unmask the treatment group if desired.

773 **5.2 Data and Safety Monitoring Committee Review of Adverse Events**

774 The DSMC has approved the protocol and template informed consent form; they will also
775 approve substantive amendments and will provide independent monitoring of adverse events.
776 Cumulative adverse event data are semi-annually tabulated for review by the DSMC. Following
777 each DSMC data review, a summary will be provided to IRBs. A list of specific adverse events
778 to be reported to the DSMC expeditiously is given in section 5.1

780 **5.3 Risks and Discomforts**

781 The risks and discomforts for patients undergoing EK are the same regardless of study
782 participation. Potential risks include:

- 783 • mild pain for approximately one week after surgery.
- 784 • temporary discomfort from the eye examination or eye drops, which may include stinging,
785 itching, or redness.
- 786 • serious infection or bleeding in 1 in 1,000 patients and serious problems related to anesthesia
787 in 1 in 10,000.
- 788 • in rare instances the topical drops can cause an allergic reaction, seizures, and an irregular
789 heartbeat.
- 790 • other potential risks include developing glaucoma, additional surgery due to healing
791 problems or movement out of position of the donor cornea, retinal swelling or detachment, or
792 loss of vision.
- 793 • rejection reactions occur approximately 10% of the time (23), but are usually reversible if
794 treated promptly with topical corticosteroids, but sometimes it leads to failure of the
795 transplant.
- 796 • measurement of intraocular pressure involves a topical anesthetic and fluorescein dye carries
797 a small risk of corneal abrasion and temporary corneal discomfort. There is the rare
798 possibility of allergic reaction to the dye or anesthetic drops.
- 799 • Other risks of EK include:
 - 800 ○ Endophthalmitis: a serious infection inside the eye that needs prompt treatment and may
801 cause permanent loss of vision or in severe circumstances loss of the eye
 - 802 ○ Corneal infection: a serious microbial infection of the cornea that requires immediate
803 treatment and may result in permanent scarring and possible permanent loss of vision
804 requiring a repeat of the corneal transplant
 - 805 ○ Rare chance of dissemination of a communicable disease from the donor tissue
 - 806 ○ Corneal scarring: permanent haze or cloudiness in the cornea that may result in
807 permanent loss of vision requiring a repeat of the corneal transplant
 - 808 ○ Corneal neovascularization: blood vessel growth into the cornea that could subject the
809 transplant to a higher risk for rejection and/or permanent loss of vision, requiring a repeat
810 of the corneal transplant
 - 811 ○ Corneal swelling: thickening of the cornea that may result in loss of vision which may or
812 may not be reversible. If not reversible, another corneal transplant may be required to
813 restore the vision.
 - 814 ○ Wrinkling of the corneal layers: Wrinkling of the donor cornea as it heals may result in
815 blurred vision and require another corneal transplant.

817 The following are risks of procedures that are not necessarily part of routine care but are
818 being performed for the purposes of this study:

819
820
821
822
823
824
825
826

- The anesthetics or instruments that touch the eye to check corneal thickness (pachymeter) or image the endothelium (confocal or specular microscope) could cause minor irritation and rarely breakdown of the surface corneal cells. There is the rare possibility of allergic reaction to the anesthetic drops or feeling faint from the procedure.

CHAPTER 6

MISCELLANEOUS CONSIDERATIONS

6.1 Potential Benefits to Subjects

Study participants will not benefit directly from participation in this study. If longer preservation time up to the FDA limit of 14 days can be shown to not adversely impact graft success and endothelial cell density at 3 years, more donor tissue will be available for efficient distribution within the United States for all keratoplasty procedures. In the future, if a study participant requires another EK in either the same eye or their other eye, the information obtained from this study might benefit them.

6.2 Alternative(s) to Participation

Because of the nature of the study, the only other alternative is to not participate in the study. The potential participants' standing with his or her physician and/or hospital will not change.

6.3 Special Considerations in Follow-up

In a long-term trial such as this in which outcome is not assessed for several years after enrollment, special measures are necessary to assure that the participants will remain in follow up and return for the outcome assessment examination. Detailed contact information will be collected at the time of enrollment and updated regularly.

The Coordinating Center will maintain contact with each patient. Permission for such contacts will be included in the Informed Consent Form. The principal purpose of the contacts will be to develop and maintain rapport with the participant and to update contact information. The initial phone contact will occur about one month following the EK surgery. Subsequent phone contacts will occur on a semi-annual basis. Based on the experience with these calls by the Jaeb Center in the CDS, the CC will similarly maintain this type of contact with participants throughout their 3 year time in the study which the CC and DMAC believe is critically important for the validity of the study. The purpose of these calls is not to collect study data to be used for monitoring or in analyses or to provide medical information. Nor is it intended to schedule the participants for their study visits; that is up to the local study coordinator. This plan has been reviewed by the IRB at UH Case Medical Center and felt to be feasible as long as incorporated into the consent form at all our IRBs monitoring the study.

For participants who move out of the area of their study physician or whose medical insurance coverage changes, an attempt will be made to have their care transferred to another study physician. When this is not possible, the CC will locate an ophthalmologist in the participant's new area to arrange for follow-up and the participant will be asked to sign a medical record release form to provide the ophthalmologist with information as well as to obtain the results of examinations performed by the ophthalmologist.

6.4 Women and Minorities

We anticipate that study enrollment will be representative of the U.S. population of subjects who undergo corneal transplantation for these endothelial conditions. Both males and females are

868 enrolled into each protocol. All ethnic and racial groups are eligible for participation in this
869 study, with the goal of having appropriate minority representation of those that undergo corneal
870 transplantation in the United States.

871

872 **6.5 Financial Information**

873 All visits, including but not limited to, pre-operative, post-operative, surgery, and any standard of
874 care follow-up appointments will be charged to the participant or his/her insurance carrier. The
875 participant will be responsible for any deductible or co-payments as defined by their particular
876 insurance carrier.

877

878 The costs for pachymetry, and specular or confocal microscopy are considered research and the
879 costs will not be incurred by the participant.

880

881 Study participants will be given a reimbursement of \$25 for each study visit for travel costs. This
882 payment will be processed by the Jaeb Center.

883

884 **6.6 Confidentiality**

885 The investigators will maintain the highest degree of confidentiality permitted for the clinical
886 and research information obtained from participants in this clinical study. Medical and research
887 records will be maintained in the strictest confidence. However, as part of the quality assurance
888 and legal responsibilities of an investigator, the site must permit authorized representatives of the
889 CC to examine (and when permitted or required by applicable law, to copy) clinical records for
890 the purposes of quality assurance reviews, audits, and evaluation of the study safety and
891 progress. Unless required by law, no copying of records with personally identifying information
892 will be permitted. Only the coded identity associated with documents or other participant data
893 may be copied (obscuring any personally identifying information) or transmitted to the CC.
894 Authorized representatives as noted are bound to maintain strict confidentiality of medical and
895 research information that may be linked to identified individuals.

896

897 **6.7 Privacy of Protected Health Information**

898 The Health Insurance Portability & Accountability Act (HIPAA) is a Federal law that helps to
899 protect the privacy of the study participant's health information and to whom this information
900 may be shared. The Authorization forms used for this research study will tell the study
901 participant what health information (called Protected Health Information or PHI) will be
902 collected for this research study, who will see the study participant's PHI and in what ways they
903 can use the information. The researchers and staff must agree to protect the study participant's
904 health information by using and disclosing it only as permitted by the subject in their
905 Authorization and as directed by state and Federal law.

906

Chapter 7

STATISTICAL METHODS

The approach to sample size and statistical analyses are summarized below. A detailed statistical analysis plan will be written and finalized prior to the completion of the study. The analysis plan synopsis in this chapter contains the framework of the anticipated final analysis plan.

7.1 Sample Size

The sample size of 1330 is calculated based on a non-inferiority (a single one-sided test) design with the goal to determine that the graft failure rate of the recipients of donor tissue transplanted 8 to 14 days after preservation is not worse than the graft failure rate of recipients of donor tissue transplanted ≤ 7 days after preservation.

