

**A Randomized Placebo-controlled Trial of Spectacles
with Highly Aspherical Lenslets or 0.05% Atropine to
Slow Progression of Myopia in Children**

**Protocol Identifying Number: MTS2
IND Sponsor: Jaeb Center for Health Research
IND #: 137441**

**Funded by: National Eye Institute, National Institutes of Health;
EssilorLuxottica provided partial support**

**Version Number: 1.0
June 12, 2025**

CONFIDENTIAL

KEY ROLES

JCHR Principal Investigator	
Name, degree	Danielle Chandler, MSPH
Title	Epidemiologist
Institution Name	<p>Jaeb Center for Health Research 15310 Amberly Drive, Suite 350 Tampa, FL 33647 Phone: 1-888-797-3344 Fax: 1-888-697-3344 Email: dchandler@jaeb.org http://www.pedig.net</p>
Signature/date	
Protocol Co-Chair	
Name, degree	Lori Ann F. Kehler, OD
Title	Associate Professor of Ophthalmology
Institution Name	<p>Vanderbilt University Medical Center Vanderbilt Eye Institute 2311 Pierce Avenue Nashville, TN 37232 Phone: 615-936-2020 Email: lori.ann.kehler@vumc.org</p>
Signature/date	
Protocol Co-Chair	
Name, degree	Katherine A. Lee, MD, PhD
Title	Consultant
Institution Name	<p>Jaeb Center for Health Research 15310 Amberly Drive, Suite 350 Tampa, FL 33647 Phone: 1-888-797-3344 Fax: 1-888-697-3344 Phone: 1-888-797-3344 Email: kathlee058@gmail.com</p>
Signature/date	
Medical Monitor	
Name, degree	Michael X. Repka, MD, MBA
Title	Medical Monitor
Institution Name	<p>Wilmer Eye Institute 233 Wilmer Institute, 600 N Wolfe St Baltimore, MD 21287 Phone: (410) 955-8314 Fax: (410) 955-0809 Email: mrepka@jhmi.edu</p>
Signature/date	

VERSION HISTORY

VERSION NUMBER	AUTHOR	APPROVER	EFFECTIVE DATE	REVISION DESCRIPTION
1.0			29Apr2025	Original document*

*Version in effect at study initiation

TABLE OF CONTENTS

CHAPTER 1: BACKGROUND INFORMATION.....	17
1.1 Epidemiology and Clinical Characteristics	17
1.2 Treatments to Slow Myopia Progression.....	17
1.2.1 Atropine Treatment	17
1.2.1.1 Low-Concentration Atropine Eye Drops in Non-Asian Populations	18
1.2.1.2 Low-Concentration Atropine Eye Drops in Asian Populations	19
1.2.1.3 Higher Atropine Concentrations (>0.05%).....	20
1.2.2 Spectacles with Highly Aspherical Lenslets (HAL).....	20
1.2.2.1 HAL Lens Mechanism of Action.....	20
1.2.2.2 Characteristics of HAL Lens	21
1.2.2.3 HAL Lens Clinical Trial Data.....	21
1.2.3 Combined Atropine and HAL Lenses	22
1.3 Rationale for Present Study	23
1.4 Public Health Importance	23
1.5 Potential Risks and Benefits of Study Treatment	24
1.5.1 Known Potential Risks of Atropine Eye Drops	24
1.5.2 Known Potential Risks of HAL Lens Wear.....	26
1.6 Known Potential Benefits.....	26
1.7 Risk Assessment	26
1.8 General Considerations	26
CHAPTER 2: STUDY ENROLLMENT AND SCREENING.....	27
2.1 Participant Recruitment and Enrollment	27
2.2 Informed Consent and Authorization Procedures	27
2.3 Participant Inclusion Criteria.....	27
2.4 Participant Exclusion Criteria.....	28
2.5 Screening/Enrollment Procedures	29
2.5.1 Demographic & Historical Information.....	29
2.6 Testing at the Enrollment Visit.....	29
2.7 Run-In Phase Refractive Correction	29
2.8 Run-in Phase.....	30
2.9 Treatment in Run-In Phase	30
CHAPTER 3: RANDOMIZATION	32
3.1 Assessment of Adherence with Artificial Tears	32

3.2	Assessment of Adherence with Refractive Correction Wear.....	32
3.3	Testing at the Randomization Visit.....	32
3.4	Confirmation of Eligibility for Randomization	33
3.5	Randomization	34
CHAPTER 4: TREATMENT AND FOLLOW-UP IN RANDOMIZED TRIAL.....		35
4.1	Treatment from 0 to 24 months	35
4.1.1	Study Medication	35
4.1.2	Study Spectacles	35
4.2	Treatment from 24 to 30 months.....	36
4.1	Telephone Calls	36
4.3	Adherence with Study Treatment	36
4.4	Side Effects of Treatment.....	37
4.5	Study Visits and Phone Calls in the Randomized Trial.....	37
4.6	Procedures at 4-Week Treatment Initiation Visit.....	39
4.7	Procedures at Follow Up Visits Between 6 and 30 Months	39
4.7.1	Lensometry	39
4.7.2	Procedures at Clinical Follow Up Visits	39
4.8	Procedures at Study Spectacle Fittings.....	40
4.9	Management of Refractive Error	40
4.10	Non-Randomized Treatment	41
4.11	Text Message Contacts.....	41
CHAPTER 5: TESTING PROCEDURES AND QUESTIONNAIRES		42
5.1	Questionnaires	42
5.1.1	PEDIG Myopia Treatment Impact Questionnaire (Child and Parent).....	42
5.2	Clinical Testing Procedures and Assessments	42
5.2.1	Lensometry	42
5.2.2	Medical History.....	42
5.2.3	Adherence Assessment (all follow-up visits except 30-months)	43
5.2.4	Urine pregnancy test.....	43
5.2.5	Automated Pupillometry.....	43
5.2.6	Distance Visual Acuity Testing	43
5.2.7	Binocular Near Visual Acuity Testing	44
5.2.8	Monocular Amplitude of Accommodation (right eye only)	44
5.2.9	Drop Instillation for Testing Under Cycloplegia	44
5.2.10	Cycloplegic Autorefraction.....	44
5.2.11	Axial Length Measurement	44

5.2.12 Spectacle Prescription Determination with Cycloplegia	45
CHAPTER 6: UNANTICIPATED PROBLEM / ADVERSE EVENT, AND DEVICE ISSUE REPORTING	46
6.1 Unanticipated Problems	46
6.2 Adverse Events	46
6.2.1 Definitions	46
6.3 Reportable Adverse Events.....	47
6.4 Relationship of Adverse Event to Study Drug, Device or Procedure	48
6.5 Severity (Intensity) of Adverse Event	48
6.6 Expectedness.....	49
6.7 Coding of Adverse Events.....	49
6.8 Outcome of Adverse Event.....	49
6.9 Reportable Device (Spectacles) Issues	50
6.10 Timing of Event Reporting.....	50
6.11 Safety Oversight.....	50
6.12 Criteria for Suspending or Stopping Study.....	51
6.13 Participant Discontinuation of Study Treatment.....	51
CHAPTER 7: MISCELLANEOUS CONSIDERATIONS.....	52
7.1 Contacts by the Jaeb Center for Health Research and Sites	52
7.2 Pregnancy Reporting	52
7.3 Prohibited Medications, Treatments, and Procedures	52
7.4 Precautionary Medications, Treatments, and Procedures.....	52
7.5 Participant Compensation.....	52
7.6 Participant Withdrawal.....	52
7.7 Confidentiality	52
CHAPTER 8: STATISTICAL CONSIDERATIONS	53
8.1 Statistical and Analytical Plans.....	53
8.2 Statistical Hypotheses	53
8.2.1 ATROPINE Versus PLACEBO.....	53
8.2.2 HAL Versus PLACEBO.....	53
8.3 Sample Size	53
8.3.1 Estimate of Effect with PLACEBO.....	53
8.3.2 Estimate of Effect with ATROPINE and with HAL	54
8.3.3 Required Sample Size for Current Study.....	54
8.3.3.1 COMBINED Treatment	55
8.4 Outcome Measures.....	56

8.4.1	Primary Efficacy Outcome	56
8.4.2	Secondary Efficacy Outcomes	56
8.4.3	Exploratory Outcomes.....	56
8.5	Analysis Cohorts.....	57
8.6	Analysis of the Primary Efficacy Outcome	57
8.7	Analysis of the Secondary Outcomes.....	58
8.7.1	Change in Spherical Equivalent Refractive Error from Baseline at 24 Months.....	58
8.7.2	Change in Axial Length from Baseline at 30 Months	58
8.7.3	Change in Spherical Equivalent Refractive Error from Baseline at 30 Months.....	58
8.7.4	Changes in Axial Length and SER at 6, 12, and 18 Months.....	58
8.8	Analyses of Exploratory Outcomes.....	58
8.8.1	Change in Monocular Amplitude of Accommodation at 6, 12, and 24 Months	58
8.8.2	Change in Additional Ocular Parameters	58
8.8.3	Change in Pupil Size at 6, 12, and 24 Months	58
8.8.4	Change in Axial Length Over 24 Months (Area Under the Curve)	58
8.8.5	Change in Axial Length from 12 to 24 Months	59
8.8.6	Change in Axial Length from 24 to 30 Months	59
8.8.7	Change in Spherical Equivalent Refractive Error from 12 to 24 Months.....	59
8.8.8	Change in Spherical Equivalent Refractive Error from 24 to 30 Months.....	59
8.8.9	Change in Spherical Equivalent Refractive Error Over 24 Months	59
8.8.10	Treatment Impact Questionnaire.....	60
8.9	Safety Analyses.....	60
8.10	Intervention Adherence	60
8.11	Protocol Adherence and Retention.....	60
8.12	Baseline Descriptive Statistics.....	60
8.13	Planned Interim Analyses.....	61
8.14	Subgroup Analyses	61
8.15	Multiple Comparison/Multiplicity	61
8.16	Additional Tabulations and Analyses.....	62
8.17	Exploratory Analyses in COMBINED Atropine + HAL Lenses Group	62
CHAPTER 9: DATA COLLECTION AND MONITORING	63	
9.1	Case Report Forms and Other Data Collection.....	63
9.2	Study Records Retention	63
9.3	Quality Assurance and Monitoring	63
9.4	Protocol Deviations.....	64
CHAPTER 10: ETHICS/PROTECTION OF HUMAN PARTICIPANTS.....	65	

10.1	Ethical Standard	65
10.2	Institutional Review Boards	65
10.3	Informed Consent, Assent, and HIPAA Authorization Process	65
10.3.1	Procedures and Documentation.....	65
10.3.2	Participant and Data Confidentiality	65
10.3.3	Future Use of Data	66
CHAPTER 11:	REFERENCES	67

LIST OF ABBREVIATIONS

ABBREVIATION	DEFINITION
ANCOVA	Analysis of covariance
ATS	Amblyopia Treatment Study
BCVA	Best-corrected visual acuity
CI	Confidence interval
CFR	Code of Federal Regulations
CRF	Case report form
D	Diopter
DHHS	Department of Health and Human Services
DSMC	Data safety and monitoring committee
eCRF	Electronic case report form
FDA	Food and Drug Administration
GCP	Good clinical practice
HAL	Spectacles with Highly Aspherical Lenslets
HRQOL	Health-related quality of life
ICH	International Council for Harmonisation
IOD	Interocular difference
IRB	Institutional Review Board
JCHR	Jaeb Center for Health Research
logMAR	Logarithm of the minimal angle of resolution
NIH	National Institutes of Health
ODM	Occlusion dose monitor
PACT	Prism and alternate cover test
PEDIG	Pediatric Eye Disease Investigator Group
QA	Quality assurance
QC	Quality control
RBM	Risk-based monitoring
RCT	Randomized clinical trial
SER	Spherical equivalent refractive error

SITE PRINCIPAL INVESTIGATOR STATEMENT OF COMPLIANCE

Protocol Title: A Randomized Placebo-controlled Trial of Spectacles with Highly Aspherical Lenslets or 0.05% Atropine to Slow Progression of Myopia in Children

Protocol Version/Date: 1.0 12Jun2025

I have read the protocol specified above. In my formal capacity as a Site Principal Investigator, my duties include ensuring the safety of the study participants enrolled under my supervision and providing the Jaeb Center for Health Research, which serves as the JCHR for the protocol, with complete and timely information, as outlined in the protocol. It is understood that all information pertaining to the study will be held strictly confidential and that this confidentiality requirement applies to all study staff at this site.

This trial will be carried out in accordance with ICH E6 Good Clinical Practice (GCP) and as required by the following: United States (US) Code of Federal Regulations (CFR) applicable to clinical studies (45 CFR Part 46, 21 CFR Part 50, 21 CFR Part 56, 21 CFR Part 312, and/or 21 CFR Part 812).

As the Principal Investigator, I will assure that no deviation from, or changes to the protocol will take place without prior agreement from the sponsor and documented approval from the Institutional Review Board (IRB), or other approved Ethics Committee, except where necessary to eliminate an immediate hazard(s) to the trial participants.

All key personnel (all individuals responsible for the design and conduct of this trial) have completed Human Participants Protection Training and Good Clinical Practice Training. Further, I agree to ensure that all staff members involved in the conduct of this study are informed about their obligations in meeting the above commitments.

Investigator's Name:

Site Name/Number:

PROTOCOL SUMMARY

PARTICIPANT AREA	DESCRIPTION
Title	A Randomized Placebo-controlled Trial of Spectacles with Highly Aspherical Lenslets or 0.05% Atropine to Slow Progression of Myopia in Children
Précis	<p>To date, randomized trials of low-concentration atropine eyedrops and specially designed spectacle lenses to slow the progression of myopia are limited in number and results are inconsistent in non-Asian children.</p> <p>Although results of some recent randomized clinical trials outside the US are promising, additional studies in children are needed to test the safety and efficacy of low-concentration atropine and specially designed spectacle lenses as treatments to slow the progression of myopia during the peak years for eye growth.</p> <p>After a run-in phase to demonstrate adherence with nightly eyedrops (artificial tears) and spectacle correction, children 5 to <12 years old with myopia of 0.75D to 6.00D cycloplegic spherical equivalent refractive error (SER) and at least 0.75D myopia in both principal meridians of each eye will be randomized in a 2x2 factorial design to treatment with 1) nightly 0.05% atropine or placebo eyedrops, and 2) spectacles with highly aspherical lenslets (HAL) or single vision spectacles, and followed every six months for 24 months. Change in axial length over 24 months and change in SER over 24 months are the primary and secondary outcomes, respectively.</p> <p>All children will return for a visit at 30 months (after 6 months of no treatment other than single-vision spectacles alone between 24 and 30 months).</p>
Investigational Drug	Atropine 0.05% eyedrops
Investigational Device	Spectacle lenses with highly aspherical lenslets (HAL)
Treatment Groups	<p>Eligible participants will be randomly assigned 1:1:1:1 to four treatment groups for 24 months:</p> <ul style="list-style-type: none"> • Daily low-concentration atropine (0.05%) eyedrops plus spectacles with single vision lenses (SVL) (hereafter ATROPINE group) • Daily placebo eyedrops plus spectacles with single-vision lenses (SVL) (hereafter PLACEBO group) • Daily placebo eyedrops plus spectacles with highly aspherical lenslets (hereafter HAL group) • Daily low-concentration atropine (0.05%) eyedrops plus spectacles with highly aspherical lenslets (hereafter COMBINED group)
Objectives	<p>Primary 24-Month Timepoint (On Treatment) Objective To compare the effectiveness of ATROPINE versus PLACEBO and of HAL vs. PLACEBO for slowing myopia progression in axial length (AL) over a two-year treatment period in children aged 5 to less than 12 years with SER myopia of 0.75D to 6.00D and at least 0.75D myopia in both principal meridians of each eye at the time of enrollment.</p> <p>Secondary 24-Month Timepoint (On Treatment) Objective To compare the effectiveness of ATROPINE versus PLACEBO and HAL versus PLACEBO for slowing myopia progression in SER over a two-year treatment period in children aged 5 to less than 12 years with SER myopia of 0.75D to 6.00D and at least 0.75D myopia in both principal meridians of each eye at the time of enrollment.</p> <p>Exploratory 30-Month Timepoint (Off-Treatment) Objectives All analyses described for the 24-month primary timepoint will be repeated as exploratory analyses at 30 months to evaluate the progression of myopia over 30 months (after 6 months of no treatment other than single-vision spectacles alone between 24 and 30 months).</p>

PARTICIPANT AREA	DESCRIPTION
	<p>Exploratory Objectives at the Primary 24-Month Timepoint (On Treatment) To compare the effectiveness of COMBINED therapy versus PLACEBO for slowing myopia progression over a two-year treatment period in children aged 5 to less than 12 years with SER myopia of 0.75D to 6.00D and at least 0.75D myopia in both principal meridians of each eye at the time of enrollment.</p> <p>To compare the effectiveness of COMBINED therapy versus HAL for slowing myopia progression over a two-year treatment period in children aged 5 to less than 12 years with SER myopia of 0.75D to 6.00D and at least 0.75D myopia in both principal meridians of each eye at the time of enrollment.</p> <p>To compare the effectiveness of COMBINED therapy versus ATROPISE for slowing myopia progression over a two-year treatment period in children aged 5 to less than 12 years with SER myopia of 0.75D to 6.00D and at least 0.75D myopia in both principal meridians of each eye at the time of enrollment.</p>
Study Design	Multicenter Phase III Randomized Clinical Trial
Number of Sites	18 to 40
Endpoints	<p>Primary Efficacy Outcome (On-Treatment): Change in axial length from baseline to 24 months (on-treatment) as measured by a masked examiner using cycloplegic biometry.</p> <p>Key Secondary Efficacy Outcome (On-Treatment): Change in spherical equivalent refractive error (SER) from baseline to 24 months (on-treatment), as measured by a masked examiner using cycloplegic autorefraction.</p> <p>Exploratory Efficacy Outcomes (Off-Treatment): Change in axial length and SER from baseline to 30 months.</p> <p>Key Safety Outcomes:</p> <ul style="list-style-type: none"> • Proportion of adverse events reported in each group. • Proportion of participants with loss of >2 logMAR lines in best-corrected distance visual acuity in either eye at any follow visit.
Population	<p>Key Eligibility Criteria for Enrollment Into Run-in Phase:</p> <ul style="list-style-type: none"> • Age 5 to <12 years at time of enrollment. Children within 4 weeks of their 12th birthday are not eligible. • Refractive error meeting the following by cycloplegic autorefraction: <ul style="list-style-type: none"> ◦ Myopia of at least 0.75D in both principal meridians of each eye ◦ Myopia 0.75D to 6.00D SER in both eyes ◦ Astigmatism <2.50D in both eyes ◦ SE Anisometropia <1.50D • Investigator has confirmed the following regarding best-corrected distance visual acuity (VA) in habitual spectacles or trial frames using the investigator's preferred optotype VA testing method: <ul style="list-style-type: none"> ◦ VA is age normal in both eyes^{1,2} ◦ 5-6 years: approximately 20/32 or better, ≤ 0.24 logMAR, ≥ 73 letters ◦ 7-12 years: approximately 20/25 or better, ≤ 0.14 logMAR, ≥ 78 letters ◦ Interocular difference ≤ 2 logMAR lines (0.2 logMAR) or ≤ 10 letters • Wearing single-vision spectacles $\geq 90\%$ of waking hours ≥ 30 days before enrollment • Agree to refrain from wearing contact lenses for duration of the study • Willing to wear study spectacles full time (i.e at least 10 hours per day)

PARTICIPANT AREA	DESCRIPTION
	<ul style="list-style-type: none"> • No current or past pharmacologic agents or light therapy used for myopia treatment • No current or previous use of bifocals, progressive-addition lenses, multi-focal contact lenses, or focus- or contrast-modifying spectacle lenses • No current or previous use of orthokeratology, rigid gas permeable, or other contact lenses used to slow myopia progression
Sample Size	87 participants per group (348 total)
Phase	Phase III Randomized Clinical Trial
Participant Duration	31 months
Study Duration Planned (1st participant in to last out)	46 months
Protocol Overview/Synopsis	<p>Upon signing informed consent and assent (if needed), eligible children are considered enrolled into a 2 to 4-week run-in phase designed to determine adherence with nightly eyedrops (artificial tears) and spectacle correction. If adherence criteria are met ($\geq 90\%$ of expected days with eyedrops administered), and the participant still meets eligibility criteria, they will be randomized to 1 of 4 treatments described above (ATROPINE, HAL, PLACEBO, or COMBINED groups) for 24 months.</p> <p>Four weeks after randomization, each participant will return for a Treatment Initiation Visit to be fitted with a new pair of spectacles and receive study eyedrops. Four weeks after initiating randomized treatment, sites will contact the parent to check for treatment problems and to encourage adherence with the prescribed treatment. Study visits will occur at 6, 12, 18, and 24 months (on-treatment primary outcome), and 30 months (off-treatment outcome) from randomization. Study glasses will be changed every 6 months and dispensed at glasses fitting visits occurring four weeks after every follow up visit except the 30-month final study visit. After the Treatment Initiation Visit, Eyedrops will be dispensed at each 6, 12, and 18-month office visits.</p>

STUDY SUMMARY FLOW CHART

ENROLLMENT INTO RUN-IN PHASE

Major Eligibility Criteria at Enrollment for Run-in Phase

- Age 5 to <12 years of age at enrollment. Children within 4 weeks of their 12th birthday are not eligible.
- Refractive error meeting the following by cycloplegic autorefraction:
 - Myopia of 0.75D to 6.00D SER and at least 0.75D in both principal meridians of each eye
 - Astigmatism <2.50D in both eyes
 - Anisometropia <1.50D SE
 - Wearing single-vision spectacles ≥90% of waking hours ≥30 days duration before enrollment. (Exception exists for subjects with broken or lost spectacles. Details in section 2.3.)
- Investigator has confirmed the following regarding best-corrected distance visual acuity (VA) in habitual spectacles or trial frames using the investigator's preferred optotype VA testing method:
 - VA is age normal in both eyes (ref)
 - 5-6 years: approximately 20/32 or better, ≤ 0.24 logMAR, ≥ 73 letters
 - 7-12 years: approximately 20/25 or better, ≤ 0.14 logMAR, ≥ 78 letters
 - Intercocular difference ≤ 2 logMAR lines (0.2 logMAR) or ≤ 10 letters
- Willing to wear study spectacles for at least 10 hours per day, 6 days per week
- No current or past pharmacologic agents or light therapy used for myopia treatment
- No current or previous use of bifocal spectacles, progressive-addition lenses, defocus or contrast modifying spectacle lenses, or multi-focal contact lenses
- No current or previous use of orthokeratology, rigid gas permeable, or other contact lenses being used to slow myopia progression
- Agree to refrain from wearing contact lenses for duration of the study
- No known atropine allergy
- No strabismus other than a phoria

Enrollment Exam Procedures

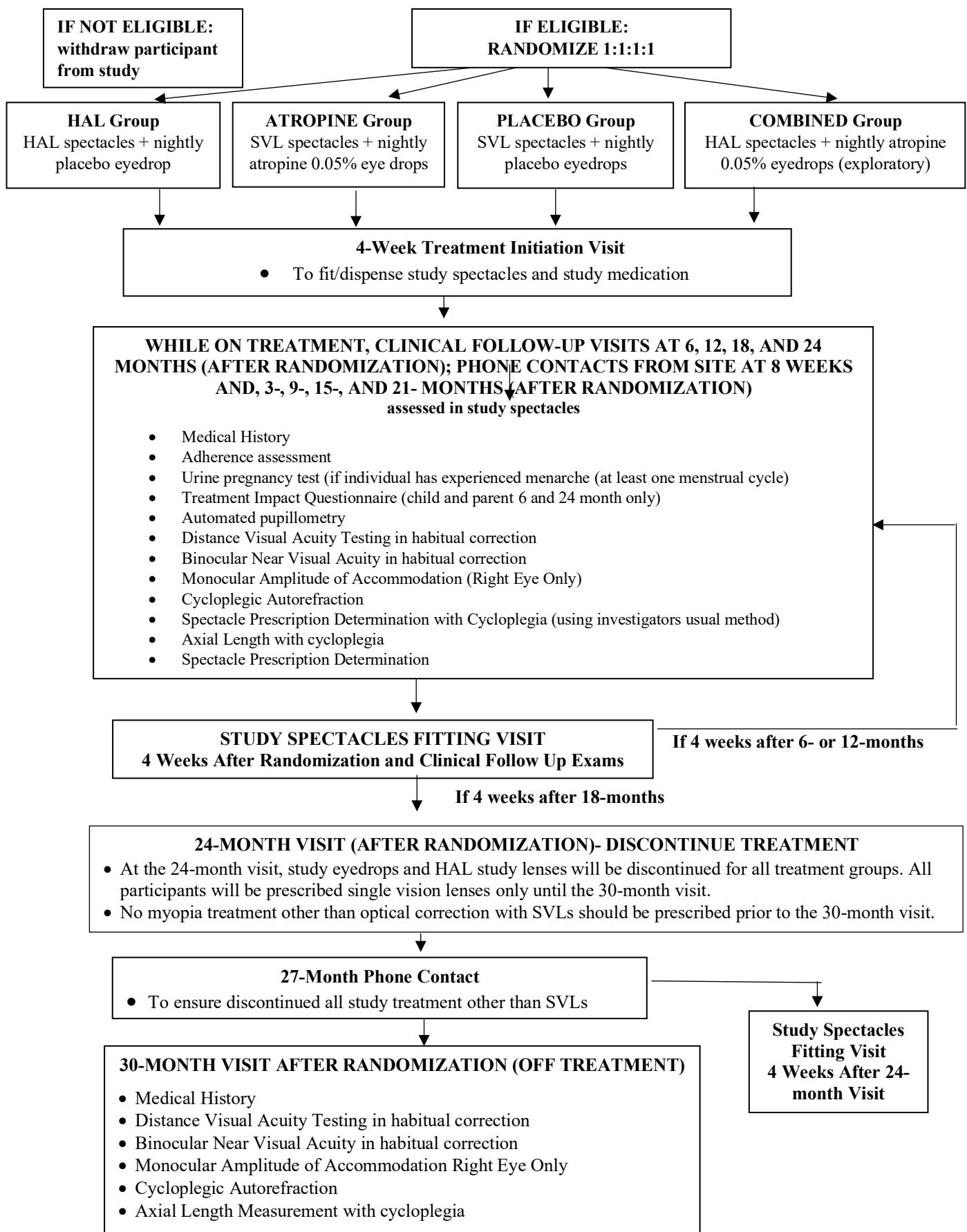
- Cycloplegic Autorefraction
- Cycloplegic Axial Length Measurement
- Spectacle Prescription Determination with Cycloplegia (using investigators usual method) to prescribe new spectacles if necessary (broken, lost, or not meeting tolerances)
- Prescribe artificial tear eyedrops to be used one drop to each eye until run-in follow up/randomization visit in 2-4 weeks

RUN-IN PHASE (2-4 WEEKS)

- Run in phase starts the day after enrollment for all participants.
- All participants are treated with nightly artificial tear eyedrops
- Habitual spectacles are continued until the Randomization Visit or until new spectacles are obtained, if prescribed

RANDOMIZATION VISIT (2-4 WEEKS AFTER ENROLLMENT)

assessed in new spectacles (if prescribed); otherwise, habitual spectacles. Trial frames if spectacles out of tolerances.


Additional Eligibility Criteria for Randomization

Best-corrected distance visual acuity (VA) meeting the following:

- VA is age normal in both eyes
- 5-6 years: approximately 20/32 or better **by ATS-HOTV**
- 7-12 years: approximately 20/25 or better, ≤ 0.14 logMAR, ≥ 78 letters using E-ETDRS
- Intercocular difference ≤ 2 logMAR lines (0.2 logMAR) or ≤ 10 letters
- Current spectacles meet refractive error tolerances
- At least 90% adherent with artificial tear eyedrop installation

Testing Procedures

- Distance Visual Acuity Testing (ATS-HOTV for children <7 years old; E-ETDRS for children ≥ 7 years old)
- Binocular Near Visual Acuity
- Monocular Amplitude of Accommodation (Right Eye Only)
- Automated pupillometry (for sites with equipment deemed study qualified)
- Urine Pregnancy Test (for all individuals who have experienced menarche (i.e. at least one menstrual cycle)

SCHEDULE OF STUDY CALLS, VISITS, AND PROCEDURES

	Enrollment Visit	Randomization Visit	4-Week Treatment Initiation Visit	6-Month Clinical Visit	12-Month Clinical Visit	18-Month Clinical Visit	24-Month Clinical Visit	30-Month Clinical Visit	Spectacle Fittings After Each Clinical Visit ¹	Phone Calls ²
Consent/assent (Enrollment)	I									
Medical history	I			I	I	I	I	I		
Adverse events				I ³	I ³	I ³	I ³	I		CT or CO
Demographics	CO, CT or I									
Urine pregnancy test ⁴		CO, CT or I		CO, CT or I ³						
Treatment Impact Questionnaire (parent and child versions)				CO, CT or I				CO, CT or I		
Lensometry		CO, CT or I	SF	CT	CT	CT	CT	CT or I	SF	
Automated pupillometry		CT or I		CT	CT	CT	CT	CT or I		
Monocular distance visual acuity		CT or I		CT	CT	CT	CT	CT or I		
Binocular near visual acuity		CT or I		CT	CT	CT	CT	CT or I		
Monocular amplitude of accommodation		CT or I		CT	CT	CT	CT	CT or I		
Dilating eye drop instillation ⁵	CO, CT or I			CO or CT	CO or CT	CO or CT	CO or CT	CO, CT or I		
Cycloplegic autorefraction ⁵	CT, BT or I			BT or I	BT or I	BT or I	BT or I	CT, BT or I		
Axial length with cycloplegia ⁵	CT, BT or I			BT or I	BT or I	BT or I	BT or I	CT, BT or I		
Refractive error determination with cycloplegia	I			I	I	I	I	I		
Initiate run-in phase ⁶	I									
Assess eligibility / randomize participant		I								
Dispense study spectacles			SF						SF	
Dispense study medication				CT or CO	CT or CO	CT or CO				
Collect unused study medication and empty bottles				CT or CO	CT or CO	CT or CO	CT or CO			
Collect study spectacles (when new spectacles fitted) ⁷									CT, CO, or SF	
Review treatment and encourage adherence										CT or CO

There is a minimum of two study personnel required to conduct this study; roles may also be split into additional personnel. Backup personnel are encouraged.

1) Investigator/Biometry Tester

2) Coordinator/Certified Tester/Spectacles Fitter

I = Investigator (MD, DO, or OD). For all post-randomization visits, the Investigator may not see the participant before dilating eyedrops are administered, unless the participant is wearing stereo spectacles (to prevent observation of pupils before dilating eyedrops are administered). After dilating eyedrops have been administered, the Investigator may see the participant without the participant wearing stereo spectacles. The Investigator may also serve as Biometry Tester, but may not serve as Coordinator, Certified Tester, or Spectacles Fitter. **CT** = Certified Tester. The CT may be the Coordinator, Spectacles Fitter, or other person also trained and certified in study procedures. The Certified Tester may not be the Biometry Tester or the Investigator. **BT** = Biometry Tester. The BT is trained and certified in autorefraction and biometry. For all post-randomization visits, autorefraction and biometry must be performed by either the Investigator or a Biometry Tester. The BT will only see the participant after dilating eyedrops have been administered. The Investigator may serve as BT, but the BT may not be the Coordinator, Certified Tester, or Spectacles Fitter. **CO** = Coordinator. The Coordinator may also serve as Certified Tester and/or Spectacles Fitter, but not as Biometry Tester or Investigator. **SF** = Spectacles Fitter. The study Spectacles Fitter will be trained and certified to fit, dispense, and repair study spectacles. The Spectacles Fitter may be the Coordinator, Certified Tester, or another person trained to handle study spectacles. The Spectacles Fitter is unmasked to type of spectacles and may not be the Biometry Tester or the Investigator.

¹There will be a spectacles dispensing visit 4 ±2 weeks after each semi-annual clinical research visit conducted by the Coordinator or Certified Tester and Spectacles Fitter.

²Phone calls will occur at 8 weeks and at, 3, 9, 15, 21, and 27 months to review treatment, manage any problems encountered and encourage compliance.

³Participant should wear stereo spectacles to prevent Investigator from observing pupils.

⁴For all individuals who have experienced menarche.

⁵Testing is repeated at randomization only if >28 days since enrollment (consent/assent).

⁶At the end of the Enrollment Visit, the participant will begin nightly artificial tears for 2 to 4 weeks.

⁷The SVL spectacles prescribed at 24-months may be kept by participants after the study ends.

1 **Chapter 1: Background Information**

3 **1.1 Epidemiology and Clinical Characteristics**

4 Myopia is one of the most commonly occurring ocular disorders, with an estimated prevalence in
5 children of 1.2% to 59.1%,³⁻⁵ in population-based studies conducted worldwide with variation
6 attributed to age, race, and definition of myopia. In children 6-72 months of age in the US,
7 population-based prevalence has been reported at 0.7-1.2% in non-Hispanic white children,^{6,7}
8 3.98% in Asian children,⁷ 5.5-6.6% in African American children,^{6,8} and 3.7% in Hispanic
9 children.⁸ 50% of children aged 11 to 13 years enrolled in a large health plan in California who had
10 eye examinations with refraction were found to have myopia⁹ Longitudinal studies demonstrate a
11 relatively high and increasing prevalence of myopia in adults.¹⁰⁻¹² In a study of white children and
12 black children between 12 and 17 years of age, the US prevalence of myopia increased from 24% in
13 1971-1972 to 34% in 1999-2004.⁸

14
15 Progression of myopia primarily occurs due to axial elongation of the eye. In a 2023 Cochrane
16 review¹³ of interventions for myopia control in children living mainly in China or other Asian
17 countries (61% of studies) and North America (20% of studies), the meta-analyses of control
18 populations estimated the median progression of myopia to be -0.65D over 1 year (36 studies; 2846
19 participants analyzed) and -1.02D over 2 years (24 studies; 2282 participants). Retarding
20 progression of myopia has been the focus of much research,¹³ given high levels of myopia are
21 associated with retinal and vitreous detachment, myopic macular degeneration, and increased risk of
22 glaucoma and cataract.^{14,15}

23
24 A report for the US population in 2014 estimated the prevalence of high myopia and myopic
25 choroidal neovascularization to be 3.92% (95% confidence interval [CI], 2.82-5.60) and 0.017%
26 (95% CI, 0.010-0.030), respectively, among adults in the United States aged 18 years and older.¹⁶
27 This translated into a population burden of approximately 9.6 million adults with high myopia and
28 approximately 41,000 adults with myopic choroidal neovascularization.

30 **1.2 Treatments to Slow Myopia Progression**

31 Treatments to slow myopia progression could be important for preventing the development of high
32 myopia and associated sequelae although not yet demonstrated to be effective in long-term studies.
33 Various management approaches have been reported to decrease the rate of myopic progression in
34 children, with varying success, including the use of anti-muscarinic pharmacological agents (e.g.,
35 atropine, pirenzepine, cyclopentolate), bifocals, progressive additional lenses, contact lenses,
36 contact lenses with peripheral myopic defocus, under-correction or part-time optical correction, and
37 orthokeratology.^{13,17}

38
39 The Cochrane review¹³ primarily compared pharmacological and optical treatments, finding that
40 these interventions may slow myopia and reduce axial elongation over one year. However, results
41 were heterogeneous, with some treatments seeming to be less effective in year 2 compared to year
42 1.