Non-Inferiority Limit	Power = 90%				
	Failure Rate				
	12%	10%	8% ^a	6%	4%
10%	362	310			
8%	566	482	394		
6%	1006	858	702	538	
4 %	2262	1928	1576	1208	824
2%	9044	7708	6304	4832	3290

Note: Numbers in table are total sample size for both treatment groups combined (crossover and lost to follow up are not accounted for). Half would be randomized to each group.

^a CDS data: 3-year failure rate

In the Cornea Donor Study (CDS), the 3-year failure rate was 8%. Clinical expectations suggest that the graft failure rate from the EK procedure will be smaller than the failure rate from the PKP procedure that was used in CDS; therefore, a 3-year failure rate of 6% has been assumed. Based on equal allocation of recipients to each group and type I error of 5%, a sample size of 1208 will provide 90% power for a non-inferiority limit of 4%. Based on information from the CDS, approximately 10% of subjects will have incomplete follow up (due to death, withdrawal or lost to follow up) by the end of year 3. Increasing the calculated sample size by this amount gives a total of 1330 subjects (665 per group).

- The inclusion of participants with two study eyes, one in each treatment group, will tend to reduce the variance and as a result increase statistical power. To be conservative, this has not been accounted for in the sample size estimation, since the correlation of outcome with two eyes is not known.

7.2 Data Analysis

7.2.1 Primary Analysis of Graft Failure

Participant study eyes that did not have surgery, received a non-study donor, had an AC IOL implanted during surgery, or experienced a suprachoroidal hemorrhage will be excluded from the primary analysis. It is highly unlikely these events could be related to preservation time, thus inclusion of them could actually bias *towards* concluding non-inferiority. Therefore, the primary

944 analysis will deviate from the principle of intent-to-treat, but this approach is conservative for a
945 non-inferiority analysis.

946
947 In addition, the following will be censored at the last visit prior to occurrence: lost to follow-up,
948 withdrawn from study, death, enucleation, phthisis, or graft failures due to a blunt or penetrating
949 trauma.

950
951 **7.2.1.1 Unadjusted Analysis**

952
953 • Three year Kaplan-Meier graft failure estimates with 95% confidence intervals (variance
954 estimated using the Greenwood method) will be calculated separately for the two
955 treatment groups (≤ 7 days and 8 to 14 days from preservation to surgery). A one-sided
956 95% confidence interval will be constructed for the difference in 3 year graft failure rates
957 between the two groups. The bootstrap re-sampling technique will be used to account for
958 potentially correlated data from donors who donated both corneas in this study and
959 potentially correlated data from 2 study eyes of the same study participant. The two
960 treatment groups will be declared equivalent if the one-sided 95% confidence interval for
961 the difference in proportions excludes the pre-defined non-inferiority limit of 4%.

962
963 **7.2.1.2 Adjusted Analysis**

964 • Multivariate analysis will be performed using Cox proportional hazards regression model.
965 The primary multivariate model will include the corneal diagnosis regardless of statistical
966 significance, in addition to time from preservation to surgery. In additional models,
967 potential confounders including recipient and donor age, recipient and donor race, presence
968 of glaucoma, presence of corneal vessels, history of smoking, and certain aspects of the
969 retrieval and processing of the donor tissue (including multiple types of storage media, if
970 more than one is used in preservation of the corneal tissues) will be screened by assessing
971 the change in the preservation time effect when the potential confounder is controlled for in
972 the Cox model. Variables that do not contribute significantly ($P > 0.05$) will be removed
973 from the model.

974 • Random surgeon effects will be tested using a generalized linear model via the SAS
975 GLIMMIX procedure. This marginal model produces a robust standard error (RSE) by use
976 of a sandwich estimator, which corrects for correlated data.

977 • Potential effect modifiers of donor tissue preservation time such as recipient age or corneal
978 diagnosis will be screened by including first-order interaction terms. Variables that exhibit
979 modification of the donor tissue preservation time effect with an associated P value < 0.05
980 will be retained in the model.

981
982
983 **7.2.2 Secondary Analyses of Graft Failure**

984 **7.2.2.1 Preservation Time**

985 The time from preservation to surgery is treated as a binary variable in the primary analysis (see
986 above section). Secondary analyses will look at the time from preservation to surgery as a
987 categorical variable with multiple levels and as a continuous variable:

988 • Kaplan-Meier estimates of graft failure with 95% confidence interval will be calculated for
989 each of the following donor groups: 0 – 4, 5 – 7, 8 – 11, and 12 – 14 days from preservation
990 to surgery(counting partial days as whole days).

991

992 • A Cox proportional hazards model will be constructed treating the time from preservation to
993 surgery as a continuous variable (using time of day to calculate hours from preservation to
994 surgery). Polynomial terms will be added to assess any curvilinear, J, or U shaped
995 relationship between time from preservation to surgery and graft failure. If no significant
996 departure from a linear relation is detected, a one sided 95% confidence interval will be
997 computed for the hazard ratio per day of time from preservation to surgery.

998

999 • The proportional hazards assumptions will be tested through the use of time-dependent
1000 variables with a logarithm transformation of time. If this assumption is violated then hazard
1001 ratios will be presented separately for different periods following transplant.

1002

1003 7.2.2.2 Predictive Factors

1004 A Cox model will be constructed including preservation time group regardless of statistical
1005 significance. Additional recipient/donor factors (see some examples listed below) will be
1006 considered for the model and included, if significantly associated with graft failure ($p < 0.05$).
1007 The proportional hazards assumptions will be tested as described above.

1008

1009 • Recipient factors

1010 ➤ preoperative diagnosis

1011 ➤ gender

1012 ➤ age

1013 ➤ race

1014 ➤ prior use of glaucoma medication

1015 ➤ prior glaucoma surgery (trabeculectomy, laser procedure)

1016 ➤ current smoker (at time of surgery)

1017 ➤ lens status (phakic, posterior chamber intraocular lens)

1018 ➤ Intraocular pressure (IOP) treated as a binary variable: < 25 vs. ≥ 25 mmHg

1019

1020 • Donor/graft factors

1021 ➤ eye bank determined screening ECD

1022 ➤ pre-operative CIARC determined ECD

1023 ➤ age

1024 ➤ gender

1025 ➤ race

1026 ➤ history of diabetes

1027 ➤ cause of death

1028 ➤ type of storage medium

1029

1030 7.2.2.3 ECD as Time Dependent Predictor of Graft Failure

1031 The relationship between endothelial graft failure (graft failure due to endothelial
1032 decompensation) and ECD will be addressed paralleling the methods used in the CDS. A Cox
1033 model will be fit with ECD as a time dependant covariate. This analysis will be limited to

1034 subjects with at least one gradable follow up image. The rate of change will also be calculated as
1035 a time dependent variable defined as the least squares slope over all previous measurements
1036 starting at 6 months (e.g., the rate of change at one year would be the slope fit to the 6 month and
1037 1 year ECD values). Missing values will be imputed by Rubin's method. If significant departure
1038 from linearity is detected, then ECD will be treated as a categorical variable. The proportional
1039 hazards assumptions will be tested as described above.

1040
1041 To check whether results are sensitive to how missing data are handled, a second model will be
1042 fit with a time dependent indicator for missing ECD.

1043

1044 **7.2.3 Graft Rejection**

1045 Associations of baseline recipient and donor factors with the occurrence of a graft rejection will
1046 be assessed in univariate and multivariate proportional hazards models. Life-table analyses will
1047 be used to compute the probability of a first rejection event within intervals defined by the study
1048 exam schedule. Data will be censored at the time of a non-rejection graft failure or at the last
1049 visit.

1050

1051 **7.2.4 Endothelial Cell Density (ECD)**

1052 **7.2.4.1 Included Subjects**

1053 The primary analysis will include all study participants with a gradable 3-year image, who have
1054 not experienced graft failure 3 years after transplantation. Study participants with a missing cell
1055 count at 3 years will be included in a secondary analysis using Rubin's method of multiple
1056 imputation.

1057

1058 **7.2.4.2 Outcome Measures**

1059 The primary outcome will be the ECD at 3 years, conditional on graft survival at 3 years. All
1060 other ECD measurements during follow up will be considered as a secondary outcome.