43 **1.2.1 Atropine Treatment**

44 The mechanism by which atropine slows myopia progression is believed to be unrelated to
45 accommodation but is otherwise largely unknown. Atropine has been hypothesized to modify eye
46 growth regulatory pathways and reduce axial elongation through several mechanisms including
47 locally at the retinal level (potentially through dopamine channels), at the choroidal level
48 (potentially through increasing its thickness), or through other mechanisms including nitric oxide

50 and gamma-aminobutyric acid (GABA); however, such conclusions on causal relationships between
51 these effects and atropine are mixed.^{13,18}

52

53 1.2.1.1 Low-Concentration Atropine Eye Drops in Non-Asian Populations

54 Four studies of 0.01% and 0.02% atropine eye drops have been conducted in largely non-Asian
55 populations in North America, Europe and Australia:

- 56 • The Pediatric Eye Disease Investigator Group (PEDIG) randomized trial in the US
57 compared 0.01% atropine to placebo¹⁹ and found no difference in mean (SD) change in SER
58 over 24 months. At the 24-month primary outcome visit, the adjusted mean (95% CI)
59 change in SER from baseline was -0.82D (-0.96 to -0.68) and -0.80D (-0.98 to -0.62) in
60 the atropine and placebo groups, respectively (adjusted difference = -0.02D ; 95% CI, -0.19
61 to $+0.15\text{D}$; $P = 0.83$).
- 62 • The Western Australian Atropine for the Treatment of Myopia (WA-ATOM) 2-year
63 randomized trial²⁰ found myopia progression of -0.64D with 0.01% atropine compared with
64 -0.78D with placebo (adjusted mean difference over 2 years = 0.14D ; 95% CI: -0.03 to
65 $+0.29\text{D}$).
- 66 • The Childhood Atropine for Myopia Progression (CHAMP) randomized clinical trial²¹
67 conducted at sites across North America and Europe found 0.02% atropine (primary
68 outcome comparison) was not effective for slowing mean SER progression compared with
69 placebo (least squares mean difference, 0.10D ; 95% CI, -0.02 to 0.22D ; $P = .10$) at 36
70 months, whereas efficacy was suggested for 0.01% (secondary outcome comparison)
71 compared with placebo (least squares mean difference, 0.24D ; 95% CI, 0.11 to 0.37D ; $P <$
72 $.001$).
- 73 • The Myopia Outcome Study of Atropine in Children (MOSAIC)²² conducted in Ireland
74 found SER change over 24 months was not significantly different between 0.01% atropine
75 and placebo groups (-0.53D in the 0.01% atropine and -0.63D in the placebo group; adjusted
76 difference in SER effect = 0.12 D , $p = 0.07$).

77 Given the lack of evidence supporting efficacy of the 0.01% and 0.02% atropine eyedrops in
78 slowing myopia progression in the United States, there is a need to evaluate stronger atropine
79 concentrations to determine whether a meaningful treatment effect can be found without
80 unreasonable side effects.

81 Loughman et al²³ (MOSAIC2) evaluated the effectiveness of 0.05% atropine in a mostly non-Asian
82 population, in a 1-year extension of their original two-year randomized trial²²: participants
83 originally randomized to two years of placebo eyedrops were given 0.05% atropine eyedrops for
84 the third year ($n=61$) and participants initially randomized to 0.01% atropine for two years were re-
85 randomized to placebo or tapering of 0.01% for the third year. Over the third year, those using
86 0.05% atropine showed 0.13D less myopia progression and 0.06mm less axial elongation, compared
87 with the placebo/tapering group, suggesting a possible effect of 0.05% atropine in this group.

88 There are currently no published randomized trials using 0.05% in largely non-Asian populations.
89 However, as of August 2024, there are two such randomized trials registered on ClinicalTrials.gov
90 indicating active recruitment, one based in the Netherlands comparing 0.05% and 0.50% atropine
91 concentrations (NCT05667454) and the other in France, comparing defocus incorporated multiple
92 segments (DIMS) lenses, 0.05% atropine and single vision lenses (NCT05062031).

99 **1.2.1.2 Low-Concentration Atropine Eye Drops in Asian Populations**

100 The earliest randomized trials of low-concentration atropine for slowing myopia progression were
 101 conducted in Asian populations.

- 102 • In 1999, Shih and colleagues²⁴ reported outcomes on 186 children (of 200 randomized) aged
 103 6 to 13 years with myopia ranging from -0.50D to -6.75D that compared 0.5%, 0.25%, and
 104 0.1% atropine to 0.5% tropicamide. Children received atropine or tropicamide eyedrops
 105 nightly for up to 2 years. All three atropine-treatment groups had less 2-year myopia
 106 progression (-0.04±0.63 D/year, -0.45±0.55D/year, and -0.47± 0.91D/year, respectively)
 107 than the tropicamide group (-1.06±0.61D/year).
- 108 • Subsequently, Shih and colleagues²⁵ studied the effect of multi-focal spectacles with and
 109 without atropine to control progression of myopia. The study randomized 227 children to 18
 110 months of 0.5% atropine + multifocal lenses, multi-focal lenses alone, or single vision
 111 spectacles. Myopia progressed only -0.42D±0.07D with atropine + multi-focal lenses
 112 compared with -1.19D±0.07D with multi-focal lenses alone and -1.40D±0.09D with single
 113 vision lenses, leading the authors to conclude that atropine treatment is effective for slowing
 114 the progression of myopia and may act via a mechanism of accommodation inhibition.
- 115 • The ATOM2 study²⁶ randomized 400 children (2:2:1) with myopia of at least -2.00D to 3
 116 different concentrations of atropine (0.5%, 0.1% and 0.01%) and found 2-year myopia
 117 progression of -0.30±0.60D, -0.38±0.60D, and -0.49±0.63D respectively. Although there was
 118 no control group, myopia progression was significantly lower than that observed in controls
 119 in ATOM1²⁷ (-1.20D±0.69D). Axial length growth was lower in both 0.5% and 0.1% groups
 120 compared with the 0.01% group (0.27 ± 0.25mm, 0.28 ±0.27mm, and 0.41±0.32mm
 121 respectively, P<0.001).

122
 123 Two recent randomized trials²⁸⁻³⁰ provide data on 0.05% atropine eye drops for slowing myopia
 124 progression in Asian populations.

125
 126 The LAMP study^{29,31} randomized 438 children aged 4-12 years with at least -1.00D of myopia to
 127 0.05%, 0.025%, 0.01% atropine, or placebo eye drops. For the 383 (87%) children completing the
 128 12-month outcome,²⁸ the mean change in spherical equivalent refractive error from baseline was -
 129 0.27D, -0.46D, -0.59D in the 0.05%, 0.025%, and 0.01% atropine groups respectively compared
 130 with 0.81D in the placebo group (p <0.001); the mean change in axial length from baseline was
 131 0.20mm, 0.29mm, 0.36mm in the 0.05%, 0.025%, and 0.01% atropine groups compared with
 132 0.41mm in the placebo group (<0.001).

133
 134 For the 93 children completing 24 months (85% of 109 randomized) of treatment and follow up,²⁹
 135 the mean change in spherical equivalent refractive error from baseline was -0.55D, -0.85D, -1.12D
 136 and in the 0.05%, 0.025%, and 0.01% atropine groups, respectively. (There were no placebo
 137 controls after 12 months). The mean change in axial length from baseline was 0.39 mm, 0.50 mm,
 138 0.59mm and in the 0.05%, 0.025%, and 0.01% atropine groups, respectively.

139
 140 Zhu et al³⁰ enrolled 142 children aged 7-12 years with -1.00 D to -6.00 D of myopia and
 141 randomized to 0.05% atropine or placebo eye drops. For the 72 children using 0.05% for 24 months,
 142 the mean change in spherical equivalent refractive error was
 143 -0.46±0.30D vs -1.72±1.12D in children using placebo (n=70), for a mean difference of 1.26±0.08D
 144 (95% CI 1.10 to 1.42 D calculated using reported standard error of ±0.08; P<0.001); mean change
 145 in axial length was 0.26±0.30 mm in the 0.05% atropine group vs 0.76±0.62 mm with placebo, for a
 146 mean difference of 0.05±0.04 mm (95% CI 0.42 to 0.58 D calculated using reported standard error
 147 of ±0.04; P=0.002).

149 Four additional ongoing randomized trials of 0.05% atropine (versus either the Stellest lens, the
150 DIMS lens, 0.01% atropine or 0.025% atropine) in Asian populations are on ClinicalTrials.gov
151 (NCT06344429, NCT06282848, NCT02130167, NCT05597163).

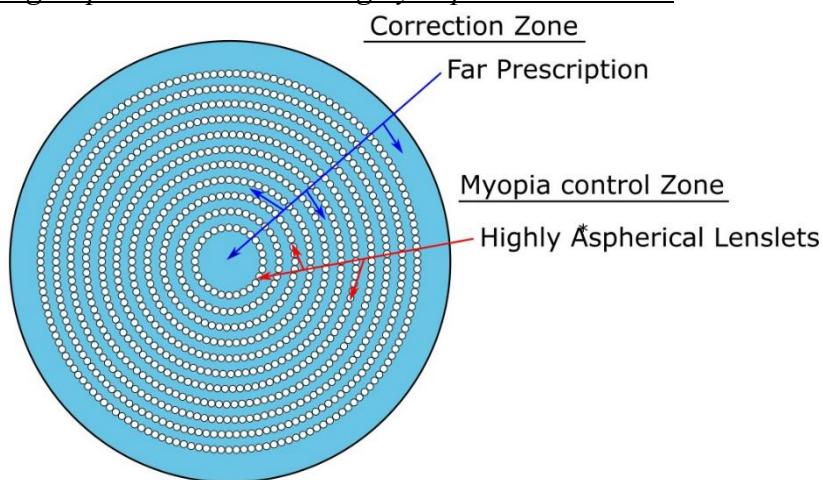
152

153 **1.2.1.3 Higher Atropine Concentrations (>0.05%)**

154 Higher concentrations of atropine (>0.05%) have been studied and appear to be more effective at
155 reducing myopia progression,¹³ but are also associated with considerable side effects¹³ and,
156 therefore, were not further considered for this study.

157

158 **1.2.2 Spectacles with Highly Aspherical Lenslets (HAL)**


159 The utilization of optical defocus technology for slowing myopia progression has gained
160 momentum in recent years.

161

162 One example utilizing defocus technology is spectacle lenses with Highly Aspherical Lenslets
163 (HAL), which provide 1) myopia correction through a single vision zone, and 2) myopia
164 progression control through a constellation of highly aspherical contiguous lenslets spread on 11
165 rings. The light rays passing through the lenslets create a volume of non-focused light in front of the
166 retina following its shape which result in slowing the elongation of the eye in myopic children.

167

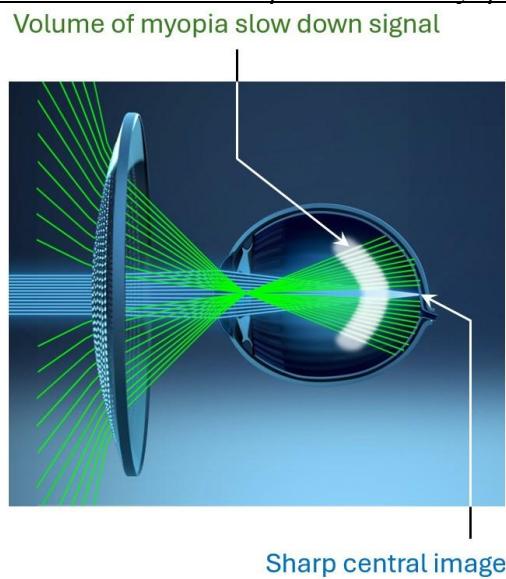
168 *Schematic describing a spectacle lens with Highly Aspherical Lenslets*

169

170

171 **1.2.2.1 HAL Lens Mechanism of Action**

172 Studies in various animal species have shown that hyperopic defocus in the central part of the retina
173 stimulates eye elongation.^{32,33} Additionally, research indicates that relative peripheral hyperopia can
174 promote the development of central axial myopia in primates, even when clear central retinal
175 images are present.^{33,34} These findings highlight the critical role of the peripheral retina in
176 regulating eye growth.


177 Further animal studies have demonstrated that when exposed to competing defocus (simultaneous
178 myopic and hyperopic defocus), the emmetropization process is more influenced by myopic defocus
179 than hyperopic defocus, protecting the eye against elongation.^{33,35} Two other studies investigated in
180 animals the effects of aspherical lenses with a power gradient on emmetropization.^{36,37} Unlike
181 competing defocus lenses, which focus light on two distinct surfaces, these aspherical lenses
182 redirect light rays continuously in a nonlinear manner, creating a three-dimensional quantity of light
183 in front of the retina known as the volume of myopic defocus. Greater asphericity, corresponding to
184 a larger volume of myopic defocus, has been shown to reduce lens-induced myopia in chicks.^{36,37}

185

186 Based on these findings:

187 • The light rays passing through the far prescription zone of the lens focuses a first signal
188 on the retina to ensure a sharp perception of the world.
189 • The light rays passing through the Highly Aspherical Lenslets create a volume of non-
190 focused light in front of the retina. The asphericity of the lenslets is calculated differently
191 for each ring, ensuring that this volume of non-focused light follows the shape of the
192 myopic retina. This second signal acts as a signal to slow down axial elongation due to
193 myopia progression.

194
195 Schematic describing how light rays penetrating through a spectacle lens with Highly Aspherical
196 Lenslets split into two different signals. The first signal (blue) is focused on the retina to grant
197 sharp vision and corresponds to the correction signal. The second one (white) is a volume of non-
198 focused light displayed inside the retina and corresponds to the myopia progression control signal.

199
200 **1.2.2.2 Characteristics of HAL Lens**

201 • Material: polycarbonate
202 • Coating: Crizal(R) Rock TM
203 • Back surface: Single vision (spherical or toric) digitally surfaced
204 • Front surface: Highly Aspherical Lenslets
205 • Anti-reflective coating

206
207 **1.2.2.3 HAL Lens Clinical Trial Data**

208 Highly aspherical lenslets (HAL) lenses have been studied in two randomized trials in Asian
209 populations (China and Vietnam).³⁸⁻⁴⁰ One study evaluated outcomes after 12 months or more.^{38,39}
210 Two lens designs were initially evaluated: highly aspherical lenslets and slightly aspherical lenslets.
211 Because a greater treatment effect between the two was seen for the HAL design, this design is the
212 subject of ongoing research.

213
214 In a study of 170 children 8 to 13 years old randomized to either highly aspherical, slightly
215 aspherical, or single-vision lenses, the change in SER with the highly aspherical (HAL) lenses over
216 12 months was -0.30D (SE 0.06) (n=54) compared with the change of -0.81 (SE 0.06) with single-
217 vision lenses (N=52).³⁸ The change in axial length was 0.13mm (SE 0.02) for the HAL lenses and
218 0.36mm (SE 0.02) for single-vision lenses.

220 Over 24 months, the mean change in SER was -0.68 (SE 0.07) D with HAL lenses (n=54) and -1.45
221 (SE 0.08) D for single vision lenses (n=50), whereas the change in axial length was 0.34 (SE 0.03)
222 mm with HAL lenses and 0.69 (SE 0.04) mm with single vision lenses.³⁹

223
224 The selection of the HAL lenses for use in this study was based on several factors. Three brands of
225 spectacle lenses that had shown promise in slowing myopia progression in European and Asian
226 populations were reviewed by the study planning committee. Factors that were considered included:
227

- 228 • Mechanism of action and robustness of scientific rationale
- 229 • Effectiveness: mean change in both SER and AL
- 230 • Developmental status and the availability of multi-year data
- 231 • Competing studies in US
- 232 • Safety/adverse events data publicly available
- 233 • Frame selection and the manner in which spectacles were fit
- 234 • Data publicly available on rebound effect
- 235 • Data publicly available on adherence
- 236 • Inventory availability in US
- 237 • Feasibility of collaboration agreement
- 238 • US Food and Drug Administration designation as breakthrough investigational device

239
240 The HAL lenses had data at two and three years (with four- and five-year data in progress) that
241 showed promise in treatment effect, adherence, rebound effect, and safety at the time of review
242 (May 2024). Both PEDIG and Essilor were optimistic that terms of the collaboration agreement
243 could be agreed upon. The HAL spectacle lenses received breakthrough device designation by the
244 FDA in May 2021. As such, the HAL lenses were chosen over the other two lens designs
245 considered.

246 1.2.3 Combined Atropine and HAL Lenses

247 Emerging data suggests an additive effect of low-concentration atropine and HAL lenses.^{41,42} An
248 abstract by Vagge et al⁴¹ reported outcomes from a retrospective study of Italian children age 6 to
249 13 years old (mean 9.2 years) with myopia (range not defined). Children were grouped according to
250 the treatment(s) used: HAL only (N=41), 0.01% atropine only (N=34), combined HAL and 0.01%
251 atropine (N=33) and SVL “controls” (N=35). The three treatment groups each significantly slowed
252 SER myopia progression and AL elongation at 12 months compared with the SVL group (p<
253 0.001). At 12 months, the combined HAL and atropine group significantly reduced SER
254 progression compared with the HAL-only group and the atropine group (p values < 0.03). The
255 combined HAL and atropine group showed reduced AL elongation compared with 0.01% atropine
256 group (p value < 0.05) at 12 months, but showed no difference compared with the HAL group
257 (p=0.52).