1061

1062 **7.2.4.3 Descriptive Statistics**

- 1063 • Summary statistics (mean \pm SD and/or median/quartiles as appropriate to the distribution)
1064 will be given for the ECD by the 2 treatment groups (≤ 7 and 8 to 14 days) and 4 treatment
1065 groups (0 – 4, 5 – 7, 8 – 11, and 12 – 14 days).
- 1066 • Change from eye bank determined screening ECD will be summarized in a similar manner.
- 1067 • Boxplots of ECD and change from eye bank determined screening ECD will be given for the
1068 2 randomization groups.
- 1069 • A scatter plot will be constructed of eye bank determined screening ECD vs. 3 year ECD
1070 with a symbol used to denote the two randomization groups.

1071

1072 **7.2.4.4 Primary Analysis**

1073 The primary analysis will be limited to subjects with gradable 3 year images, who have not
1074 experienced graft failure 3 years after transplantation. An ANCOVA model with 3 year ECD as
1075 the dependent variable adjusting for eye-bank-determined screening ECD will be used to assess
1076 the effect of preservation time. The time from preservation to surgery will be treated as a binary

1077 variable. If residual values from the models above are highly skewed then a transformation (e.g.,
1078 square root or logarithm) or non-parametric methods will be used instead.

1079 • Random effects will be modeled to account for any correlated data from the same donor and
1080 any correlated data from 2 study eyes of the same study participant.
1081 • Additional ANCOVA models will also adjust for other recipient/donor risk factors, (if $p <$
1082 0.05. Random surgeon effects will also be explored using a mixed effects model.

1083

1084 **7.2.4.5 Secondary Analyses**

1085 **7.2.4.5.1 Sensitivity Analysis**

1086 Sensitivity analysis will also be performed to check whether results change meaningfully
1087 depending on how missing data are handled. The missing 3 year ECD values for subjects with
1088 surviving grafts at 3 years will be imputed and included in an analysis as described in the
1089 previous section. The data imputation will be performed by using Rubin's method of multiple
1090 imputation.

1091

1092

1093 **7.2.4.5.2 Analysis with donor tissue preservation time as continuous/multi-categorical**

1094 **variable**

1095 The analyses described above will be repeated with time from preservation to surgery treated as
1096 continuous (using time of day to calculate hours from preservation to surgery) or multi-category
1097 variable (0 – 4, 5 – 7, 8 – 11, and 12 – 14 days from preservation to surgery) in separate models.

1098

1099 **7.2.4.5.3 Longitudinal analysis**

1100 This analysis also will be limited to subjects with a surviving graft at 3 years. A repeated
1101 measures least squares regression model will be fit using all available images at baseline, 6
1102 months, 1, 2, and 3 years. This analysis will be performed *with* and *without* imputation of
1103 missing data. Rubin's method of data imputation will be used to impute the ECD values for all
1104 missing time points. The time from preservation to surgery will be modeled as both continuous
1105 and categorical as described above. If residual values have a skewed distribution then
1106 transformation (e.g., square root or logarithm) or non-parametric analysis will be used.

1107

1108 **7.2.5 Course of Cornea Changes After Endothelial Keratoplasty**

1109 The association of donor, operative and postoperative related factors with ECD will be evaluated
1110 and assessed in univariate and multivariate ANCOVA models , adjusting for the reading center
1111 grading of pre-operative ECD (imaged post-cut if the eye bank was performing the cutting and
1112 imaged just prior to shipping if the surgeon was performing the cutting). This ECD value will be
1113 considered the baseline for these analyses.

1114

1115 **7.2.6 Safety Analysis Plan**

1116 The main safety analysis will involve tabulation of data by treatment group of events that could
1117 be considered possibly related to the preservation time such as post-op infection. The efficacy
1118 analyses related to graft failure, corneal thickness, and ECDs also could be viewed as safety
1119 analyses. Operative and post-operative complications will also be tabulated.

1120
1121 Further details of the analytic approach will be provided in the detailed statistical analysis plan.

1122 **7.2.7 Additional Tabulations and Analyses**

1123 The following will be tabulated according to treatment group:

1124 • Baseline demographic and clinical characteristics
1125 • Visit completion rate for each visit
1126 • Protocol deviations

1127

1128 **7.2.8 DSMC Interim Analysis Plan**

1129 No formal interim analyses are planned towards demonstrating non-inferiority before the end of
1130 the study since the recruitment period is planned to be short compared with the follow-up period
1131 and since we believe it is imperative to have three years of follow up to assess non-inferiority.

1132 .

1133 In addition to semi-annual review described in Section 5.2, the following plan for interim
1134 monitoring for a potential recommendation of early stopping of enrollment has been established
1135 in conjunction with the DSMC. This plan is based on early donor failure rate and on the
1136 progress of recruitment.

- 1137 • Rate of failure within the first 8 weeks: Upon enrollment of the first 100 eyes, and then
1138 quarterly thereafter (i.e., one review between each DSMC semi-annual meeting) the
1139 DMAC will evaluate the failure rate within the first 8 weeks (i.e. both the early failures
1140 and the primary donor failures, as defined in Section 4.6) in each group and notify the
1141 DSMC who will have the option of requesting additional information between the semi-
1142 annual reviews. The DSMC may also request more frequent reviews at any time.
- 1143 • Recruitment Progress: Recruitment progress will be evaluated at the first two DSMC
1144 meetings following initiation of recruitment. If based on the current recruitment total
1145 and recruitment trend over the previous 3 months, the projected timeline for the
1146 remaining recruitment is more than 16 months at the 1st review or more than 12 months at
1147 the 2nd review, the DSMC will discuss whether the study timeline can be met.

1148 Following each DSMC data review, a summary will be provided to the IRBs.

1149
1150

1151

1152
1153
1154
1155

REFERENCES

1. Eye Bank Association of America. 2010 Eye Banking Statistical Report. 2010.

2. EBAA Regulatory Alert. EBAA Comments on the U.S. Food and Drug Administration (FDA) Draft Guidance for Industry, (2009).

3. Guidance for Industry. Use of Nucleic acid tests to reduct the risk of transmission of West Nile Virus from donors of whole blood and blood components intended for transfusion and donors of human cells, tissues, and cellular and tissue-based products, (2008).

4. Lee WB, Jacobs DS, Musch DC, Kaufman SC, Reinhart WJ, Shtein RM. Descemet's stripping endothelial keratoplasty: safety and outcomes: a report by the American Academy of Ophthalmology. *Ophthalmology*. 2009;116(9):1818-30.

5. Gal RL, Dontchev M, Beck RW, Mannis MJ, Holland EJ, Kollman C, et al. The effect of donor age on corneal transplantation outcome results of the cornea donor study. *Ophthalmology*. 2008;115(4):620-6.

6. Armour RL, Ousley PJ, Wall J, Hoar K, Stoeger C, Terry MA. Endothelial keratoplasty using donor tissue not suitable for full-thickness penetrating keratoplasty. *Cornea*. 2007;26(5):515-9.

7. Chang SD, Pecego JG, Zadnik K, Danneffel MB, Mutti DO, Mannis MJ. Factors influencing graft clarity. *Cornea*. 1996;15:577-81.

8. Abbott RL, Forster RK. Determinants of graft clarity in penetrating keratoplasty. *Arch Ophthalmol*. 1979;97(6):1071-5.

9. Wagoner MD, Gonnah el S. Corneal graft survival after prolonged storage in Optisol-GS. *Cornea*. 2005;24(8):976-9.

10. Doganay S, Hepsen IF, Yologlu S, Demirtas H. Effect of the preservation-to-surgery interval on corneal allograft survival in low-risk patients. *Ophthalmic Surg Lasers Imaging*. 2007;38(6):457-61.

11. Sugar A, Gal RL, Beck W, Ruedy KJ, Blanton CL, Feder RS, et al. Baseline donor characteristics in the Cornea Donor Study. *Cornea*. 2005;24(4):389-96.

12. Guttmann C. Donor Death-Surgery Interval May Affect DSAEK Outcomes. *Ophthalmology Times*. April 15, 2009.

13. Price MO, Price FW, Jr. Endothelial cell loss after descemet stripping with endothelial keratoplasty influencing factors and 2-year trend. *Ophthalmology*. 2008;115(5):857-65.

14. Chen ES, Terry MA, Shamie N, Hoar KL, Friend DJ. Precut Tissue in Descemet's Stripping Automated Endothelial Keratoplasty Donor Characteristics and Early Postoperative Complications. *Ophthalmology*. 2008;115(3):488-96 e3.

15. Terry MA, Chen ES, Shamie N, Hoar KL, Friend DJ. Endothelial cell loss after Descemet's stripping endothelial keratoplasty in a large prospective series. *Ophthalmology*. 2008;115(3):488-96 e3.

16. Terry MA. Precut tissue for descemet stripping automated endothelial keratoplasty: complications are from technique, not tissue. *Cornea*. 2008;27(6):627-9.

17. Terry MA, Shamie N, Straiko MD, Friend DF. Endothelial keratoplasty: The relationship between donor tissue storage time and donor endothelial survival. *Ophthalmology*. 2011;118:36-40.

18. Louttit MD, Kopplin LJ, Igo, Jr RP, Fondran JR, Tagliaferri A, Bardenstein D, Aldave AJ, Croasdale CR, Price M, Rosenwasser GO, Lass JH, Iyengar SK: A multi-center study to map

1202 genes for Fuchs' Endothelial Corneal Dystrophy: Baseline Characteristics and Heritability.
1203 Cornea In press

1204 19. Eye Bank Association of America. Medical Standards. Washington, DC; 2009

1205 20. Eye Bank Association of America. Procedures Manual. Washington, DC; 2009

1206 21. Collaborative Corneal Transplantation Studies Research Group. The collaborative corneal
1207 transplantation studies (CCTS). Effectiveness of histocompatibility matching in high-risk
1208 corneal transplantation. The Collaborative Corneal Transplantation Studies Research Group.
1209 Arch Ophthalmol. 1992;110(10):1392-403.

1210 22. Maguire MG, Stark WJ, Gottsch JD, Stulting RD, Sugar A, Fink NE, et al. Risk factors for
1211 corneal graft failure and rejection in the collaborative corneal transplantation studies.
1212 Collaborative Corneal Transplantation Studies Research Group. Ophthalmology.
1213 1994;101(9):1536-47.

1214 23. Jordan C, Price M, et al. Graft rejection episodes after Descemet stripping with endothelial
1215 keratoplasty: part one: clinical signs and symptoms. Br J Ophthalmol 2009: 387-390.

1216

1217

1218

1219

APPENDIX A

PROTOCOL AMENDMENT #1

EXTENSION OF FOLLOW-UP TO COMMON END DATE

July 1, 2015

1229 **1. Overview: Extension of follow-up after 3 years.**

1230 Participants who re-consent to additional follow-up will continue annual protocol visits
1231 past the 3-year time point, until at least 2017. The same data will be captured from annual visits
1232 as well as interim unscheduled visits as was done previously. The same study specific tests –
1233 pachymetry and specular/confocal microscopy - will continue to be performed at the annual
1234 visits. Visits will continue to be captured until approximately the 2nd quarter of 2017, therefore
1235 all participants will have a last possible common endpoint rather than exiting individually when
1236 they reach their 3 year post-operative visit.

1237 *Rationale: Continued follow-up of CPTS participants provides an excellent opportunity to
1238 gain more information about many factors affecting DSAEK outcomes, including donor age
1239 and preservation time. This additional longitudinal data will provide important information
1240 on longer term DSAEK outcomes that are not necessarily impacted by preservation time,
1241 although we will continue to assess that variable as well.*

1242

1243 **2. Eligibility and Informed Consent**

1244 **a. Eligibility**

1245 All active study participants will be eligible for extended follow-up to a common end date, until
1246 at least 2017. The exact end date will be determined by the Operations Committee based on
1247 funding and data analysis requirements.

1248 **b. Informed Consent**

1249 Active study participants will be asked to sign a new informed consent form or addendum prior
1250 to the post-3 year visits or as soon thereafter as feasible. The new informed consent form (or
1251 addendum) may be signed during the next scheduled visit (either Protocol Visit or Unspecified
1252 Visit) or by mail if the governing IRB approves that process. Until the new informed consent
1253 form or addendum is signed, the study participant will not be examined post-3 year for study
1254 purposes. If the new informed consent form or addendum is not signed, follow-up for that
1255 participant will end upon completion of the 36-month visit.

1256 **3. Follow-Up Visits**

1257 **a. Visit Schedule and Windows**

1258 The post-3 year visit schedule will vary by the participant's enrollment date. Some participants
1259 will be eligible for Year 4 and Year 5 visits if the windows below fall within the extended
1260 follow-up period.

1261 Additional protocol-specified follow-up visits (and visit windows) for the first eye, will be as
1262 follows:

- 1263 • 48 months (44 - 52 months)
- 1264 • 60 months (56 – 64 months)

1268 Additional visits may be performed more often as needed. A data form will be completed for
1269 each protocol visit and any non-protocol visits where the intent of the visit was to examine the
1270 study eye by a study investigator. Additional non-protocol visits by non-study investigators may
1271 also be uploaded by the clinical site to the study website, as was done during the initial 3-year
1272 follow-up phase. For example, if graft failure is determined and a regraft is required on a non-
1273 protocol visit, the appropriate follow-up visit form and graft failure form should be completed if
1274 and when this occurs.

1275 If the second eye of an active participant was enrolled, a modified visit schedule will be
1276 allowed to minimize return visits for participants that had bilateral EK as part of the study. For
1277 example, sites will be allowed to follow standard of care practices to avoid unnecessary visits
1278 linked to targeting each eye within its respective windows as listed above. Sites are encouraged
1279 to schedule both eyes within their respective windows when the windows overlap, but at
1280 minimum at least one eye must be within its target visit window at each visit.

1281
1282 **b. Testing Procedures**
1283 The Table below shows the key elements of data collection at each study visit. Additional
1284 visits may occur as needed for the usual care of the participant.

1285

	48 Months	60 Months
Parameters		
Medication History	X	X
Slit lamp examination	X	X
Intraocular pressure	X	X
Ultrasonic pachymetry	X	X
Endothelial imaging	X	X
Post-op complications and other untoward events	X	X

1295
1296
1297 **c. Detailed Testing Procedures**
1298 Procedures for testing at each follow-up visit are identical as listed in Chapter 4.

1300
1301 **d. Adverse Events**
1302 Adverse event reporting remains identical to Chapter 5.

1303
1304 **e. Other Considerations in Follow-up**
1305 All other retention and follow-up procedures including central contract from the
Coordinating Center will continue as in the original study and as outlined in Chapter 6.

1306

1307 **4. Statistical Analyses**

1308 The statistical methods for all 3 study objectives completed up to the 3 year primary endpoint
1309 will be extended to the 4 and 5 year endpoints. Additional analyses on the impact of missing
1310 data will be evaluated, including comparison of baseline characteristics for those who agreed
1311 versus declined to consent to continue .

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1
2
3

CPTS Statistical Analysis Plan

4
5
6
7
8
9

Version: 4.0
Date: 6-21-16

In sync with Protocol Version 4.0

10

11

12

Version History

Version Number	Author	Approver	Effective Date	Revision Description
1.0	Allison Ayala	Craig Kollman	9-4-14	Revisions prior to 9-4-14 were not versioned according to new JCHR standards. Changes were clarifications from DSMC meetings and were documented in DSMC meeting minutes.
2.0	Allison Ayala	Craig Kollman	8-12-15	Added analyses related to extension of CPTS to capture 4 and 5 year visits, which was incorporated into protocol version 4.0.
3.0	Allison Ayala	Craig Kollman	1-15-16	The DSMC, OC, and EC approved the clarification of how to handle cases that were cloudy at the 3 year visit. Details of the original discussion are in the November 3, 2015 DSMC minutes and details of the discussion/proposal that followed (and final decision) are in the following folder: Analysis Notes to Save\3 year failure cutoff discussions
4.0	Allison Ayala	Craig Kollman	6-21-16	<ol style="list-style-type: none"> 1. Clarify that “surgical trauma” (like blunt and penetrating trauma) is also a severe event, if leading to failure, that is unrelated to PT and should be censored prior to the event. 2. Clarify that out of window 3 year visits can be used up to 44 months for determining 3 year failures. Decision/discussion saved in the following folder: Analysis Notes to Save\3 year visit window

13

CPTS Statistical Analysis Plan

1.0 Study Objectives

17 The objectives of the “Effect of Corneal Preservation Time on Long-Term Graft Success” (CPTS)
18 study are:

20 Objective 1 (Primary Objective): To determine if the 3-year graft failure rate following EK
21 performed with donor corneas with a preservation time of 8 to 14 days is non-inferior to the
22 failure rate when donor corneas with a preservation time of 7 or fewer days are used.