258
259 A one-year non-randomized prospective study of combined HAL and atropine treatment was
260 included in a non-peer-reviewed article.⁴² The study included 50 Singaporean children age 6-11
261 years old, with myopia -1.50D to -6.00D and astigmatism <2.00D, who were being treated with
262 atropine 0.01% or 0.025% for an unspecified duration, and had ≥0.50 progression in at least one eye
263 in the previous 6 months. Treatment with HAL lenses was added and participants continued
264 treatment with atropine 0.01% or 0.025%. The article reported a 75% reduction in SER change and
265 42% reduction in AL change at one year, presumably compared to the prior year on SVL plus
266 atropine alone. The conclusion that combination therapy is more effective than atropine alone was
267

268 not based upon a comparison with children staying on the original therapy and thus should not be
269 considered adequate evidence of efficacy.
270

271 **1.3 Rationale for Present Study**

272 Despite an increasing number of randomized trials evaluating strategies to slow myopia progression
273 in children, evidence of effectiveness for any intervention in US populations is still lacking.
274 Randomized trials of 0.01% atropine have shown little to no clinically meaningful effect.^{19,21} Thus,
275 there is a need to evaluate stronger atropine concentrations, balancing the anticipated increase in
276 effectiveness due to greater potency with the possibility of increased side effects. For this reason, a
277 0.05% concentration was chosen for the present study rather than a stronger concentration.
278

279 While emerging data on HAL lenses in primarily Asian populations are compelling, studies in non-
280 Asian populations are needed.⁴³ In addition, because there may be a combined benefit when using
281 0.01% or 0.02% atropine *and* HAL lenses simultaneously,^{41,42} the study includes an exploratory
282 combined treatment group of atropine 0.05% and HAL lenses to provide safety and tolerability data
283 of the combination treatment in US children, and to provide an estimate of the effect of combined
284 treatment that may be used in future study design.
285

286 **1.4 Public Health Importance**

287 Increasing prevalence of myopia and the unresolved problem of myopia progression pose
288 significant healthcare concerns. Increasing axial length and high levels of myopia (>6.00D) are
289 associated with serious ocular co-morbidities, (include retinal detachment, myopic maculopathy,
290 glaucoma, and cataract), often resulting in visual impairment or even blindness.⁴⁴ While children
291 with high myopia are at the greatest risk for these complications, both moderate and low myopes are
292 at increased risk relative to persons with emmetropia.⁴⁵ Reduced myopic progression would allow
293 many individuals to retain the ability to function without correction for some activities of daily
294 living and not be constantly dependent on vision correction. But far more important to this research
295 is the recognition that many individuals progress to moderate myopia and, by doing so, are at
296 increased risk for myopic co-morbidities compared with emmetropic individuals. The objective of
297 slowing the progression of myopia is that the associated risks that come with higher myopia may be
298 reduced for a large population.
299

300 Flitcroft has opined that it is important to slow progression even in the moderate range of -1.00 to -
301 6.00D as those levels of myopia are also significantly associated with an increased risk of a range of
302 ocular pathologies from glaucoma to retinal detachment⁴⁶ compared with emmetropia. Similarly, in
303 the Blue Mountains Eye Study, there was a greater prevalence of myopic maculopathy for myopia -
304 3.00 to -4.99D compared with emmetropia.⁴⁷ Tideman et al.⁴⁴ analyzed several population-based
305 studies and found that visual impairment was increased in adults with higher axial lengths and
306 higher spherical myopia, for example myopia -6.00 or less had a cumulative risk of vision
307 impairment of 39% (SE 4.9%) at 75 years of age.
308

309 Treatment for myopia progression has proven effective; however, no treatment prevents myopia
310 onset.¹³ Low-concentration atropine treatment or HAL spectacle lenses potentially reduce the
311 prevalence of high myopia and myopic progression among children with moderate myopia, thereby
312 possibly reducing the incidence of undesirable sequelae associated with myopia. Additionally,
313 Bullimore et al has suggested that slowing myopia by 1 diopter would reduce the likelihood of a
314 patient developing myopic maculopathy by 40%.⁴⁸
315

316 **1.5 Potential Risks and Benefits of Study Treatment**
317

318 **1.5.1 Known Potential Risks of Atropine Eye Drops**

319 Atropine use can be associated with photophobia, mydriasis, accommodative paralysis, allergic or
320 hypersensitivity reactions, superficial keratitis and reduced lacrimation. As summarized in the
321 Living Cochrane review,¹³ adverse events related to atropine are concentration dependent and
322 occurred with greater frequency in studies using high ($\geq 0.5\%$) compared to moderate or low
323 ($< 0.1\%$) concentrations of atropine.

324 In the Yam et al randomized trial²⁹ (Asian population), photochromic spectacles for light sensitivity
325 were needed in 29 (31%) of 93 treated with 0.05% atropine over 1 year and 31 (33%) over 2 years.
326 Progressive lenses for near blur were needed in only 1 (1%) over 2 years. In the same study, allergic
327 conjunctivitis occurred in 2 (2%) of 93 over 1 year and 9 (10%) over 2 years. These rates were
328 comparable to those in children treated with 0.01% and 0.025% concentrations.
329

330 In the MOSAIC2 extension study of a randomized trial²³ of 66 (mostly non-Asian) participants
331 using one year of atropine 0.05% following two years of placebo treatment, blurred near vision was
332 reported in 10 (15%; 3 of 10 opted to use varifocal lenses) and photophobia was reported in 5
333 (7.6%; none opted to use photochromic lenses). Overall, the rate of adverse events was higher in
334 participants using 0.05% in the third year than in those using 0.01% atropine or placebo during that
335 time.
336

337 Potential systemic side effects include dry skin and mouth, tachycardia, fever, flushing and
338 irritability. Of these specific systemic effects, none have been reported in studies of 0.05% and
339 lower atropine eyedrop concentrations^{19-23,26,29} other than one occurrence of tachycardia with
340 atropine 0.02% eyedrops.²¹
341

342 A rebound effect following cessation of atropine may occur, defined as the rate of progression of
343 myopia being faster than natural history would suggest following treatment cessation (the myopia
344 progression is simply delayed, not slowed). Per a recent review by Bullimore and Brennan,⁴⁹ the
345 rebound effect was highest (≥ 0.14 mm) in red light therapy and atropine studies.
346

347 The table below summarizes potential side effects of low dose use of atropine for myopia
348 progression.
349

350

351

Table 1: Summary of Side Effects Reported in Randomized Trials Evaluating Low Dose Atropine for Myopia Progression

Study	Ethnicity	Treatment Group	N	Blur/ Progressive lenses	Skin irritation	Allergy	Decreased VA	Photophobia/ glare	Photochromic lenses	Other
Repka ¹⁹ (PEDIG)	Non-Asian	Atropine 0.01%	125	17	NA	10*	6	32	0	Eye irritation (90) Ocular discomfort (8) Visual impairment (6) Eye pain (5) Blepharitis (6) Meibomian gland dysfunction (3) Any systemic adverse event (28)
Lee ²⁰ (WA-ATOM)	Non-Asian	Atropine 0.01%	104	1	0	2*	0	0	0	Sore/heavy feeling eye (2) Visual floaters (1) Adnexal foreign body (1) Migraine (1) Asthma attack (1)
Zadnik ²¹ (CHAMP)	Non-Asian	Atropine 0.01%	164	2	0	3*	NA	4	NA	Eye irritation (1) Mydriasis (2) Eyelid swelling (3) Elevated heart rate (0)
		Atropine 0.02%	247	4	2	11*	NA	11	NA	Eye irritation (2) Mydriasis (4) Eyelid swelling (1) Elevated heart rate (2)
Loughman ²² (MOSAIC)	Non-Asian	Atropine 0.01%	167	1	2	NA	NA	0	NA	Eye discomfort (3) Temporary mydriasis (1)
Loughman ²³ (MOSAIC2) (Non-randomized extension)	Non-Asian	Atropine 0.05%	66	10	0	NA	NA	5	0	Mydriasis (1) Discomfort with drops (1)
Yam ²⁹ (LAMP) 2-year outcome	Asian	Atropine 0.05%	93	1	NA	9*	NA	4	31	4 hospitalizations (reasons not specified)
		Atropine 0.025%	86	1	NA	10*	NA	3	28	6 hospitalizations (reasons not specified)
		Atropine 0.01%	91	2	NA	11*	NA	5	31	5 hospitalizations (reasons not specified)
Chia ²⁶ (ATOM2)	Asian	Atropine 0.01%	71	1	0	0	11	0	NA	Ocular irritation (1) Acute gastric pain (1)

352 NA = not assessed or reported

353 *allergic conjunctivitis

354

355

356 **1.5.2 Known Potential Risks of HAL Lens Wear**

357 The potential risks related to HAL lens wear are expected to be minimal. Bao et al.³⁹ reported no
358 adverse events in a 2-year study of HAL lens wear. Per a recent review by Bullimore and
359 Brennan,⁴⁹ mean annualized rebound with optical corrections was -0.01 ± 0.03 mm.

360
361 It typically takes a short period of time to adapt to the glasses. During this time, study participants
362 should use caution doing things that could potentially injure them, like riding a bike or skateboard,
363 climbing walls, or playing sports.

364
365 **1.6 Known Potential Benefits**

366 The potential benefit of 0.05% atropine, HAL lenses or the two combined is to slow myopia
367 progression.

368
369 **1.7 Risk Assessment**

370 The Sponsor (Jaeb Center for Health Research) has determined that the protocol's level of risk is
371 consistent with 45 CFR 46.405 and 21 CFR 50.52 ISO 14971:2016, which indicates research
372 involving greater than minimal risk but presenting the prospect of direct benefit to the individual
373 child participating in the research; the risk is justified by the anticipated benefits; the relation of the
374 anticipated benefit to the risk is at least as favorable to the participants as that presented by available
375 alternative approaches; and adequate provisions will be made for soliciting the assent of the
376 children and permission of their parents or guardians as instructed by the IRB.

377
378 Further, while the use of atropine will require an IND submission to the FDA, it is anticipated that
379 the use of HAL lenses need only follow the abbreviated requirements of 21 CFR 812.2(b) as a non-
380 significant risk device as it is not (1) intended as an implant and presents a potential for serious risk
381 to the health, safety, or welfare of a subject; (2) purported or represented to be for a use in
382 supporting or sustaining human life and presents a potential for serious risk to the health, safety, or
383 welfare of a subject; (3) for a use of substantial importance in diagnosing, curing, mitigating, or
384 treating disease, or otherwise preventing impairment of human health and presents a potential for
385 serious risk to the health, safety, or welfare of a subject; or (4) otherwise presenting a potential for
386 serious risk to the health, safety, or welfare of a subject.

387
388 **1.8 General Considerations**

389 The study is being conducted in compliance with the policies described in the PEDIG network
390 policies document, the ethical principles in the Declaration of Helsinki,⁵⁰ the protocol described
391 herein, and the standards of Good Clinical Practice (GCP).⁵¹

392
393 When feasible, data will be directly entered in real-time in electronic case report forms that will be
394 considered the source data.

Chapter 2: Study Enrollment and Screening

2.1 Participant Recruitment and Enrollment

398 The study plans to enroll up to 500 participants into the Run-In Phase for whom informed consent
399 and assent will be obtained, such that approximately 348 participants will enter the Randomized
400 Trial Phase.

402 Study participants will be recruited from PEDIG clinical centers in the United States. All eligible
403 participants will be included regardless of gender, race, or ethnicity. There is no restriction on the
404 number of participants to be enrolled by each site.

406 As the enrollment goal into the Randomized Trial Phase approaches 348 participants, sites will be
407 notified of the end date for recruitment into the Run-In Phase. Participants whose parents have
408 signed an informed consent form may be entered into the Run-in Phase until the end date, which
409 means the expected number of participants for the Randomized Trial Phase might be exceeded.
410 Enrollment into the Run-In Phase may be temporarily halted until it is determined how many
411 participants will enter the Randomized Trial Phase.

2.2 Informed Consent and Authorization Procedures

414 A child is considered for the study after undergoing a routine eye examination (i.e., as part of
415 standard of care) that identifies myopic refractive error appearing to meet the eligibility criteria. The
416 study will be discussed with the child's parent(s) or guardian(s) (referred to subsequently as
417 parent(s)). Parent(s) who express an interest in the study will be given a copy of the informed
418 consent form to read. Written or electronic informed consent / assent must be obtained from a
419 parent and child (the JCHR IRB requires assent for children 7 years of age and older) prior to
420 performing any study-specific procedures that are not part of the child's routine care.

422 If a child turns 7 years of age after enrollment, then assent must be obtained before performing
423 additional study-specific procedures, including data collection for the study. If assent cannot be
424 obtained, then study procedures, including data collection, cannot continue and no data from the
425 turning of age date can be used for the study.

427 If the participant and/or parent(s) are not fluent in written and spoken English, then the consent
428 and/or assent forms, as well as all other participant/parent-facing materials (e.g., dosing instructions,
429 questionnaires), must be translated into the language of fluency for the participant/parent(s).
430 Further, a qualified interpreter must be available for the consent process and for all subsequent
431 study-related interactions.

433 A child is considered enrolled when the informed consent form and assent form (as applicable) have
434 been signed.

2.3 Participant Inclusion Criteria

437 Individuals must meet all the following inclusion criteria to be eligible:

1. Age 5 years to <12 years at time of enrollment. Children within 4 weeks of their 12th birthday are not eligible.
2. Refractive error meeting the following by cycloplegic autorefraction:

442 ○ Myopia of 0.75D to 6.00D SER and at least 0.75D in both principal meridians of
443 each eye
444 ○ Astigmatism <2.50D both eyes
445 ○ Anisometropia <1.50D SER
446 3. Investigator has confirmed the following regarding best-corrected distance visual acuity
447 (VA) in habitual spectacles or trial frames using the investigator's preferred VA testing
448 method:
449 ○ VA is age normal in both eyes^{1,2}
450 ○ 5-6 years: approximately 20/32 or better, ≤ 0.24 logMAR, ≥ 73 letters
451 ○ 7-12 years: approximately 20/25 or better, ≤ 0.14 logMAR, ≥ 78 letters
452 ○ Interocular difference ≤ 2 logMAR lines (0.2 logMAR) or ≤ 10 letters
453 4. Wearing spectacles by parent report $\geq 90\%$ of waking hours ≥ 30 days duration before
454 enrollment. For children who meet all other inclusion criteria but whose single-vision
455 spectacles are broken or lost within the last 90 days, enrollment can proceed as long as the
456 child was wearing their single-vision spectacles $\geq 90\%$ of waking hours ≥ 30 days before the
457 spectacles were broken or lost.
458 5. Gestational age ≥ 32 weeks.
459 6. Birth weight >1500 g.
460 7. Parent(s) and assenting child understand the study procedures and are willing to accept
461 randomization to atropine 0.05%, HAL lenses, atropine combined with HAL lenses, or
462 placebo (i.e., neither active treatment).
463 8. Parent is willing to participate in a 2- to 4-week run-in phase using nightly artificial tear
464 eyedrops in both eyes.
465 9. Family can return in 2 to 4 weeks for possible randomization.
466 10. Child is willing to refrain from contact lenses for the duration of the study.
467 11. Parent has a phone (or access to a phone) and is willing to be contacted by the clinical site
468 staff.
469 12. Relocation outside of the area of an active PEDIG site within the next 32 months is not
470 anticipated.
471

472 **2.4 Participant Exclusion Criteria**

473 Individuals meeting any of the following exclusion criteria at baseline will be excluded from study
474 participation:

475 1. Current or previous pharmacologic or light therapy used for myopia treatment.
476 2. Current or prior contact lens wear more than 7 days in the past 12 months
477 3. Current or previous use of bifocals, progressive-addition lenses, multi-focal contact lenses,
478 or focus- or contrast-modifying spectacle lenses.
479 4. Current or previous use of orthokeratology, rigid gas permeable, or other contact lenses used
480 to slow myopia progression.
481 5. Current or previous myopia control treatment or other uses of atropine, pirenzepine or other
482 anti-muscarinic agents.
483 6. Known atropine allergy
484 7. Abnormality of the cornea, lens, central retina, iris, or ciliary body
485 8. Current constant or intermittent strabismus (phorias are acceptable)
486 9. Verified history of amblyopia or nystagmus.
487 10. Prior strabismus, intraocular, or refractive surgery
488 11. Down syndrome or cerebral palsy

490 12. Diseases known to affect accommodation, vergence, or ocular motility (e.g., multiple
491 sclerosis, Graves' disease, myasthenia gravis, diabetes mellitus)
492 13. Any condition that, in the judgment of the investigator, could influence refractive error
493 development.
494 14. Existing conditions in the opinion of the investigator that may affect the long-term health of
495 the eye or require regular pharmacologic treatment that may adversely interact with study
496 medication (e.g., JIA, glaucoma, pre-diabetes).
497 15. Inability to comprehend and/or perform any study-related procedures.
498 16. Individuals who are pregnant, lactating, or intending to become pregnant within the next 30
499 months.
500 a. A negative urine pregnancy test at randomization and the 6-, 12-, 18-, and 24-month
501 follow-up visits will be required for individuals who have experienced menarche (at
502 least one menstrual cycle).
503 17. Immediate family member (spouse, biological or legal guardian, child, sibling, parent) who
504 is investigative site personnel directly affiliated with this study or who is an employee of the
505 Jaeb Center for Health Research.
506 18. Sibling of, or living in the same household as, another child who is concurrently enrolled in
507 the study.
508 19. Allergy to benzalkonium chloride (eyedrop preservative).
509

510 **2.5 Screening/Enrollment Procedures**

511 After informed consent is obtained (and written or verbal assent, if applicable), a potential
512 participant will be evaluated for study eligibility by reviewing their medical history, along with data
513 collection and testing as specified below.

515 **2.5.1 Demographic & Historical Information**

516 The following demographic and historical information will be collected: date of birth, sex, race,
517 ethnicity, current refractive correction, iris color (brown or not brown), parental history of myopia
518 (0, 1, or 2 parents), current medication use, history of and current medical conditions, and myopia
519 treatment history.

520 **2.6 Testing at the Enrollment Visit**

521 Refer to Chapter 6 herein and the MTS2 Site Manual of Procedures for a complete description of
522 testing procedures, performed in the following order.

525 1. Drop Instillation for Testing Under Cycloplegia

- 526 • 2 drops of cyclopentolate 1% 5 minutes apart

527 2. Cycloplegic Autorefraction

- 528 • Taken 30 minutes \pm 5 minutes after the second drop of 1% cyclopentolate is instilled
- 529 • Sphere and cylinder will be recorded in 0.125D increments.