24 Objective 2: To determine if the central corneal endothelial cell density 3-years after EK is
25 related to preservation time.

27 Objective 3: To evaluate the effect of donor, operative and postoperative factors on graft
28 failure and endothelial cell density three years following EK.

30 The purpose of this document is to describe the analysis plan for these 3 objectives, as well as some
31 pre-planned secondary analyses. There may be additional secondary analyses performed that are not
32 described in this document.

2.0 Sample Size

35 The sample size of 1330 is calculated based on a non-inferiority (a single one-sided test) design with
36 the goal to determine that the graft failure rate of the recipients of donor tissue transplanted 8 to 14
37 days after preservation is not worse than the graft failure rate of recipients of donor tissue transplanted
38 \leq 7 days after preservation.

Non-Inferiority Limit	Power = 90 %				
	Failure Rate				
	12 %	10 %	8 % ^a	6 %	4 %
10 %	362	310			
8 %	566	482	394		
6 %	1006	858	702	538	
4 %	2262	1928	1576	1208	824
2 %	9044	7708	6304	4832	3290

40 Note: Numbers in table are total sample size for both treatment groups combined
41 (crossover and lost to follow up are not accounted for). Half would be randomized to
42 each group.

43 ^a CDS data: 3-year failure rate

45 In the Cornea Donor Study (CDS), the 3-year failure rate was 8%. Clinical expectations suggest that
46 the graft failure rate from the EK procedure will be smaller than the failure rate from the PKP
47 procedure that was used in CDS; therefore, a 3-year failure rate of 6% has been assumed. Based on
48 equal allocation of recipients to each group and type I error of 5%, a sample size of 1208 will provide
49 90% power for a non-inferiority limit of 4%. Based on information from the CDS, approximately
50 10% of subjects will have incomplete follow up (due to death, withdrawal or lost to follow up) by the
51 end of year 3. Increasing the calculated sample size by this amount gives a total of 1330 subjects
52 (665 per group).

53 • The inclusion of participants with two study eyes, one in each treatment group, will tend to
54 reduce the variance and as a result increase statistical power. To be conservative, this has not

55
56
57
58
59 been accounted for in the sample size estimation, since the correlation of outcome with two
56 eyes is not known.
57
58

59 **3.0 Graft Failure (Primary Outcome)**

60 **3.1 Primary Analysis of 3 Year Graft Failure - (Analysis plan for objective 1)**

61 **3.1.1 Formal Statistical Hypothesis**

62
63 The primary objective of the study is to determine if the 3-year graft failure rate
64 following EK performed with donor corneas with a preservation time of 8 to 14 days
65 is non-inferior to the failure rate when donor corneas with a preservation time of 7 or
66 fewer days are used. In terms of formal statistical hypothesis testing, the null and
67 alternative hypotheses are:
68

69
70 $H_0: p_{8-14} - p_{0-7} \geq 4\%$
71 $H_a: p_{8-14} - p_{0-7} < 4\%$
72

73 where p_{8-14} and p_{0-7} is the probability of graft failure by 3 years in the 8-14 day group
74 and the ≤ 7 day group, respectively.
75

76 **3.1.2 Analysis Cohort**

77 Participant study eyes that did not have surgery, received a non-study donor, had an
78 AC IOL implanted during surgery, or experienced a suprachoroidal hemorrhage will
79 be excluded from the primary analysis. It is highly unlikely these events could be
80 related to preservation time, thus inclusion of them could actually bias *towards*
81 concluding non-inferiority. Therefore, the primary analysis will deviate from the
82 principle of intent-to-treat, but this approach is conservative for a non-inferiority
83 analysis.
84

85 **3.1.2.1 Censoring of Data for Occurrence of a Severe Event Unrelated to 86 Preservation Time**

87 In order to minimize bias towards concluding non-inferiority, severe events
88 not expected to be related to preservation time will be censored at the last
89 examination prior to the occurrence of the event that severely impacts the study
90 eye, if the eye was not on the path to failure at the last visit prior to the
91 occurrence of the severe unrelated event (see 3.1.5 for the 'rules'). These
92 events include:
93

- 94 ▪ Enucleation (eye will be dropped)
- 95 ▪ Phthisis (eye will be dropped)
- 96 ▪ Failure due to surgical (unrelated to the initial DSEK), blunt or
97 penetrating trauma (eye will be followed until failure criteria met)

98 **3.1.2.2 Analyzing Preservation Time Group Crossovers As-Treated**

99 If a study eye receives a study donor cornea in the wrong preservation time
100 group, it will be analyzed as treated, as this will minimize bias towards
101 concluding non-inferiority. A secondary intent-to-treat analysis will also be
102 completed if this occurs.
103

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

3.1.3 Definition of Graft Failure (per protocol, section 4.7):

Graft failure will be assessed and defined as the occurrence of one of the following:

- Cornea which requires regrafting for any reason
- Cornea which remains cloudy without clearing, according to the following:
 - (1) cloudy cornea on the first postoperative day which does not clear within 8 weeks
OR
 - (2) cloudy cornea which was initially clear postoperatively but becomes and remains cloudy for 3 months without clearing.

Note: graft failure is based on cloudy recipient stroma. Any reference to cloudy cornea when defining graft failure is with regard to the recipient stromal clarity.

For eyes meeting the definition of graft failure above, the principal cause of graft failure will be classified as one of the following:

- Early failure (cloudy or equivocal recipient cornea on the first postoperative day which does not clear or requires a regraft within 8 weeks), associated with surgical complications, including immediate peri-operative complications such as acute angle closure noted on the 1 day post-operative visit
- Primary donor failure (cloudy or equivocal recipient cornea on the first postoperative day which does not clear or requires a regraft within 8 weeks), in the absence of surgical complications
- Graft rejection (defined as a clouded recipient central stroma following an allograft reaction);
- Non-rejection graft failure (defined as a graft that initially had a clear central recipient stroma and becomes cloudy due to causes other than an immune event. These include: surface failure, infection, glaucoma/hypotony, endothelial decompensation, interface irregularity or opacity, pre-existing stromal scarring, blunt or penetrating trauma, and other causes);
- Refractive/visual graft failure (defined as a graft that requires regrafting due to inadequate vision while the recipient central stroma remains clear).

3.1.4 Definition of Graft Failure Date

A cornea that is “on the path to failure” means the cornea has met criteria to initiate the path to failure and it has not been removed from that path, defined as follows:

1. Definition of how to initiate “on the path to failure” :
 - Initiating At 1 Day Visit: A cornea may be classified as either cloudy or equivocally cloudy to start a count of how many days “on the path to failure”.
 - Initiating After 1 Day Visit: A cornea must be initially classified as cloudy to start a count of how many days “on the path to failure”.
2. A cornea classified as equivocal after the “on the path to failure” count begins is still considered “on the path to failure.”
3. A cornea classified as clear after the “on the path to failure” count begins is no longer “on the path to failure”; the count restarts the next time the cornea is classified as cloudy.

The date of graft failure is defined as follows

153
154 1. If “on the path to failure” (per 3.1.4 above) initiates at the 1 Day Visit:
155 a. If the cornea remains “on the path to failure” (per 3.1.4 above), is
156 classified cloudy at least once during those consecutive visits, and is
157 classified cloudy at least 56 days after surgery date, then the cornea meets
158 the failure definition and the date of failure will be the date of the 1 day
159 visit. (Note: this means it must be classified cloudy at least twice during
160 the path to failure, and at least one of those ≥ 56 days after surgery)
161 b. If the cornea remains “on the path to failure” (per 3.1.4 above) and a
162 regraft occurs within 56 days or after 56 days (but prior to being classified
163 cloudy after 56 days), the date of failure will equal the date of the 1 day
visit.
164 2. If “on the path to failure” (per 3.1.4 above) initiates after the 1 Day Visit:
165 a. If a cornea is classified as cloudy, remains “on the path to failure” (per
166 3.1.4 above), and is classified cloudy at least 90 days after the initial
167 cloudy classification, then the cornea meets the failure definition and the
168 date of failure will be the first date at which cornea is indicated as cloudy.
169 b. If a cornea is “on the path to failure” (per 3.1.4 above) for <90 days and a
170 regraft occurs, the date of failure will equal the first exam date where the
171 cornea is cloudy.
172 3. If a cornea is clear and then a regraft occurs, the date of failure will be equal to
173 the date of regraft.

174
175 Examples

176 Example 1
177 equivocal (1 day) ← failure date
178 equivocal
179 cloudy (>56 days after surgery)
180 cloudy (need the second cloudy to confirm)

181 Example 2
182 equivocal (1 day) ← failure date
183 equivocal
184 regraft

185 Example 3
186 clear
187 equivocal
188 cloudy* ← failure date
189 equivocal
190 cloudy (>90 days after *)

191 Example 4
192 clear
193 cloudy
194 clear
195 cloudy* ← failure date
196 cloudy (<90 days after *)
197 regraft

198 Example 5
199 clear
200 clear
201 regraft ← failure date
202
203
204
205
206
207

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

3.1.5 Censoring and Non-Protocol Graft Failures

3.1.5.1 Eyes with Incomplete Follow-Up

In eyes that dropped prior to the 3 year visit without meeting criteria for graft failure the following ‘rules’ will apply:

1. A cornea that is “on the path to failure” (per 3.1.4 above) at the last completed visit AND was cloudy at least once during the “on the path to failure” period will be flagged for **‘non-protocol’ graft failure review by the Executive Committee**. If confirmed as a non-protocol graft failure, the failure date will be determined as it is in 3.1.4 above.
2. All others *will NOT* be considered a graft failure and the data will be **censored** at the last completed visit

3.1.5.2 Eyes with 3 Year Visit Not Meeting Failure Criteria

In eyes that complete the 3 year visit without meeting criteria for graft failure the following ‘rules’ will apply:

1. If the cornea is “on the path to failure” (per 3.1.4 above) at the 3 year visit, data beyond the 3 year visit up to 42 months will be used (if available) to determine whether the cornea will be considered a failure up to 3 years. Data beyond 42 months will not be used for this assessment.
 - If the cornea clears at a subsequent follow-up visit (within 42 months) prior to meeting confirmation of failure criteria, the cornea will not be classified as a graft failure and data will be censored at the 3 year visit.
 - If additional follow-up data (within 42 months) confirm a failure (via regraft or 90 days confirmed cloudy), then the cornea will be classified as a graft failure up to 3 years and date of failure will be determined per 3.1.4 above.
 - If data beyond the 3 year visit are not available, OR the cornea remains “on the path to failure” beyond the 3 year visit but the follow-up data that are available within 42 months still do not confirm failure, the case will be flagged for **‘non-protocol’ graft failure review by the Executive Committee**. (Note all of these cases will have been cloudy at least once during the “on the path to failure” period.) If confirmed as a non-protocol graft failure, the failure date will be determined per 3.1.4 above.
2. If the cornea is not “on the path to failure” (clear or equivocal following clear) at the 3 year visit, it *will NOT* be considered a graft failure and the data will be **censored** at the 3 year visit

3.1.5.3 Severe Events Unrelated to Preservation Time

In eyes that met failure due to a severe event unrelated to preservation time (listed in section 3.1.2.1), the following ‘rules’ will apply:

1. A cornea that is “on the path to failure” (per 3.1.4 above) at the last completed visit prior to the severe event leading to failure AND was cloudy at least once during that “on the path to failure” period prior to

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

the event will be flagged for '**non-protocol' graft failure review by the Executive Committee**. If confirmed as a non-protocol graft failure, the failure date will be determined as it is in 3.1.4 above.

2. All others *will NOT* be considered a graft failure and the data will be **censored** at the last completed visit prior to the severe event leading to failure.

Examples

Example 1
clear
clear
cloudy ← 'non-protocol' failure date
equivocal
lost to followup

Example 2
clear
clear
equivocal
equivocal ← censored date
lost to followup

Example 3
clear
clear
cloudy ← 'non-protocol' failure date
blunt trauma
cloudy
regraft

Example 4
clear
cloudy
clear ← censored date
blunt trauma
cloudy
regraft

Example 5
equivocal (1 day)
equivocal ← censored date
lost to followup

Example 6
equivocal (1 day) ← 'non-protocol' failure date
cloudy
lost to followup

3.1.6 Clarifications Regarding 3 Year Visit Windows

The visit that the site designates as the "3 year visit" is the one that drives whether a 3 year failure has occurred. If the eye is dropped without meeting failure and prior to completion of the 3 year visit, the rules in 3.1.5.1 apply. If failure definition is met prior to a 3 year visit, then this is counted as a 3 year failure according to 3.1.4. If failure is not met prior to a 3 year visit, the rules in 3.1.5.2 are followed. The following clarifications regarding visit windows will apply to these rules:

- The window for the 3 year visit, per protocol, is 35-42 months. The 3 year visit will be permitted to occur late out of window, up to 44 months. For a 3 year visit occurring late out of window (between 42-44 months) the same rules above apply relative to this designated 3 year visit.
- If there is no designated 3 year visit completed, data (i.e. unspecified visits) up to 44 months can be used to determine if failure met. The same rules above will apply.
- NOTE: This means that data beyond 42 months (up to 44 months) CAN be used to determine 3 year failure status if and only if the visits occur prior to or including a designated 3 year visit late out of window, OR in the absence of a designated 3 year visit.

3.1.7 Unadjusted Analysis

Three year Kaplan-Meier graft failure estimates with 95% confidence intervals (variance estimated using the Greenwood method) will be calculated separately for the two treatment groups (≤ 7 days and 8 to 14 days from preservation to surgery). A one-sided 95% confidence interval will be constructed for the difference in 3 year graft failure rates between the two groups. The bootstrap re-sampling technique will be used to account for potentially correlated data from donors who donated both corneas in this study and potentially correlated data from 2 study eyes of the same study participant. The technique will sample with replacement from the observed dataset. For each bootstrap sample the effect of preservation time will be estimated using the same method as in the primary analysis. Confidence intervals will be calculated using the bias-corrected and accelerated method. The number of bootstraps will be 100,000.

The two treatment groups will be declared equivalent if the one-sided 95% confidence interval for the difference in proportions excludes the pre-defined non-inferiority limit of 4%.

3.1.8 Adjusted Analysis

Multivariate analysis will be performed using Cox proportional hazards regression model. The primary multivariate model will include the corneal diagnosis regardless of statistical significance, in addition to time from preservation to surgery (treated as a binary variable).

In additional models, potential confounders including recipient and donor age, recipient and donor race, presence of glaucoma, presence of corneal vessels, history of smoking, and certain aspects of the retrieval and processing of the donor tissue (including multiple types of storage media, if more than one is used in preservation of the corneal tissues, observations during or after cutting, time from cut to surgery, and donor rim culture results) will be screened by assessing the change in the preservation time effect when the potential confounder is controlled for in the Cox model. Univariate models will be evaluated first, and factors from those models with a p value <0.10 will then be evaluated in a multivariate model. A final model will be constructed consisting of factors with a p value <0.01 following a backwards selection process.

3.1.9 Surgeon Effect

363
364
365
366
367 Random surgeon effects will be tested using a generalized linear model via the SAS
368 GLIMMIX procedure. This marginal model produces a robust standard error (RSE)
369 by use of a sandwich estimator, which corrects for correlated data.
370
371
372
373
374
375
376

3.1.10 Analysis of Potential Interaction

377 Potential effect modifiers of donor tissue preservation time such as recipient age or
378 corneal diagnosis will be screened by including first-order interaction terms.
379 Variables that exhibit modification of the donor tissue preservation time effect with
380 an associated P value < 0.10 will be added to the model, and the final model will be
381 constructed consisting of terms with a p value < 0.01 following a backwards selection
382 process.
383
384
385
386

3.2 Secondary Analyses of 3 Year Graft Failure

3.2.1 Preservation Time

387 The time from preservation to surgery is treated as a binary variable in the primary
388 analysis (see above section). Secondary analyses will look at the time from
389 preservation to surgery as a categorical variable with multiple levels and as a
390 continuous variable:

- 391 • Kaplan-Meier estimates of graft failure with 95% confidence interval will be
392 calculated for each of the following groups: 0 – 4, 5 – 7, 8 – 11, and 12 – 14 days
393 from preservation to surgery (counting partial days as whole days).
- 394 • A Cox proportional hazards model will be constructed treating the time from
395 preservation to surgery as a continuous variable (using time of day to calculate
396 hours from preservation to surgery). Polynomial terms will be added to assess any
397 curvilinear, J, or U shaped relationship between time from preservation to surgery
398 and graft failure. If no significant departure from a linear relation is detected, a
399 one sided 95% confidence interval will be computed for the hazard ratio per day
400 of time from preservation to surgery.
 - 401 ▪ The proportional hazards assumptions will be tested through the use of time-
402 dependent variables with a logarithm transformation of time. If this
403 assumption is violated then hazard ratios will be presented separately for
404 different periods following transplant.