530 3. Axial Length with cycloplegia

531 4. Spectacle Prescription Determination with Cycloplegia (section 5.2.12)

- 532 • A new spectacle prescription will be determined by cycloplegic refraction according to the
533 investigator's usual method for all study participants. This may include retinoscopy,
534 autorefraction, and/or subjective refinement.

535 **2.7 Run-In Phase Refractive Correction**

536 To complete the run-in phase without a change in spectacles, the participant must be *currently*
537 *wearing* single vision spectacles that meet the following criteria:

539 • Myopia (by spherical equivalent) in both eyes corrected to within $\pm 1.00\text{D}$ of the
540 investigator's cycloplegic measurement of refractive error.
541 • Cylinder power in both eyes within $\pm 1.00\text{D}$ of the investigator's cycloplegic measurement of
542 refractive error.
543 • Cylinder axis for both eyes within ± 20 degrees of the axis found on the investigator's
544 cycloplegic measurement of refractive error when cylinder power is $\geq 1.00\text{D}$ or within ± 30
545 degrees when the cylinder power is $<1.00\text{D}$.

546
547 If the participant's current refractive correction is within these tolerances, the participant will
548 continue wearing their current spectacles during the run-in phase until new study spectacles are
549 received after randomization.

550
551 If the participant meets all eligibility criteria for the run-in phase (see sections 2.3 and 2.4) but their
552 current spectacle correction 1) is broken or lost or 2) does not meet the tolerances for refractive
553 correction above, then new spectacles will be prescribed (paid for by the study) using the method
554 described in section 2.7. These patients will start the run-in phase wearing their habitual correction
555 or no spectacles (if spectacles are lost or broken) but will wear the study run-in phase spectacles
556 once they are obtained prior to randomization. Participants who do not meet refractive error
557 eligibility criteria at enrollment may be brought back at a later time for a subsequent chance to be
558 enrolled.

559
560 **2.8 Run-in Phase**

561 All potential participants meeting study inclusion and exclusion criteria (sections 2.3 and 2.4) will
562 be enrolled in the run-in phase to further determine eligibility for the RCT by assessing adherence
563 with eyedrops.

564
565 **2.9 Treatment in Run-In Phase**

566 Artificial tears will be dispensed, and families will be instructed to instill 1 drop in each eye nightly
567 for 2-4 weeks. Study personnel will demonstrate to the parent and participant how to instill a drop
568 in each eye before the participant leaves the office. Parents and participants will be told that 90%
569 adherence with artificial tears is required to be eligible for study randomization.

570 Participants will be instructed to wear their refractive correction full time (i.e. at least 10 hours per
571 day). Families will be asked to complete an adherence calendar indicating Yes/No for spectacle
572 wear and Yes/No for drop instillation each day. (The same calendar will be used to monitor
573 adherence during the study.)

574
575 To promote and monitor adherence with artificial tears and with spectacles during the run-in phase:

- 576 • A calendar log will be provided to the parent, and the participant or parent will record
577 whether the drop instillation was done each night in both eyes (yes/no) and whether the
578 spectacles were worn at least 10 hours per day (yes/no).
- 579 • The parent and participant will be instructed to bring the calendar logs to the study
580 randomization visit when they return in 2-4 weeks.
- 581 • The coordinator or investigator will assess adherence with drop instillation based on the
582 calendar logs at the Randomization Visit.
- 583 • Note: If 90% eyedrop adherence is not verified, then the participant shall be withdrawn from
584 the study.
- 585 • Participants who do not meet criteria for randomization (e.g., for adherence) cannot be
586 brought back at a later time for a subsequent chance at randomization or enrollment.

587

588 Participants will be scheduled for a return visit for potential randomization in 2-4 weeks.

Chapter 3: Randomization

The participant should return to reassess study eligibility for randomization within 2-4 weeks of the Enrollment Visit and initiation of the run-in phase. If the participant cannot return for possible randomization within 6 weeks of enrollment (consent/assent) into the run-in phase, the participant will be withdrawn from the study.

3.1 Assessment of Adherence with Artificial Tears

Calendar logs will be reviewed to assess the level of adherence with the instillation of the artificial tear eyedrops during the run-in phase.

To be eligible for randomization, participants must have been at least 90% adherent with instilling the drops in both eyes, defined as the number of days the drops were instilled in both eyes divided by the total number of days since receiving the artificial tears determined by reviewing the adherence calendar log for the run-in phase.

Participants who are not able to 1) return the calendar log and 2) be at least 90% adherent with eyedrop instillation will be withdrawn from the study. Extension of the run-in phase or re-enrollment in the run-in phase to potentially meet the eyedrop adherence criteria is not allowed.

In addition, the parent (or participant) must demonstrate, to the investigator or study coordinator, the ability to instill an eyedrop in both eyes before being considered for randomization. Participants who cannot demonstrate successful eyedrop instillation (either by themselves or their parents) will be withdrawn from the study before randomization.

3.2 Assessment of Adherence with Refractive Correction Wear

Adherence with refractive correction will be collected during the run-in phase (using the same calendars that will be used throughout the study). However, adherence with glasses will not be used to determine eligibility for randomization because 1) adherence with glasses wear is an inclusion criterion that must be for at least 30 days in the 90 days prior to enrollment visit and 2) participants enrolling who have lost or broken glasses should not be penalized for apparent nonadherence while obtaining new pre-randomization glasses.

3.3 Testing at the Randomization Visit

Participants judged to be adherent with eyedrops will undergo the assessments outlined for the randomization visit, further described below.

Prior to any clinical testing, the participants' current spectacles (i.e. new prescribed at enrollment or pre-study spectacles that met tolerance criteria at enrollment/did not require updating) will need to meet the following criteria compared with the prescribed refractive correction at enrollment (Section 2.6) OR the participants are tested in trial frames with prescribed refractive correction at enrollment (Section 2.6):

- Myopia (by spherical equivalent) in both eyes corrected to within $\pm 0.50\text{D}$ of the investigator's cycloplegic measurement of refractive error.
- Cylinder power in both eyes within $\pm 0.50\text{D}$ of the investigator's cycloplegic measurement of refractive error.
- Cylinder axis for both eyes must be within ± 5 degrees of the axis found on the investigator's

637 cycloplegic measurement of refractive error when the cylinder power is $\geq 1.00\text{D}$ or within
638 ± 15 degrees when the cylinder power is $<1.00\text{D}$
639

640 Refer to Chapter 6 herein and the MTS2 Site Manual of Procedures for a complete description of
641 testing procedures, performed in the following order.
642

643 1. Automated Pupillometry

644 2. Monocular Distance Visual Acuity Testing

645 a. Method: ATS-HOTV protocol if <7 years and E-ETDRS protocol if age 7 or older

646 b. Refractive correction: habitual spectacles (which may be new spectacles prescribed at
647 enrollment) in refractive correction determined at enrollment (spectacles or trial frame)

648 3. Binocular Near Visual Acuity Testing

649 4. Monocular Amplitude of Accommodation Right Eye Only

650
651 The following must be performed (i.e., repeated) only if the cycloplegic autorefraction and axial
652 length measurements in the enrollment visit(s) were completed more than 4 weeks (>28 days) prior
653 to the randomization visit (following the same instillation of cycloplegic eyedrop procedure as
654 described for enrollment in section 2.6). If repeated, these will be considered the participant's
655 "baseline" measurements and must meet the same eligibility criteria for enrollment (sections 2.3
656 and 2.4).
657

658 5. Cycloplegic Autorefraction (only if >28 days since enrollment visit)

659 6. Axial Length with cycloplegia (only if >28 days since enrollment visit)

660 7. Urine Pregnancy Test – for individuals who have experienced menarche (at least one
661 menstrual cycle)

662 • This test can be performed at any time during the visit.
663

664 If a participant is unable to complete the testing listed above in a single visit or does not meet visual
665 acuity eligibility criteria, testing may be completed within 7 days.
666

667 3.4 Confirmation of Eligibility for Randomization

668 Randomization will occur at the end of the randomization visit after confirming the participant
669 meets the following eligibility criteria:
670

671 1. Best-corrected distance visual acuity in habitual spectacles (which may be new spectacles
672 prescribed at enrollment) meeting tolerances (section 3.3) or trial frames meeting the
673 following criteria using the ATS-HOTV protocol if <7 and E-ETDRS protocol if age 7 or
674 older:

- 675 ○ If age 5-6 years: 20/32 or better by ATS-HOTV
- 676 ○ If age 7-12 years: ≥ 78 letters by E-ETDRS
- 677 ○ Interocular difference ≤ 2 logMAR lines (0.2 logMAR) or ≤ 10 letters

678 2. Refractive error meeting the following by cycloplegic autorefraction (performed at
679 enrollment or the day of randomization, if repeat autorefraction required):

- 680 ○ Myopia of 0.75D to 6.00D SER and at least 0.75 D in both principal meridians of
681 each eye
- 682 ○ Astigmatism $<2.50\text{D}$ both eyes
- 683 ○ Anisometropia $<1.50\text{D}$ SER

684 3. At least 90% adherence with artificial tear eyedrops during the run-in phase

685
686 Participants who do not meet the adherence or refractive error eligibility criteria for randomization
687 will be withdrawn from the study. If >28 days have elapsed since the enrollment visit, cycloplegic
688 autorefraction and axial length measurements will need to be repeated (section 3.3).
689

690 Prior to randomization, the study requirements should be discussed again with the parent and child
691 so there is reasonable assurance that the participant will adhere to the study requirements.
692

693 **3.5 Randomization**

694 Eligible participants will be randomly assigned 1:1:1:1 to the following groups:
695

- 696 • **ATROPINE GROUP:** atropine (0.05%) eyedrops + single vision lenses
- 697 • **PLACEBO GROUP:** placebo eyedrops + single vision lenses
- 698 • **HAL GROUP:** placebo eyedrops + HAL lenses
- 699 • **COMBINED GROUP:** atropine (0.05%) eyedrops + HAL lenses

700
701 A Master Randomization List using a permuted block design stratified by baseline age (5 to <9, 9 to
702 <12), specifying the order of treatment group assignments, will be used for randomization.
703

704 Once the website randomization process is complete, a study participant is randomized. The
705 participant will be included in that group for analysis regardless of whether the assigned treatment is
706 received. Thus, the investigator must not randomize the participant unless convinced that the child
707 is eligible, and the family will accept whichever treatment group is assigned through randomization.
708

709 Study spectacles and study medication will be dispensed at the 4-week Treatment Initiation Visit.
710

711 The participant, parents, coordinators, testers, and investigators will be masked to treatment group.
712 If the need arises, the investigator may become unmasked after discussion of a specific case with
713 the protocol chair in response to any adverse events.
714

715 **Chapter 4: Treatment and Follow-Up in Randomized Trial**

716 **4.1 Treatment from 0 to 24 months**

717 All participants will use study eyedrops and study spectacles as follows:

- 720 • Treatment with study eyedrops will be one drop in both eyes each night of either atropine
721 0.05% or placebo (based on randomized treatment group), including the night before study
722 visits.
- 724 • Study spectacles with either single-vision lenses or HAL lenses should be worn full time
725 (i.e. at least 10 hours per day).

727 No myopia control treatments other than the randomized assignments to study eyedrops and study
728 spectacles can be used for the duration of the study. Only study spectacles are allowed.

730 **4.1.1 Study Medication**

731 A compounding pharmacy will package the study drug (0.05% atropine and placebo) in identical-
732 appearing preservative free, multi-dose bottles (Novelia®). In addition to 0.05% atropine, the
733 atropine eyedrops contain 99.95% buffered solution with inactive ingredients while the placebo
734 eyedrops contain 100% buffered solution with inactive ingredients. Study drug will be shipped to a
735 central pharmacy for labelling, to maintain masking. The central pharmacy will supply labelled
736 medication to clinical sites which will dispense it to participants. Additional study medication
737 details are summarized within a separate investigator brochure.

738 Eyedrops will be dispensed to participants concurrently with study spectacles at the Treatment
739 Initiation Visit 4 weeks after randomization. Eyedrops will then be dispensed at each 6, 12, and 18-
740 month office visit. At each semi-annual clinical visit and any other time the parent picks up
741 eyedrops at the site, the previously dispensed eyedrop bottles (used or unused) will be retrieved and
742 destroyed by the site. This is to avoid use of expired eyedrops or use of eyedrops when not
743 prescribed later in the study.

745 **4.1.2 Study Spectacles**

746 Study spectacles with either single-vision lenses or HAL lenses will be prescribed at randomization
747 and then new study spectacles at the end of every study visit thereafter at 6, 12, and 18, month
748 visits; single vision spectacles will be prescribed to all participants at 24 months. New spectacles
749 are prescribed regardless of any change in refractive correction every 6 months to ensure that the
750 benefits of wear are not compromised by scratched lenses or bent frames.

751 The spectacle prescription is determined by cycloplegic refraction according to the investigator's
752 usual method. This may include retinoscopy, autorefraction, and subjective refinement. Once the
753 refractive error is determined under cycloplegic conditions, the spectacle prescription should match
754 the cycloplegic refraction (i.e., "cutting" minus, cyl, etc. is not allowed).

755 Spectacles prescribed at randomization should be based on the cycloplegic refraction performed at
756 the enrollment visit, unless the cycloplegic refraction had to be repeated at randomization (i.e.
757 because it had been more than 4 weeks (>28 days) since the enrollment visit), in which case
758 spectacles should be prescribed based on the cycloplegic refraction at randomization. Spectacles
759 prescribed at follow up visits should be based on the cycloplegic refraction that occurs at the visit.

763
764 Once manufactured, two identical pairs of study spectacles will be sent to the study site where the
765 Spectacles Fitter will verify each pair (primary and backup) using lensometry (section 4.7.1) and
766 dispense one pair to the study participant (see sections 4.6 and 4.8) at the 4-Week Study Spectacle
767 Fitting visit.
768
769 Staff responsible for receiving, verifying and dispensing the study spectacles will be informed about
770 the study and instructed on the importance of not disclosing the type of lenses to the child or their
771 family. Treatment with study spectacles will commence as soon as study spectacles are fit and
772 dispensed. Eyedrops will be dispensed concurrently with study spectacles at the 4-Week Treatment
773 Initiation Visit.
774
775 Participants will be instructed to wear their study spectacles full-time (i.e. at least 10 hours per day).
776
777 At each semi-annual visit, the previously dispensed spectacles will be retrieved and maintained at
778 the site once new spectacles are given to the participant. This is to avoid wearing the outdated
779 spectacles and because they are for investigational use only.
780
781 **4.2 Treatment from 24 to 30 months**
782 At the 24-month visit, study interventions will be discontinued. All participants will be prescribed
783 single-vision-lens spectacles. The eyedrops will be returned to the site at the visit and the study
784 spectacles will be exchanged at the spectacle fitting visit for the single vision spectacles prescribed.
785 No myopia treatment should be prescribed from the 24- to the 30-month visit.
786
787 **4.1 Telephone Calls**
788 8 weeks following randomization (\pm 2 weeks), the site will contact parents to question the parent as
789 to whether the child is experiencing any issues with treatment or have had any changes in
790 medications.
791
792 At three months (\pm 2 weeks) following randomization, the site will contact the participant's parents
793 to encourage adherence to the randomized treatment and ask the parent if the participant is
794 experiencing any issues with treatment
795
796 The site will make phone calls at 9, 15, 21, and 27 months (\pm 2 weeks) after randomization,
797 timepoints which are equidistant between the scheduled study visits). These calls will be conducted
798 to maintain direct contact with participants' parents, develop and maintain rapport with participants
799 and/or families, and assist with scheduling study visits if needed.
800
801 **4.3 Adherence with Study Treatment**
802 A calendar will be provided to promote adherence with eyedrops and study spectacles, on which the
803 child/parent will record daily both whether an eyedrop was instilled into both eyes in the evening
804 and whether the participant wore their study spectacles at least 10 hours.
805
806 At each office visit, an assessment of adherence will be recorded on the Follow-up Examination
807 Form after a review of the calendars and an interview with the parent and child. Separately for
808 eyedrops (whether received daily) and for spectacles (whether worn at least 10 hours per day), study
809 personnel will describe the proportion of time that treatment that was used per protocol as excellent
810 (76% to 100%), good (51% to 75%), fair (26% to 50%), or poor (\leq 25%).
811

812 Adherence will be encouraged at each visit and each phone call. If a participant does not adhere to
813 the study treatment, parents and participants should be encouraged to continue trying their best to
814 follow the study treatment plan.

815

816 **4.4 Side Effects of Treatment**

817 Reporting of adverse events is described in Chapter 6. Prior to deviating from the treatment protocol
818 or prescribing non-protocol treatment, the situation should be discussed with and approved by a
819 Protocol Co-chair.

820

821 If a participant is experiencing photophobia, the investigator may prescribe clip-on sunglasses.

822

823 If a participant reports blurry vision or difficulty seeing up close when doing schoolwork, reading,
824 or other near activities, the investigator must call a Protocol Co-chair to discuss management.

825

826 If a participant has a confirmed allergic reaction to the eye drops, the investigator must call a
827 Protocol Co-chair to discuss management and the child would need to stop the study eye drops and
828 continue in the study.

829

830 If a participant's eyes feel dry after using study medication, artificial tears may be used 10 minutes
831 after the study medication drop to moisturize the eyes.

832

833 **4.5 Study Visits and Phone Calls in the Randomized Trial**

834 Study visits and interactions will be timed from randomization unless otherwise specified and will
835 occur at:

836

837 Follow Up Visits will occur at:

- 838 • 6 months \pm 2 weeks
- 839 • 12 months \pm 2 weeks
- 840 • 18 months \pm 2 weeks
- 841 • 24 months \pm 2 weeks: On-Treatment Primary Outcome – after which all eyedrops and study
842 spectacles will be discontinued and SVLs will be prescribed for all.
- 843 • 30 months \pm 2 weeks: Off-Treatment Secondary Outcome – six months following treatment
844 discontinuation.