3.2.2 Predictive Factors – (*Analysis plan for objective 3, graft failure outcome*)

405 The association of factors potentially related to graft failure will be evaluated in
406 univariate and multivariate Cox models, adjusting for preservation time group
407 regardless of statistical significance. The proportional hazards assumptions will be
408 tested as described above. Univariate models will be evaluated first, and factors from
409 those models with a p value < 0.10 will then be evaluated in a multivariate model. A
410 final model will be constructed consisting of factors with a p value < 0.01 following a
411 backwards selection process.

412 Potential factors to evaluate include:

- 413 • Recipient factors
 - 414 ➤ preoperative diagnosis

411 ➤ gender
412 ➤ age
413 ➤ race
414 ➤ prior use of glaucoma medication
415 ➤ prior glaucoma surgery (trabeculectomy, laser procedure)
416 ➤ current smoker (at time of surgery)
417 ➤ lens status (phakic, posterior chamber intraocular lens)
418 ➤ Intraocular pressure (IOP)
419

420 • Donor/graft factors
421 ➤ eye bank determined screening ECD
422 ➤ pre-operative CIARC determined ECD
423 ➤ age
424 ➤ gender
425 ➤ race
426 ➤ history of diabetes
427 ➤ cause of death
428 ➤ type of storage medium
429 ➤ death to preservation time
430 ➤ surgeon cut vs eye bank cut
431 ➤ postcut thickness
432 ➤ cut to surgery time
433 ➤ observations during or after cutting
434

435 • Surgical factors
436 ➤ Insertion method
437 ➤ Incision location
438 ➤ Incision site
439 ➤ Graft size
440

441 • Postoperative factors
442 ➤ Dislocation
443 ➤ Rebubbling
444 ➤ IOP
445 ➤ Graft rejection
446 ➤ Corneal thickness
447
448

3.2.3 ECD as Time Dependent Predictor of Graft Failure

The relationship between endothelial graft failure (graft failure due to endothelial decompensation) and ECD will be addressed paralleling the methods used in the CDS. A Cox model will be fit with ECD as a time dependant covariate. This analysis will be limited to subjects with at least one gradable follow up image. The rate of change will also be calculated as a time dependent variable defined as the least squares slope over all previous measurements starting at 6 months (e.g., the rate of change at one year would be the slope fit to the 6 month and 1 year ECD values). Missing values will be imputed by Rubin's method. If non-linear effects are detected, transformations will be used. For ease of interpretation, results will be presented as discrete categories with cutpoints chosen to display the trends identified from the transformed model. P-

460 values will still be from a continuous analysis although data are displayed as
461 categories. The proportional hazards assumptions will be tested as described above.
462

463 To check whether results are sensitive to how missing data are handled, a second
464 model will be fit with a time dependent indicator for missing ECD.
465

466 3.2.4 Secondary Outcome of Graft Rejection

467 Associations of baseline recipient and donor factors with the occurrence of a graft
468 rejection will be assessed in univariate and multivariate proportional hazards models.
469 Life-table analyses will be used to compute the probability of a first rejection event
470 within intervals defined by the study exam schedule. Data will be censored at the time
471 of a non-rejection graft failure or at the last visit.

472 A Kaplan-Meier approach will be considered for evaluating probability of first graft
473 rejection, and time dependency of repeated rejection events will also be explored.
474 Determination of the timing of a separate episode graft rejection will include a
475 confirmation that the eye was off steroids at the visit where rejection was reported.
476

477 4.0 Endothelial Cell Density (ECD)

478 4.1 Primary Analysis of 3 Year ECD- (Analysis plan for objective 2)

479 4.1.1 Analysis Cohort

480 The primary analysis will include all study participants with a gradable 3-year image,
481 who have not experienced graft failure 3 years after transplantation.
482

483 4.1.2 Outcome Measure

484 The primary outcome measure will be the ECD at 3 years, conditional on graft survival
485 at 3 years.
486

487 4.1.3 Descriptive Statistics

- 488 489 • Summary statistics (mean \pm SD and/or median/quartiles as appropriate to the
490 distribution) will be given for the ECD by the 2 treatment groups (≤ 7 and 8 to 14
491 days) and 4 treatment groups (0 – 4, 5 – 7, 8 – 11, and 12 – 14 days).
- 492 493 • Change from eye bank determined screening ECD will be summarized in a similar
494 manner.
- 495 496 • Boxplots of ECD and change from eye bank determined screening ECD will be
497 given for the 2 randomization groups.
- 498 499 • A scatter plot will be constructed of eye bank determined screening ECD vs. 3
500 year ECD with a symbol used to denote the two randomization groups.

501 4.1.4 Analysis

502 An ANOVA model with 3 year ECD as the dependent variable will be used to assess
503 the effect of preservation time.

- 504 505 • Confounding with regard to screening ECD is not expected to be an issue due to
506 anticipated balance via randomization. Therefore, an ANCOVA model adjusting
507 for eye-bank-determined screening ECD will only be used if this measurement is
508 considered good enough to expect to have any impact on reducing variance.
 - 509 510 ○ Although all screening images are being collected, CIARC is not grading
511 them other than a general quality assessment. CIARC will grade a sample
512 of screening images within each eye bank. If more than 75% of the graded

509 ECDs are within 10% of the eye bank determined ECDs, the eye bank
510 determined ECDs will be included in the model.

511 • The time from preservation to surgery will be treated as a binary variable.
512 • If residual values from the models above are highly skewed then a transformation
513 (e.g., square root or logarithm) or non-parametric methods will be used instead.
514 • Random effects will be modeled to account for any correlated data from the same
515 donor and any correlated data from 2 study eyes of the same study participant.
516 • Additional ANCOVA models will also adjust for other recipient/donor risk
517 factors. Univariate models will be evaluated first, and factors from those models
518 with a p value <0.10 will then be evaluated in a multivariate model. A final model
519 will be constructed consisting of factors with a p value <0.01 following a
520 backwards selection process
521 • Random surgeon effects will also be explored using a mixed effects model.
522 • Sensitivity analysis will also be performed to check whether results change
523 meaningfully depending on how missing data are handled. The missing 3 year
524 ECD values for subjects with surviving grafts at 3 years will be imputed and
525 included in an analysis as described in the previous section. The data imputation
526 will be performed by using Rubin's method of multiple imputation.

527

528 4.2 Secondary Analyses of 3 Year ECD

529

530

531 4.2.1 Preservation Time

532 The time from preservation to surgery is treated as a binary variable in the primary
533 analysis of ECD (see above section). The analyses described above will be repeated
534 with time from preservation to surgery treated as continuous (using time of day to
535 calculate hours from preservation to surgery) or multi-category variable (0 – 4, 5 – 7,
536 8 – 11, and 12 – 14 days from preservation to surgery) in separate models.

537

538 4.2.2 Longitudinal analysis

539 This analysis also will be limited to subjects with a surviving graft at 3 years. A
540 repeated measures least squares regression model will be fit using all available images
541 at baseline, 6 months, 1, 2, and 3 years. This analysis will be performed *with* and
542 *without* imputation of missing data. Rubin's method of data imputation will be used
543 to impute the ECD values for all missing time points. The time from preservation to
544 surgery will be modeled as both continuous and categorical as described above. If
545 residual values have a skewed distribution then transformation (e.g., square root or
546 logarithm) or non-parametric analysis will be used.