845

846 Treatment Initiation Visit (Spectacles Fitting and Eyedrop Dispensing) will occur at: 4 \pm 2 weeks
847 after randomization

848

849 Spectacle Fitting Visits will occur at:

- 850 • 4 \pm 2 weeks after the 6-, 12, 18, and 24-month Clinical Follow Up Visits

851

852 Phone Calls will occur at:

- 853 • 8 weeks \pm 2 weeks
- 854 • 3 months \pm 2 weeks
- 855 • 9 months \pm 2 weeks
- 856 • 15 months \pm 2 weeks
- 857 • 21 months \pm 2 weeks
- 858 • 27 months \pm 2 weeks

859

Visit	Target Day	Target Window (around Target Day)	Allowable Window (around Target Day)
4-week treatment initiation visit (spectacle fitting and eyedrop dispensing)	Randomization + 28 days	± 2 weeks 26 to 42 days	± 2 weeks 26 to 42 days
8-week call	Randomization + 56 days	± 2 weeks 42 to 70 days	± 2 weeks 42 to 70 days
3-month call	Randomization + 91 days	±2 weeks 77 to 105 days	±2 weeks 77 to 105 days
6-month clinical visit	Randomization + 183 days	± 2 weeks 169 to 197 days	± 3 months 91 to 273 days
9-month call	Randomization + 273 days	± 2 weeks 259 to 287 days	± 2 weeks 259 to 287 days
12-month clinical visit*	Randomization + 365 days	± 2 weeks 335 to 379 days	± 3 months 273 to 454 days
15-month call	Randomization + 454 days	± 2 weeks 440 to 468 days	± 2 weeks 440 to 468 days
18-month clinical visit	Randomization + 548 days	± 2 weeks 534 to 562 days	± 3 months 454 to 838 days
21-month call	Randomization + 638 days	± 2 weeks 624 to 652 days	± 2 weeks 624 to 652 days
24-month clinical visit*	Randomization + 731 days	± 2 weeks 717 to 745 days	± 3 months 638 to N/A days
27-month call	Randomization + 821 days	± 2 weeks 807 to 835 days	± 2 weeks 624 to 652 days
30-month clinical visit*	Randomization + 913 days	± 2 weeks 899 to 927 days	± 3 months 821 to N/A
Additional study spectacle fittings after each clinical visit	Clinical follow up visits (6, 12, 18, and 24- months) + 28 days	± 2 weeks	± 2 weeks

*Denotes key study visits.

860

861

862 The goal is for all participants to complete all scheduled visits. However, participants unable or
 863 unwilling to return for all follow-up visits will be permitted to return for key visits only as an
 864 alternative to withdrawal from the study. In such instances, a missed visit form will be entered for
 865 each missed visit with the reason specified as “Other” with comment that the parent/participant is
 866 unwilling to return except for key visits; these missed visits will not be recorded as protocol
 867 deviations.

868

869 **4.6 Procedures at 4-Week Treatment Initiation Visit**

870 At the 4-week Treatment Initiation Visit, participants will be seen by the Spectacles Fitter for fitting
871 of the study spectacles (section 4.8) and by the site coordinator for dispensing of study medication;
872 no clinical assessments will be performed.

873 The following procedures should be performed:

874

- 875 1. Lensometry (section 0) of primary spectacles and backup spectacles (if available)
- 876 2. Fit both primary and back up spectacles
- 877 3. Dispense primary spectacles to participant (Spectacles Fitter)
- 878 4. Retain backup spectacles at the site
- 879 5. Dispense study medication (Coordinator)
- 880 6. Provide treatment instructions sheets and compliance calendars (4-week visit only)
- 881 (Coordinator)

882 **4.7 Procedures at Follow Up Visits Between 6 and 30 Months**

883 **4.7.1 Lensometry**

884 Prior to any clinical testing, the participants' current spectacles (primary or backup pair) will need to
885 meet the following criteria compared with the last prescribed refractive correction OR the
886 participants are tested in trial frames with the last prescribed refractive correction:

887

- 888 • Myopia (by spherical equivalent) in both eyes corrected to within $\pm 0.50\text{D}$ of the
889 investigator's cycloplegic measurement of refractive error.
- 890 • Cylinder power in both eyes within $\pm 0.50\text{D}$ of the investigator's cycloplegic measurement of
891 refractive error.
- 892 • Cylinder axis for both eyes must be within ± 5 degrees of the axis found on the investigator's
893 cycloplegic measurement of refractive error when the cylinder power is $\geq 1.00\text{D}$ or within
894 ± 15 degrees when the cylinder power is $<1.00\text{D}$.

895 If these criteria are not met, or the child did not bring their spectacles to the visit, testing must be
896 done with the participant wearing their backup study spectacles; otherwise, in prescribed correction
897 in trial frames.

898 **4.7.2 Procedures at Clinical Follow Up Visits**

900 Unless otherwise specified, the following procedures will be performed in the specified order at
901 each visit with the participant wearing their study spectacles (primary or backup pair) or trial frames
902 (see section 0), according to the description of procedures and assessments outlined in Chapter 5
903 and the MTS2 Site Manual of Procedures.

904

- 905 1. Lensometry (section 0)
- 906 2. Medical History
 - 907 ○ Including questioning about adverse events and concomitant medications.
- 908 3. Adherence to Eyedrop and Spectacles Treatment Assessment (*all visits except 30-month*)
- 909 4. Urine Pregnancy Test - *individuals who have experienced at least one menstrual cycle at all*
visits except 30-month)
- 910 5. Treatment Impact Questionnaire (*parent and child at 6 and 24-month visit only; must be*
administered prior to clinical testing)
- 911 6. Automated Pupillometry (for sites with equipment)

918 7. Monocular Distance Visual Acuity Testing
919 a. Method: investigator discretion
920 b. Refractive correction: habitual spectacles
921 8. Binocular Near Visual Acuity Testing
922 9. Monocular Amplitude of Accommodation in Right Eye Only
923 o Measured once using the 20/30 Bernell line with the participant in their study
924 spectacles or trial frames (see section 4.7.1).
925 10. Drop instillation for Testing Under Cycloplegia
926 11. Cycloplegic Autorefraction
927 12. Axial Length with cycloplegia
928 13. Refractive Error Determination with Cycloplegia
929 o Refine refractive error (section 4.9)
930 14. If pre-cycloplegic monocular distance visual acuity in either eye was worse than 20/32 for
931 children aged 5-6 years and 20/25 for children 7-12 years, retest monocular distance VA
932 using phoropter or trial frames by same method used at randomization (ATS-HOTV or E-
933 ETDRS).
934 15. Order Study Spectacles (all visits except 30-months, will be SVL for all at 24 months)
935 o Participant selects frame from sample frame collection at site.
936 o Site orders two identical pairs of study spectacles.
937 ▪ One pair will be dispensed to the participant at the Study Spectacles Visit.
938 ▪ The second pair will be sent to the site to serve as a backup in case the
939 participant breaks or loses their spectacles, or to use for clinical testing if
940 spectacles are not brought to the Clinical Follow Up Visit.
941 16. Manage study medication
942 o Collect unused study medication (6, 12, 18, and 24 months)
943 o Dispense supply of study medication (6, 12, and 18 months)
944 o Provide treatment instructions sheets and compliance calendars

4.8 Procedures at Study Spectacle Fittings

At Spectacles Fitting Visits, participants will be seen by the Spectacles Fitter for fitting of the both pair of study spectacles (primary and backup); no clinical assessments will be performed.

- One pair of spectacles will be dispensed to the participant.
- The second pair will serve as a backup in case the participant breaks or loses their spectacles, or to use for clinical testing if spectacles are not brought to the Clinical Follow Up Visit.

The following procedures should be performed:

1. Lensometry (section 0) of primary spectacles and backup spectacles
2. Collect study spectacles being replaced
3. Fit both primary and backup spectacles
4. Dispense primary spectacles to participant (Spectacles Fitter)
5. Retain backup spectacles at the site

4.9 Management of Refractive Error

A new spectacle prescription will be determined by cycloplegic refraction according to the investigator's usual method of refinement for all study participants. This may include retinoscopy, autorefraction, and subjective refinement. Once the refractive error is determined under cycloplegic conditions, the spectacle prescription should match the cycloplegic refraction (i.e., "cutting" minus, cyl, etc. is not allowed).

967
968 The study spectacles will be updated even if there is no change in the refraction.
969
970 **4.10 Non-Randomized Treatment**
971 Non-randomized treatment for myopia other than study-specified eyedrops and spectacles is not
972 permitted during the study. The investigator must call the Protocol Co-chair to discuss the case and
973 obtain approval for an exception before starting any non-randomized treatment (including progressive
974 lenses, sports spectacles, photochromic spectacles, orthokeratology, rigid gas permeable or other contact
975 lenses). If sports spectacles are approved, they will be paid for by the study.
976
977 **4.11 Text Message Contacts**
978 Families will be offered the choice to opt-in to text messages to receive appointment reminders.

979 **Chapter 5: Testing Procedures and Questionnaires**

981 All reasonable efforts will be made to maintain masking for all study personnel and families
982 throughout the study. After randomization, the investigator will not view a participant's pupils
983 before dilation or any study spectacles. Participants and their families will be instructed not to
984 discuss the appearance of the study spectacle lenses with the investigator. For the randomized trial,
985 a certified tester who is not the investigator must perform lensometry and any procedures where the
986 participant's study spectacles and/or undilated pupils could be observed (and for which it is not
987 reasonable for the participant to wear stereo spectacles to prevent pupil observation). Measurement
988 of cycloplegic autorefraction and biometry (primary outcome measures) must be performed by
989 either the investigator or a separate biometry tester (BT), who is not also the certified tester (CT),
990 coordinator (CO), or Spectacles Fitter (SF) for all visits after randomization.

991 **5.1 Questionnaires**

994 **5.1.1 PEDIG Myopia Treatment Impact Questionnaire (Child and Parent)**

995 At 6- and 24-month outcome exams, participants will complete a novel 24-item questionnaire
996 assessing the impact of the child's eyedrop and spectacles treatment on the child. For participants
997 requiring assistance, the questions should be read verbatim by study personnel (not the parent) and
998 the participant's answers recorded.

1000 A similar novel 21-item questionnaire will be completed by the parent to assess the impact of the
1001 child's treatment on the parent and family. Testing is anticipated to take 5-7 minutes for the child
1002 and 5-7 minutes for the parent.

1003 **5.2 Clinical Testing Procedures and Assessments**

1005 The following procedures will be performed at each visit. Refer to the *MTS2 Site Manual of
1006 Procedures* for additional details.

1008 **5.2.1 Lensometry**

1009 The current refractive correction (sphere, cylinder, and axis in each eye) will be verified using a
1010 lensometer at all visits. Lensometry must be performed by a certified tester who is not the
1011 investigator at 6-, 12-, 18-, and 24-month visits.

1013 Testing time is approximately 3 minutes.

1015 **5.2.2 Medical History**

1016 The participant's medical history must be taken while they are wearing stereo spectacles (with or
1017 without their study spectacles) to prevent the investigator from observing the participant's pupils
1018 before dilation. The investigator will determine whether any adverse events occurred since the last
1019 study visit and update previously recorded adverse events. If an adverse event has occurred, any
1020 initiation, discontinuation, or dosage change in non-study medications concomitant to the adverse
1021 event will be recorded.

1023 Completion time is approximately 5-15 minutes.

1025 **5.2.3 Adherence Assessment (all follow-up visits except 30-months)**

1026 Calendar logs (if brought to the visit) will be reviewed, and the level of nightly adherence with
1027 eyedrop administration and all-day study spectacle wear will be documented on the Follow-up
1028 Examination Form. If calendar logs are reviewed by the investigator, the participant must wear
1029 stereo spectacles to prevent the investigator from seeing the participant's pupils before dilation. If
1030 the calendars are not brought to the study visit, they should be mailed to the local site.

1031

1032 Completion time is approximately 5 minutes.

1033

1034 **5.2.4 Urine pregnancy test**

1035 For individuals who have experienced menarche (at least one menstrual cycle), a dipstick-type urine
1036 pregnancy test will be required at enrollment and 6-, 12-, 18- and 24-month follow-up visits. If
1037 pregnancy testing is reviewed by the investigator, the participant must wear stereo spectacles to
1038 prevent the investigator from seeing the participant's pupils before dilation.

1039

1040 Testing time is approximately 7 minutes.

1041

1042 **5.2.5 Automated Pupillometry**

1043 Pupil diameter will be measured using an automated method at sites with automated pupillometry
1044 equipment. The same method and lighting conditions are to be used throughout the study. This test
1045 must be performed by a certified tester who is not the investigator at the 6-, 12-, 18-, and 24-month
1046 visits.

1047

1048 Testing time is approximately 3 minutes.

1049

1050 **5.2.6 Distance Visual Acuity Testing**

1051 Monocular distance visual acuity should be measured with the participant wearing most recent
1052 refractive correction in study spectacles (primary or backup) or trial frames; however, the testing
1053 method to be used varies by visit and purpose as follows:

1054

- 1055 • At the Enrollment Visit, monocular distance visual acuity should be tested in habitual
1056 refractive correction. The pre-cycloplegia method of visual acuity is at investigator
1057 discretion.
- 1058 • At the Randomization Visit, children aged <7 years at the time of randomization will use the
1059 ATS-HOTV protocol on a study-certified VA device, and children 7 years and older will use
1060 E-ETDRS protocol on a study-certified VA device.
- 1061 • At all visits after randomization, monocular distance visual acuity should be tested in
1062 habitual refractive correction. The pre-cycloplegia method of visual acuity is at investigator
1063 discretion. This test must be performed by a certified tester who is not the investigator at the
1064 6-, 12-, 18-, 24-, and 30-month visits. If pre-cycloplegia visual acuity is less than age
1065 appropriate, monocular distance visual acuity should be repeated following cycloplegic
1066 refractive error determination using the EVA method that was conducted at Randomization.
- 1067
- 1068
- 1069

1070 Testing time is approximately 5 to 10 minutes.

1071

1072 **5.2.7 Binocular Near Visual Acuity Testing**

1073 Binocular near visual acuity is measured using the ATS4 Near Acuity Test with the participant
1074 wearing optimal refractive correction (section 2.7) in study spectacles (primary or backup) or trial
1075 frames and without cycloplegia. This test must be performed by a certified tester who is not the
1076 investigator at the 6-, 12-, 18-, and 24-month visits.

1077

1078 Testing time is approximately 3 minutes.

1079

1080 **5.2.8 Monocular Amplitude of Accommodation (right eye only)**

1081 Only the right eye is measured, and it is measured once using the 20/30 Bernell line with the
1082 participant wearing optimal refractive correction (section 2.7) in study spectacles (primary or
1083 backup) or trial frames without cycloplegia. This test must be performed by a certified tester who is
1084 not the investigator at the 6-, 12-, 18-, 24-month, and 30-month visits.

1085

1086 Testing time is approximately 3 minutes.

1087

1088 **5.2.9 Drop Instillation for Testing Under Cycloplegia**

1089 Two drops of 1% cyclopentolate, separated by 5 minutes, will be administered to both eyes. The use
1090 of proparacaine prior to the cycloplegic drops is at investigator discretion. The cycloplegic
1091 autorefractions must be taken 30 minutes \pm 5 minutes from the time the second drop of 1%
1092 cyclopentolate was instilled in the second eye. Biometry and refraction measurements should follow
1093 autorefraction. If eyes are not sufficiently dilated/cyclopleged or if the dilation/cycloplegia has worn
1094 off before all procedures requiring cycloplegia have been performed, a third drop of 1%
1095 cyclopentolate may be administered, followed by an additional 30-minute wait before testing. The
1096 drop installation cannot be performed by the investigator at the 6-, 12-, 18-, and 24-month visits.

1097

1098 Testing time is approximately 35 minutes.

1099

1100 **5.2.10 Cycloplegic Autorefraction**

1101 Each participant must have their autorefraction measurements made using the same instrument for
1102 all study visits.

1103

1104 For each eye, 3 autorefraction measurements are taken. For each measurement, the autorefractor
1105 will yield a final reading (either an individual reading or the mean/median of several readings,
1106 depending on the autorefractor) consisting of sphere, cylinder, and axis (see *MTS2 Manual of
1107 Procedures*).

1108

1109 Testing time is approximately 2-4 minutes (after drop instillation and cycloplegia).

1110

1111 **5.2.11 Axial Length Measurement**

1112 Axial length will be measured (with pupillary dilation with cycloplegia) 3 times in each eye using
1113 optical biometry (e.g., IOLMaster, LENSTAR, Pentacam, Myopia Expert 700).

1114

1115 Each participant must have their axial length measurements made using the same instrument for all
1116 study visits.

1117

1118 Testing time is approximately 5-10 minutes.

1119

1120 **5.2.12 Spectacle Prescription Determination with Cycloplegia**

1121 Spectacle prescription is determined by cycloplegic refraction according to the investigator's usual
1122 method of refinement. This may include retinoscopy, autorefraction, and subjective refinement.
1123 Once the refractive error is determined under cycloplegic conditions, the spectacle prescription
1124 should match the cycloplegic refraction (i.e., "cutting" minus, cyl, etc. is not allowed).

1125
1126 Testing time is approximately 5-10 minutes.

1127 **Chapter 6: Unanticipated Problem / Adverse Event, and Device** 1128 **Issue Reporting**

1130 **6.1 Unanticipated Problems**

1131 Site investigators will promptly report to the JCHR on an eCRF all unanticipated problems meeting
1132 the criteria below. Sites must report Unanticipated Problems to the IRB within seven (7) calendar
1133 days of recognition. For this protocol, an unanticipated problem is an incident, experience, or
1134 outcome that meets all the following criteria:

- 1136 • Unexpected (in terms of nature, severity, or frequency) given (a) the research procedures
1137 that are described in the protocol-related documents, such as the IRB-approved research
1138 protocol and informed consent document; and (b) the characteristics of the subject
1139 population being studied
- 1140 • Related or possibly related to participation in the research (possibly related means there is a
1141 reasonable possibility that the incident, experience, or outcome may have been caused by the
1142 procedures involved in the research)
- 1143 • Suggests that the research places participants or others at a greater risk of harm than was
1144 previously known or recognized (including physical, psychological, economic, or social
1145 harm)

1146 The JCHR also will report to the JCHR IRB all unanticipated problems not directly involving a
1147 specific site, such as unanticipated problems that occur at the JCHR or another participating entity,
1148 such as a pharmacy or laboratory. These instances must be reported to the JCHR IRB within seven
1149 (7) calendar days of recognition. The Director of the Human Research Protection Program will
1150 report to the appropriate regulatory authorities if the JCHR IRB determines that the event indeed
1151 meets the criteria of an Unanticipated Problem that requires further reporting.

1154 **6.2 Adverse Events**

1156 **6.2.1 Definitions**

1157 Adverse Event (AE): Any untoward medical occurrence in a study participant, irrespective of the
1158 relationship between the adverse event and the drug(s) and device under investigation.

1159 To further clarify, an adverse event is any unintended disease or injury, or untoward clinically
1160 significant symptom or clinical sign (including abnormal laboratory findings) in a research
1161 participant that manifests while in the study if it was not present before enrolling in the study, or if
1162 it was present before enrolling, it has increased in severity, frequency or type since enrolling in the
1163 study. For this purpose, a participant is considered enrolled once the participant has signed the
1164 consent form. For clarity, abnormalities identified as part of study screening (e.g., laboratory
1165 abnormality, physical exam abnormality) are not considered AEs even though they may have been
1166 identified after consent was signed.

1168 Serious Adverse Event (SAE): Any untoward medical occurrence that:

- 1169 • Results in death.
- 1170 • Is life-threatening (a non-life-threatening event which, had it been more severe, might have
1171 become life-threatening, is not necessarily considered a serious adverse event).
- 1172 • Requires inpatient hospitalization or prolongation of existing hospitalization.
- 1173 • Results in persistent or significant disability/incapacity or substantial disruption of the
1174 ability to conduct normal life functions (e.g., sight threatening).

1175 • Is a congenital anomaly or birth defect in the offspring of a participant.
1176 • Is considered a significant medical event by the investigator based on medical judgment
1177 (e.g., may jeopardize the participant or may require medical/surgical intervention to prevent
1178 one of the outcomes listed above).

1180 Unanticipated Adverse Device Effect (UADE): Any serious adverse effect on health or safety or
1181 any life-threatening problem or death caused by, or associated with a study device, if that effect,
1182 problem, or death was not previously identified in nature, severity, or degree of incidence in the
1183 investigational plan or application (including a supplementary plan or application), or any other
1184 unanticipated serious problem associated with a device that relates to the rights, safety, or welfare of
1185 participants (21 CFR 812.3(s)).

1186 Adverse Device Effect (ADE): An adverse event related to the use of a study investigational
1187 medical device. This definition includes adverse events resulting from insufficient or inadequate
1188 instructions for use, deployment, implantation, installation, or operation, or any malfunction of the
1189 investigational medical device. This definition includes any event resulting from use error or from
1190 intentional misuse of the investigational medical device. This includes comparator if the comparator
1191 is a comparable medical device to the investigational device. (Note that (1) ADE refers specifically
1192 to the study investigational device and not to any device used in the study and (2) an Adverse Event
1193 CRF is to be completed in addition to a Device Deficiency or Issue CRF for all ADEs.

1194 Comparator: Medical device, therapy (e.g., active treatment, normal clinical practice), placebo or no
1195 treatment, used in the control group in a clinical investigation. (ISO 14155:2020)

1196 Device Complaints and Malfunctions: A device complication or complaint is something that
1197 happens to a study device or related to study device performance, whereas an adverse event happens
1198 to a participant. A device complaint may occur independently from an AE, or along with an AE. An
1199 AE may occur without a device complaint or there may be an AE related to a device complaint. A
1200 device malfunction is any failure of a device to meet its performance specifications or otherwise
1201 perform as intended. Performance specifications include all claims made in the labeling for the
1202 device. For cleared devices, the intended performance of a device refers to the intended use for
1203 which the device is labeled or marketed (21 CFR 803.3). Note: for reporting purposes, sites will not
1204 be asked to distinguish between device complaints and malfunctions.

1205 Use Error: User action or lack of user action while using the medical device that leads to a different
1206 result than that intended by the manufacturer or expected by the user. Includes the inability of the
1207 user to complete a task. Use errors can result from a mismatch between the characteristics of the
1208 user, user interface, task or use environment. Users might be aware or unaware that a use error has
1209 occurred. An unexpected physiological response of the patient is not by itself considered a use error.
1210 A malfunction of a medical device that causes an unexpected result is not considered a use error.
1211 (ISO 14155:2020)

1212 **6.3 Reportable Adverse Events**

1213 For this protocol, any events between enrollment and randomization will be entered as prior medical
1214 conditions.

1215 During the randomized trial, the following are reportable adverse events:

1216 • Ocular symptoms and signs meeting the definition of an adverse event (section 0)
1217 • Systemic symptoms and signs meeting the definition of an adverse event (section 0) and

1223 occurring within one hour of drop administration.

1224 • Events meeting the definition of serious adverse events (section 0).

1225 • Events meeting the definition of adverse device effects (section 0)

1227 All reportable Adverse Events and Adverse Device Effects, whether volunteered by the
1228 participant's parents, discovered by study personnel during questioning, or detected through
1229 physical examination, laboratory testing, or other means, will be reported online on an adverse
1230 event form. The Medical Monitor will review each adverse event form to verify the coding.

1231

1232 **6.4 Relationship of Adverse Event to Study Drug, Device or Procedure**

1233 The study investigator will assess the relationship of each adverse event to be *related* or *unrelated*
1234 to the study treatment or procedure by deciding if there is a reasonable possibility that the adverse
1235 event may have been caused by the treatment or study procedure. The Medical Monitor also will
1236 make this assessment, which may or may not agree with that of the site investigator. Reporting
1237 requirements will be based on the Medical Monitor's assessment. The investigator brochure that
1238 will be developed will list potential adverse events that may be expected.

1239

1240 To ensure consistency of adverse event causality assessments, investigators should apply the
1241 following general guideline when determining whether an adverse event is related:

1242

1243 Yes

1244 There is a plausible temporal relationship between the onset of the adverse event and
1245 administration of the study treatment, and the adverse event cannot be readily explained by
1246 the participant's clinical state, intercurrent illness, or concomitant therapies; and/or the
1247 adverse event follows a known pattern of response to the study treatment.

1248

1249 No

1250 Evidence exists that the adverse event has an etiology other than the study treatment (e.g.,
1251 preexisting medical condition, underlying disease, intercurrent illness, or concomitant
1252 medication), and/or the adverse event has no plausible temporal relationship to study
1253 treatment administration.

1254

1255 **6.5 Severity (Intensity) of Adverse Event**

1256 The severity (intensity) of an adverse event will be rated by the site investigator and Medical
1257 Monitor. A severity assessment is a clinical determination of the maximum intensity of the adverse
1258 event. Thus, a severe adverse event is not necessarily serious. For example, itching for several days
1259 may be rated as severe, but may not be clinically serious.

1260

- 1261 • **MILD:** Usually transient, requires no special treatment, and does not interfere with the
1262 participant's daily activities.
- 1263
- 1264 • **MODERATE:** Usually causes a low level of inconvenience, discomfort, or concern to
1265 the participant and may interfere with daily activities, but is usually ameliorated by
1266 simple therapeutic measures, and the participant is able to continue in the study.
- 1267
- 1268 • **SEVERE:** Interrupts a participant's usual daily activities, causes severe discomfort, may
1269 cause discontinuation of study drug, and generally requires systemic drug therapy or
1270 other treatment.

1271

1272 **6.6 Expectedness**

1273 For a serious adverse event that is considered possibly related to the study treatment, the Medical
1274 Monitor will classify the event as unexpected if the nature, severity, or frequency is inconsistent
1275 with the risk information previously described in the background section.

1276

1277 **6.7 Coding of Adverse Events**

1278 Adverse events will be coded using the MedDRA dictionary. To facilitate coding, the site will enter
1279 a preliminary event descriptor code, which the Medical Monitor may accept or change (the Medical
1280 Monitor's coding will be used for all reporting and the site's preliminary coding will not be updated
1281 or used in reporting).

1282

1283 The Medical Monitor will review the investigator's assessments of causality and severity and may
1284 agree or disagree. For causality, the Medical Monitor will only attempt to reconcile differences for
1285 causality when one party's coding is no/unlikely and the other party's coding is possible/probable/
1286 definite. For severity, the Medical Monitor will only attempt to reconcile differences when one
1287 party codes as severe and the other party as mild/moderate. The investigator's and Medical
1288 Monitor's assessments do not need to agree. For reporting purposes, the Medical Monitor will make
1289 the final determination with respect to causality as well as whether an event is classified as a serious
1290 adverse event and/or an unanticipated adverse device effect. However, both the investigator's and
1291 the Medical Monitor's coding will be recorded.

1292

1293 **6.8 Outcome of Adverse Event**

1294 The outcome of each reportable adverse event will be classified by the investigator as follows:

1295

- 1296 ◆ RECOVERED/RESOLVED: The participant recovered from the AE/SAE without sequelae.
1297 Record the AE/SAE stop date.
- 1298 ◆ RECOVERED/RESOLVED WITH SEQUELAE: The event persisted and stabilized without
1299 change in the event anticipated. Record the AE/SAE stop date.
- 1300 ◆ FATAL: A fatal outcome is defined as an SAE that results in death. Only the event that was
1301 the cause of death should be reported as fatal. AEs/SAEs that were ongoing at the time of
1302 death, but were not the cause of death, will be recorded as "resolved" at the time of death.
1303 Primary and secondary (if applicable) causes of death will be recorded.
- 1304 ◆ NOT RECOVERED/NOT RESOLVED (ONGOING): An ongoing AE/SAE is defined as a
1305 still ongoing event with an undetermined outcome.
 - 1306 ◆ An unresolved outcome will require follow up by the site to determine the final outcome
1307 of the AE/SAE.
1308 The outcome of an ongoing event at the time of death that was not the cause of death
1309 will be updated and recorded as "resolved," with the date of death recorded as the stop
1310 date.
- 1311 ● UNKNOWN: An unknown outcome is defined as an inability to contact the participant or
1312 access the participant's records to determine the outcome (for example, a participant lost to
1313 follow-up).

1314

1315 If any reported adverse events are ongoing when a participant completes the study (or withdraws),
1316 adverse events classified as suspected, unexpected serious adverse reactions (SUSARs) will be
1317 followed until they are either resolved or have no prospect of improvement or change, even after the
1318 participant has completed all study visits/contacts. For all other adverse events, data collection will

1319 end when the participant completes the study. Note: participants should continue to receive
1320 appropriate medical care for an unresolved adverse event after their participation in the study ends.
1321

1322 **6.9 Reportable Device (Spectacles) Issues**

1323 All UADEs and ADEs as defined in section 0 will be reported on both a Device Issue CRF and AE
1324 CRF.

1325

1326 Study device complaints and device malfunctions will be reported except in the following
1327 circumstances. These occurrences are expected and will not be reported on a Device Issue CRF
1328 assuming criteria for a UADE or ADE have not been met.

1329

1330 **6.10 Timing of Event Reporting**

1331 Serious or unexpected adverse events must be reported to the JCHR within 24 hours by completing
1332 the online adverse event form.

1333

1334 Other reportable adverse events will be reported within three (3) days of the site staff becoming
1335 aware of the event by completion of an electronic case report form.

1336

1337 Each principal investigator is responsible for reporting study-related events and abiding by any
1338 other reporting requirements specific to his/her local Institutional Review Board or Ethics
1339 Committee. As the JCHR IRB is the overseeing IRB, sites must also report all serious adverse
1340 events that they have determined to be unexpected and are probably, possibly, or definitely related
1341 to the study to the JCHR IRB within seven (7) calendar days.

1342

1343 The JCHR will be responsible for notifying the FDA and all participating investigators of any
1344 unexpected fatal or life-threatening suspected adverse reaction as soon as possible, but in no case
1345 later than seven (7) calendar days after initial receipt of the information. In addition, the JCHR will
1346 notify FDA and all participating investigators in an Investigational New Drug (IND) safety report of
1347 potential serious risks, from clinical trials or any other source, as soon as possible, but in no case
1348 later than fifteen (15) calendar days after the sponsor determines that the information qualifies for
1349 reporting.

1350

1351 **6.11 Safety Oversight**

1352 The Medical Monitor will review all adverse events that are reported during the study. SAEs
1353 typically will be reviewed within twenty-four (24) hours of reporting. Other AEs typically will be
1354 reviewed on a weekly basis.

1355

1356 A Data and Safety Monitoring Committee (DSMC) will review compiled safety data at periodic
1357 intervals, with a frequency of no less than twice a year. The DSMC can request modifications to the
1358 study protocol, suspension, or outright stoppage of the study if deemed necessary based on the
1359 safety data available. Details regarding the DSMC review will be documented in a separate DSMC
1360 charter.

1361

1362 The objective of the DSMC review is to determine whether the study (or the treatment for an
1363 individual or study cohort) should continue as planned, proceed with caution, undergo further
1364 investigation, be discontinued, or be modified before continuing. Suspension of enrollment (for a
1365 particular group, a particular study site, or for the entire study) is a potential outcome of a DSMC
1366 safety review.

1367

1368 **6.12 Criteria for Suspending or Stopping Study**

1369 The study may be discontinued by the Steering Committee (with approval of the Data and Safety
1370 Monitoring Committee) prior to the preplanned completion of follow-up for all study participants.

1371
1372 The study may also be suspended or discontinued if the Medical Monitor deems it necessary based
1373 on the totality of safety data available or if the manufacturer of any constituent study medication or
1374 device requires stoppage of use for safety reasons (e.g., drug or product recall).

1375

1376 **6.13 Participant Discontinuation of Study Treatment**

1377 Rules for discontinuing study treatment (spectacles and/or eyedrops) use are:

1378

- 1379 1. The investigator believes it is unsafe for the participant to continue to receive the treatment.
- 1380 2. The participant requests that the treatment be stopped.
- 1381 3. Eyedrop discontinuation in case of participant pregnancy

1382

1383 Even if the study treatment is discontinued, the participant will be encouraged to remain in the study
1384 and complete all remaining study visits. For each specific treatment discontinued, the CRF
1385 treatment prescribed form at each subsequent visit will record that the specified treatment was
1386 discontinued (spectacles, medication) and the reason.

1387

1388 Participants who discontinue the study will be included in the primary analysis of all randomized
1389 patients who complete the 24-month visit.

1390 **Chapter 7: Miscellaneous Considerations**

1391 **7.1 Contacts by the Jaeb Center for Health Research and Sites**

1392 The Jaeb Center is the Sponsor and also serves as the PEDIG Coordinating Center. The Jaeb Center
1393 will be provided with the parent's contact information. The Jaeb Center may contact the parents of
1394 the participants. Permission for such contacts will be included in the Informed Consent Form. The
1395 principal purpose of the contacts will be to develop and maintain rapport with the participant and
1396 family and to help coordinate the scheduling of the outcome examinations.

1397 **7.2 Pregnancy Reporting**

1398 If pregnancy occurs, eyedrops will be discontinued, but the participant will continue wearing the
1399 randomized spectacle lenses, and remain in the study, and will contribute to the primary analysis..
1400 The occurrence of pregnancy will be reported to the JCHR via the study database, and to the JCHR
1401 IRB via the Unanticipated Problem xForm in IRBManager, within seven (7) days of the site
1402 learning of the pregnancy.

1403 **7.3 Prohibited Medications, Treatments, and Procedures**

1404 As previously described, participants are prohibited from using other myopia-control treatments and
1405 contact lens wear during the study.

1406 **7.4 Precautionary Medications, Treatments, and Procedures**

1407 There are no precautionary medications, treatments, or procedures.

1408 **7.5 Participant Compensation**

1409 Participant compensation will be specified in the informed consent form.

1410 **7.6 Participant Withdrawal**

1411 Participation in the study is voluntary, and a participant may withdraw at any time. For participants
1412 who withdraw, their data will be used up until the time of withdrawal.

1413 **7.7 Confidentiality**

1414 For security and confidentiality purposes, participants will be assigned an identifier that will be used
1415 instead of their name. Protected health information gathered for this study will be shared with the
1416 Jaeb Center for Health Research in Tampa, FL as specified in the consent forms. De-identified
1417 participant information may also be provided to research sites involved in the study, also as
1418 specified in the consent forms.

Chapter 8: Statistical Considerations

8.1 Statistical and Analytical Plans

The approaches to sample size and statistical analyses are summarized below.

8.2 Statistical Hypotheses

A test of superiority will be used to evaluate two hypotheses for the change in axial length from baseline at the 24-month visit (primary outcome):

- Between spectacles with single vision lenses + nightly placebo eye drops (hereafter **PLACEBO** group) and spectacles with HAL lenses + nightly placebo eye drop (hereafter **HAL** group)

AND

- Between **PLACEBO** group and spectacles with single vision lenses + nightly atropine 0.05% eye drop (hereafter **ATROPINE** group)

Since two treatments with different mechanisms of action are being compared to a shared control group, no adjustment for multiplicity is necessary (see Section 8.15).

8.2.1 ATROPINE Versus PLACEBO

The 0.05% atropine versus placebo eyedrops hypothesis is evaluated in the cohort using single-vision lenses.

- Null Hypothesis (H_0): There is *no difference* in the primary outcome between the PLACEBO group and the ATROPINE group.
- Alternative Hypothesis (H_a): There *is a difference* in the primary outcome between the PLACEBO group and the ATROPINE group.