547

548 4.2.3 Predictive factors – (*Analysis plan for objective 3, ECD outcome*)

549 This analysis also will be limited to subjects with a surviving graft at 3 years. The
550 association of factors potentially related to 3 year ECD will be evaluated in
551 univariate and multivariate ANCOVA models, adjusting for preservation time group
552 regardless of statistical significance, and the reading center grading of pre-operative
553 ECD (imaged post-cut if the eye bank was performing the cutting and imaged just
554 prior to shipping if the surgeon was performing the cutting). This ECD value will be
555 considered the baseline for these analyses. Univariate models will be evaluated
first, and factors from those models with a p value <0.10 will then be evaluated in a

556 multivariate model. A final model will be constructed consisting of factors with a p
557 value <0.01 following a backwards selection process.

558 Potential factors to evaluate include:

- 559 560 • Recipient factors
 - 561 ➤ preoperative diagnosis
 - 562 ➤ gender
 - 563 ➤ age
 - 564 ➤ race
 - 565 ➤ prior use of glaucoma medication
 - 566 ➤ prior glaucoma surgery (trabeculectomy, laser procedure)
 - 567 ➤ current smoker (at time of surgery)
 - 568 ➤ lens status (phakic, posterior chamber intraocular lens)
 - 569 ➤ Intraocular pressure (IOP)
- 570 571 • Donor/graft factors
 - 572 ➤ eye bank determined screening ECD
 - 573 ➤ pre-operative CIARC determined ECD
 - 574 ➤ age
 - 575 ➤ gender
 - 576 ➤ race
 - 577 ➤ history of diabetes
 - 578 ➤ cause of death
 - 579 ➤ type of storage medium
 - 580 ➤ death to preservation time
 - 581 ➤ surgeon cut vs eye bank cut
 - 582 ➤ postcut thickness
 - 583 ➤ cut to surgery time
 - 584 ➤ observations during or after cutting
- 585 586 • Surgical factors
 - 587 ➤ Insertion method
 - 588 ➤ Incision location
 - 589 ➤ Incision site
 - 590 ➤ Graft size
- 591 592 • Postoperative factors
 - 593 ➤ Dislocation
 - 594 ➤ Rebubbling
 - 595 ➤ IOP
 - 596 ➤ Graft rejection
 - 597 ➤ Corneal thickness

601 **4.3 Effect of Preservation Time on Pre-Operative ECD – (Secondary Non-Protocol
602 Objective)**

603 An ANCOVA model with CIARC graded pre-operative ECD as the dependent variable,
604 and adjusting for eye-bank-determined screening ECD, will be used to assess the effect

605 of preservation time. The time from preservation to surgery will be treated as a binary
606 variable.
607
608

609 **5.0 Safety Analysis Plan**

610 All reported adverse events will be tabulated by treatment group. The main safety analysis will
611 involve tabulation of data by treatment group of events that could be considered possibly related to
612 the preservation time, including endophthalmitis, bacterial, fungal or parasitic corneal infection, or
613 any other events designated by the study group as possibly related to preservation time.
614

615 Operative complications and procedures, post-operative complications and procedures (including
616 dislocation of donor, interface fluid, air injection), and abnormalities noted on ocular exam will also
617 be tabulated by treatment group to evaluate potential safety concerns.
618

619 The efficacy analyses already outlined in this document, related to graft failure and ECDs, also
620 could be viewed as safety analyses. Occurrences of following additional events during follow-up
621 will be tabulated by treatment group to assess potential safety concerns:
622

- 623 • IOP>25 mmHg (median and quartiles will also be presented)
- 624 • Corneal Thickness >750 microns (median and quartiles will also be presented)
- 625 • Definite signs of graft rejection
- 626 • Presence of stromal corneal vessels
- 627 • Presence of corneal scar or haze
- 628 • Epithelial defect >50%
- 629 • Donor stromal clarity = cloudy
- 630 • Recipient stromal clarity = cloudy

631 **6.0 Additional Tabulations and Analyses**

632 The following will be tabulated according to treatment group:

- 633 • Baseline recipient demographic and clinical characteristics
- 634 • Donor characteristics
- 635 • Visit completion rate for each visit
- 636 • Additional post-operative study eye procedures(not part of the safety analysis), at each visit
- 637 • Baseline characteristics in cases with graft failure, cases with incomplete follow up without
638 graft failure, and cases with complete follow up without graft failure.
- 639 • Crosstabulation of immunizations or vaccinations versus signs of graft rejection, at each visit
- 640 • Protocol deviations

641 **7.0 DSMC Interim Analysis Plan**

643 No formal interim analyses are planned towards demonstrating non-inferiority before the end of the
644 study since the recruitment period is planned to be short compared with the follow-up period and
645 since we believe it is imperative to have three years of follow up to assess non-inferiority.
646

647 In addition to semi-annual review described in Section 5.2, the following plan for interim monitoring
648 for a potential recommendation of early stopping of enrollment has been established in conjunction
649 with the DSMC. This plan is based on early donor failure rate and on the progress of recruitment.

- 650 • Rate of failure within the first 8 weeks: Upon enrollment of the first 100 eyes, and then
651 quarterly thereafter (i.e., one review between each DSMC semi-annual meeting) the DMAC

652
653
654
655
656
657
658
659
660
661
will evaluate the failure rate within the first 8 weeks (i.e. both the early failures and the primary donor failures, as defined in Section 4.6) in each group and notify the DSMC who will have the option of requesting additional information between the semi-annual reviews. The DSMC may also request more frequent reviews at any time.

- 656 • **Recruitment Progress:** Recruitment progress will be evaluated at the first two DSMC
657 meetings following initiation of recruitment. If based on the current recruitment total and
658 recruitment trend over the previous 3 months, the projected timeline for the remaining
659 recruitment is more than 16 months at the 1st review or more than 12 months at the 2nd review,
660 the DSMC will discuss whether the study timeline can be met.
661

662 **8.0 Extension Analysis Plan**

663 **8.1 Background**

664 CPTS Protocol Amendment V 4.0 7-1-15 extended follow up such that participants who are
665 willing to re-consent will continue to be monitored for annual protocol visits past the 3-year
666 timepoint, until at least 2017. The same data will be captured from annual visits as well as
667 interim unscheduled visits as was done previously. The same study specific tests – pachymetry
668 and specular/confocal microscopy - will continue to be performed on the annual visits. All
669 participants will therefore have a last possible common endpoint rather than exiting individually
670 when they reach their 3 year post-operative visit; all visits will continue to be captured until
671 approximately the 2nd quarter of 2017.

672 *Rationale: Continued follow-up of CPTS participants provides an excellent opportunity to gain
673 more information about many factors affecting DSAEK outcomes, including donor age and
674 preservation time. We estimate a maximum potential of 740 and 160 Year 4 and 5 visits,
675 respectively, if most participants re-consent. This additional longitudinal data will provide
676 important information on longer term DSAEK outcomes that are not necessarily impacted by
677 preservation time, although we will continue to assess that variable as well.*

678
Actual number
of surgeries,
spread into
timing of when
they occurred

84% of enrolled
are expected to
reach 3 year
90% of those
reaching 3 year are
expected to consent
to CPTS extension

Enrolled	CPTS Grant	Projected to reach 3 year visit	Projected to consent to CPTS extension	4 year visit	5 year visit
52	Y4	Q2 2015	44	39	
183		Q3 2015	154	138	
197		Q4 2015	165	149	
187	Y5	Q1 2016	157	141	
232		Q2 2016	195	175	37
181		Q3 2016	152	137	131
204	Y6	Q4 2016	171	154	141
94		Q1 2017	79	71	134
		Q2 2017			167
		Q3 2017			35
				130	125

680 **8.2 Objectives**

681 The objective of the extension is to extend the 3 original study objectives to the 4 and 5 year
682 endpoints.

683 **8.3 Statistical Methods**

684 The same statistical methods for all 3 study objectives as outlined above for analysis at 3
685 years will be extended to the 4 year and 5 year endpoints.

686 Baseline characteristics will be tabulated and compared between subjects who completed a 3
687 year visit and chose not to participate versus those who completed a 3 year visit and
688 consented to participate, stratified by preservation time group. Subjects who dropped prior
689 to the 3 year visit for any reason (regraft, death, LTF, withdrew) will be excluded from this
690 comparison.

691