8.2.2 HAL Versus PLACEBO

The HAL vs. single vision lenses hypothesis is evaluated in the cohort using placebo eye drops.

- Null Hypothesis (H_0): There is *no difference* in the primary outcome between the PLACEBO group and the HAL group.
- Alternative Hypothesis (H_a): There *is a difference* in the primary outcome between the PLACEBO group and the HAL group.

8.3 Sample Size

8.3.1 Estimate of Effect with PLACEBO

Data from the MTS1 randomized trial of 0.01% atropine eyedrops vs. placebo eyedrops were used to estimate the effect of PLACEBO in the current study.¹⁹ Among participants in MTS1 who were aged 5 to <12 years at enrollment and randomized to spectacles with single vision lenses and daily placebo eye drop, 53 completed 24 months of follow-up. The mean change in axial length from baseline after 24 months was 0.43 mm (95% CI: 0.35 to 0.51 mm), and the standard deviation was

1474 0.28 mm (95% CI: 0.23 to 0.32 mm). The standard deviation adjusted for baseline axial length and
 1475 age was 0.24 mm (95% CI: 0.17 to 0.29 mm).

1476
 1477 The mean change in spherical equivalent refractive error (SER) after 24 months was -0.77 D (95%
 1478 CI: -0.94 to -0.60 D), and the standard deviation was 0.60 D (95% CI: 0.47 to 0.71 D). The standard
 1479 deviation adjusted for baseline SER and age was 0.56 D (95% CI: 0.42 to 0.66 D).

1480
 1481

8.3.2 Estimate of Effect with ATROPINE and with HAL

1482 Prior studies in Asian populations have demonstrated a reduction in SER and axial length greater
 1483 than 50% with nightly 0.05% atropine eye drops and spectacles with HAL lenses (Table 1);
 1484 however, no published data exist for either treatment modality in North American populations.

1485
 1486 In this study for both ATROPINE and HAL treatment groups, the study will be powered to detect a
 1487 treatment effect versus PLACEBO, assuming that the true treatment effect is a 40% reduction in
 1488 myopic progression in SER and axial length change after 24 months. Because studies conducted in
 1489 Asian populations saw a larger effect (50% reduction), this choice of 40% is a conservative
 1490 estimate.^{30,39}

1491
 1492 **Table 1. Prior Studies of Daily Atropine 0.05% and of Spectacles with HAL Lenses for**
 1493 **Myopia Treatment in Asian Populations**

Study	Treatment Studied	Treatment Effect (Follow-up – Baseline)				Percentage Reduction in Myopia Progression over 24 Months (Active Treatment vs. Placebo)	
		Mean change in axial length (mm) at 24 months (Standard Deviation)		Mean change in SER (D) at 24 months (Standard Deviation)		Axial Length	SER
		Placebo	Active Treatment	Placebo	Active Treatment		
Zhu et al ³⁰	Atropine 0.05%	N=70 0.76 (0.62)	N=72 0.26 (0.30)	N=70 -1.72 (1.12)	N=72 -0.46 (0.30)	66%	73%
Bao et al ^{39*}	HAL Spectacles	N=50 0.69 (0.28)	N=54 0.34 (0.22)	N=50 -1.46 (0.64)	N=54 -0.66 (0.66)	51%	55%

1494 *Standard deviations calculated from reported standard errors multiplied by the square root of the sample size.
 1495

1496
 1497 **8.3.3 Required Sample Size for Current Study**
 1498 Tables 2 and 3 below show the total required sample size to evaluate two independent two-group
 1499 comparisons (PLACEBO vs HAL and PLACEBO vs ATROPINE; 3 groups total), each with 90%
 1500 power and 5% type 1 error rate for 24-month change in axial length and SER, respectively.

1501
1502 **Table 2. Sample Size per Group Required for Change in Axial Length at 24 Months for Two
Independent Hypothesis Tests**

Standard Deviation, mm	Mean Difference, mm				
	0.14	0.155	0.17	0.185	0.20
0.17	32	27	23	19	17
0.205	47	38	32	27	24
0.24	63	52	43	37	32
0.265	77	63	53	45	38
0.29	92	75	63	53	46

1503

1504 **Table 3. Sample Size per Group Required for Change in Spherical Equivalent Refractive
Error at 24 Months for Two Independent Hypothesis Tests**

Standard Deviation, D	Mean Difference, D				
	0.24	0.275	0.31	0.345	0.38
0.49	89	68	54	44	36
0.56	116	89	70	57	47
0.59	128	98	78	63	52
0.60	133	102	80	65	54
0.66	160	123	97	78	65

1506

1507 Although change in axial length is the primary outcome of this trial, change in SER is considered a
1508 key secondary outcome. Therefore, the sample size will be based on the change in SER, given that
1509 it requires a larger sample size than the change in axial length.

1510

1511 If the true mean difference in change in SER is 0.31 D (i.e., a 40% reduction in progression relative
1512 to similarly aged MTS1 control group participants) and the adjusted standard deviation for change
1513 in SER is 0.59 D, then the sample size required per group for two independent 2-group comparisons
1514 is 78 participants for a total of 234 across 3 groups (PLACEBO, HAL, and ATROPINE).

1515

1516 Adjusting for 10% loss to follow-up results in a per group sample size of 87 participants per group
1517 for a total of 261 participants. This sample size for the secondary SER outcome results in an
1518 anticipated power for the axial length primary outcome of 99%, assuming the mean difference in
1519 change in axial length is 0.17 mm (i.e., 40% reduction in progression relative to similarly aged
1520 MTS1 control group participants) and the adjusted standard deviation for change in axial length is
1521 0.24 mm. Assuming the same mean difference and sample size, power will still be greater than or
1522 equal to 90% for axial length if the adjusted standard deviation is 0.325 mm or lower.

1523

1524 **8.3.3.1 COMBINED Treatment**1525 An additional 87 participants will be enrolled into a fourth treatment group to explore the effect of
1526 COMBINED treatment with 0.05% atropine eyedrops and HAL spectacles, for a total sample size
1527 of 348 participants (87 in each of the four treatment groups). For comparison with PLACEBO,
1528 power is expected to be 90% or greater assuming the treatment effect is as large or larger than HAL
1529 or ATROPINE alone and the standard deviation is the same. For other scenarios, Tables 4 and 5
1530 present anticipated power for various mean differences and standard deviations. Assuming the
1531 adjusted standard deviation for change in axial length is 0.24 mm, the study will have 80% power to
1532 detect a difference as small as 0.11 mm. Assuming the adjusted standard deviation for change in
1533 SER is 0.59 D, the study will have 80% power to detect a difference as small as 0.27 D.

1534
1535
1536**Table 4. Power for comparison of COMBINED with PLACEBO, HAL, or ATROPINE given various mean differences and standard deviations for change in axial length (N=78 per group)**

Standard Deviation, mm	Mean Difference, mm				
	0.08	0.11	0.14	0.17	0.20
0.17	83%	98%	>99%	>99%	>99%
0.205	68%	91%	99%	>99%	>99%
0.24	54%	81%	95%	99%	>99%
0.265	47%	73%	91%	98%	>99%
0.29	40%	65%	85%	95%	99%

1537
1538
1539**Table 5. Power for comparison of COMBINED with PLACEBO, HAL, or ATROPINE given various mean differences and standard deviations for change in SER (N=78 per group)**

Standard Deviation, D	Mean Difference, D				
	0.10	0.17	0.24	0.31	0.38
0.49	24%	58%	86%	98%	>99%
0.56	20%	47%	76%	93%	99%
0.59	18%	43%	71%	90%	98%
0.60	18%	42%	70%	89%	98%
0.66	16%	36%	62%	83%	95%

1540

8.4 Outcome Measures

1541
1542

8.4.1 Primary Efficacy Outcome

- Change in axial length from baseline at 24 months

1545

8.4.2 Secondary Efficacy Outcomes

1546
1547
1548

- Change in spherical equivalent refractive error (SER) from baseline at 24 months
- Change in axial length from baseline at 30 months
- Change in SER from baseline at 30 months
- Change in axial length from baseline at 18 months
- Change in SER from baseline at 18 months
- Change in axial length from baseline at 12 months
- Change in SER from baseline at 12 months
- Change in axial length from baseline at 6 months
- Change in SER from baseline at 6 months

1549
1550
1551
1552
1553
1554
1555

8.4.3 Exploratory Outcomes

1556
1557
1558
1559
1560
1561
1562
1563
1564

- Change in monocular amplitude of accommodation from baseline at 6, 12, and 24 months
- Change in pupil size from baseline at 6, 12, and 24 months
- Change in flat corneal radius from baseline at 24 and 30 months
- Change in anterior chamber depth from baseline at 24 and 30 months
- Change in lens thickness from baseline at 24 and 30 months
- Change in axial length over 24 months (area under the curve)
- Change in axial length from 12 to 24 months
- Change in axial length from 24 to 30 months

1565 • Change in SER from 12 to 24 months
1566 • Change in SER from 24 to 30 months
1567 • Change in axial length over 24 months (area under the curve)
1568 • Child and parent Treatment Impact Questionnaire scores at 6 months and 24 months.
1569

1570 **8.5 Analysis Cohorts**

1571 • Intention-To-Treat (ITT) Analysis Cohort: all randomized participants, irrespective of
1572 treatment received, will be analyzed according to treatment assignment.
1573 • Safety Analysis Cohort: participants who receive at least one dose of the randomly assigned
1574 study medication (placebo or 0.05% atropine) or wear either of the randomly assigned
1575 spectacles (HAL or SVL) for any amount of time.
1576

1577 The primary analysis will follow the ITT principle. It will include all randomized participants. The
1578 data from the ITT cohort will be analyzed according to the group to which the participants were
1579 assigned through randomization, regardless of treatment received.
1580

1581 **8.6 Analysis of the Primary Efficacy Outcome**

1582 The average of three separate axial length measurements visits will be calculated for each eye at
1583 baseline and all follow-up visits. If fewer than three measurements are available for an eye at a
1584 timepoint, the mean of available measurements will be used to calculate the mean axial length for
1585 each eye. The mean of the right and left eyes will be used for analysis. The change in mean axial
1586 length from baseline to the 24-month visit will be used as the primary outcome.
1587

1588 The primary analysis will be a treatment group comparison of change in axial length from baseline
1589 at 24-month visit, using a longitudinal discrete time mixed effects model using axial length at
1590 randomization, 6, 12, 18, and 24 months as dependent variable and adjusting for age to account for
1591 confounding due to potential imbalances between groups and to increase statistical power. The
1592 treatment group difference (active treatment – placebo) for change in mean axial length from
1593 baseline to 24 months, 95% confidence interval, and P value for the null hypothesis of no difference
1594 will be calculated based on the model estimates at 24 months.
1595

1596 The model assumption for the mixed model will be assessed, including the linearity of the
1597 adjustment covariates (baseline axial length and age), and normality and homoscedasticity of the
1598 residuals.
1599

1600 Only data from visits completed within the analysis windows (± 3 months from the expected visit
1601 date) will be included in the analysis. There will be no explicit imputation of outcome data for
1602 exams not completed or completed outside of the analysis window, as the mixed model will
1603 produce an unbiased estimate of treatment effect via direct maximum likelihood as long as the
1604 missing outcome data are missing at random (MAR).
1605

1606 Sensitivity analyses evaluating the robustness of the primary analysis will be outlined in the
1607 statistical analysis plan.
1608

1609 **8.7 Analysis of the Secondary Outcomes**
1610

1611 **8.7.1 Change in Spherical Equivalent Refractive Error from Baseline at 24 Months**

1612 The mean SER of each eye at baseline and all follow-up visits, measured by the masked examiner
1613 using cycloplegic autorefraction, will be calculated as the average of the three separate readings
1614 from autorefraction. If fewer than three readings are available, the average of available readings will
1615 be used. The mean of the right and left eyes will be used for analysis. A longitudinal discrete time
1616 mixed effects model will be used for treatment group comparison of change in SER from baseline at
1617 the 24-month visit using SER at randomization, 6, 12, 18, and 24 months as dependent variables
1618 and adjusting for age. The other aspects of the analysis are the same as outlined in the primary
1619 analyses (Section 8.6).

1621 **8.7.2 Change in Axial Length from Baseline at 30 Months**

1622 The same method described for the primary outcome (Section 8.6) will be used, but data from 6, 12,
1623 18, 24, and 30 months will be included in the model.

1625 **8.7.3 Change in Spherical Equivalent Refractive Error from Baseline at 30 Months**

1626 The same method as described in Section 0 will be used but with data from 6, 12, 18, 24, and 30
1627 months included in the model.

1629 **8.7.4 Changes in Axial Length and SER at 6, 12, and 18 Months**

1630 The same methods described in Sections 8.6 and 0 will be used.

1632 **8.8 Analyses of Exploratory Outcomes**

1634 **8.8.1 Change in Monocular Amplitude of Accommodation at 6, 12, and 24 Months**

1635 Change in the monocular amplitude of accommodation will be analyzed using a discrete time
1636 longitudinal mixed effects model adjusted for age similar to the primary outcome (Section 8.6).

1638 **8.8.2 Change in Additional Ocular Parameters**

1639 Change in flat corneal radius, anterior chamber depth, and lens thickness will each be compared
1640 between treatment groups at 24 and 30 months using a longitudinal discrete time mixed model,
1641 which allows for interaction between time and treatment group and adjusts for the baseline value of
1642 the parameter and age similar to the primary outcome

1644 **8.8.3 Change in Pupil Size at 6, 12, and 24 Months**

1645 Change in pupil will be analyzed using a discrete-time longitudinal mixed effects model adjusted
1646 for age similar to the primary outcome (Section 8.6).

1648 **8.8.4 Change in Axial Length Over 24 Months (Area Under the Curve)**

1649 The change in axial length over 24 months (area under the curve) will be calculated and compared
1650 between treatment groups using the same discrete-time longitudinal mixed effects model used for
1651 the analyses of the primary outcome (Section 8.6). The area under the curve can be interpreted as a
1652 weighted average of the change in axial length at each visit with weights proportional to the time
1653 between visits.

1654 AUC will be calculated by linear combination of model estimates using the trapezoidal rule and the
1655 following formula:

$$1656 \quad AUC = \sum_{i=1}^n \left(\frac{X_i + X_{i+1}}{2} \times m \right)$$

1657
1658 Where X_i is the axial length measured at the i^{th} visit, m is the number of months between visits i and
1659 $i+1$, and n is the number of outcome visits included in the analysis. In this analysis there are $n = 5$
1660 visits total: 0, 6, 12, 18, and 24 months. For presentation, AUC will be divided by the number of
1661 months between baseline and the n^{th} visit (i.e., 24) so that the value shown will have units of
1662 millimeters rather than millimeter-months.

1663

1664 **8.8.5 Change in Axial Length from 12 to 24 Months**

1665 The change in axial length from 12 to 24 months will be calculated and compared between
1666 treatment groups using the same discrete-time longitudinal mixed effects model used for the
1667 analyses of the primary outcome (Section 8.6).

1668

1669 **8.8.6 Change in Axial Length from 24 to 30 Months**

1670 The change in axial length from 24 to 30 months will be calculated and compared between
1671 treatment groups using the same discrete-time longitudinal mixed effects model used for the
1672 analyses of the secondary outcome in axial length (Section 8.7.2).

1673

1674 **8.8.7 Change in Spherical Equivalent Refractive Error from 12 to 24 Months**

1675 The change in SER from 12 to 24 months will be calculated and compared between treatment
1676 groups using the same discrete-time longitudinal mixed effects model used for the analyses of the
1677 secondary outcome in SER (Section 8.7.1).

1678

1679 **8.8.8 Change in Spherical Equivalent Refractive Error from 24 to 30 Months**

1680 The change in SER from 24 to 30 months will be calculated and compared between treatment
1681 groups using the same discrete-time longitudinal mixed effects model used for the analyses of the
1682 secondary outcome in SER (Section 8.7.3).

1683

1684 **8.8.9 Change in Spherical Equivalent Refractive Error Over 24 Months**

1685 The change in SER over 24 months (area under the curve) will be calculated and compared between
1686 treatment groups using the same discrete-time longitudinal mixed effects model used for the
1687 analyses of the primary outcome (Section 8.6). The area under the curve can be interpreted as a
1688 weighted average of the change in SER at each visit with weights proportional to the time between
1689 visits.

1690 AUC will be calculated by linear combination of model estimates using the trapezoidal rule and the
1691 following formula:

$$1692 \quad AUC = \sum_{i=1}^n \left(\frac{X_i + X_{i+1}}{2} \times m \right)$$

1693
1694 Where X_i is the SER measured at the i^{th} visit, m is the number of months between visits i and $i+1$,
1695 and n is the number of outcome visits included in the analysis. In this analysis there are $n = 5$ visits
1696 total: 0, 6, 12, 18, and 24 months. For presentation, AUC will be divided by the number of months
1697 between baseline and the n^{th} visit (i.e., 24) so that the value shown will have units of diopters rather
1698 than diopters-months.

1699

1700 **8.8.10 Treatment Impact Questionnaire**

1701 The Treatment Impact Questionnaire (TIQ) will be used as a quantitative measure to evaluate
1702 opinions regarding the burdens and impact of the randomized treatment at 6 months and 24 months
1703 (as questions for the child – the Child TIQ and the parent themselves – the Parent TIQ).

1704
1705 The Child-TIQ and Parent-TIQ will undergo separate factor analysis to determine the number of
1706 domains for each TIQ. Each domain will be refined through the evaluation of misfitting items and
1707 will then be Rasch scored.

1708
1709 Note that because the TIQ is not administered at baseline (because treatment has not been started),
1710 there will be no adjustment for baseline score in any analysis.

1711
1712 Additional methods to score and analyze the Treatment Impact Questionnaire will be detailed in a
1713 separate SAP.

1714
1715 **8.9 Safety Analyses**
1716 Safety analyses will be performed in the safety analysis cohort (section 8.5**Error! Reference
1717 source not found.**). Adverse events will be coded and tabulated based on the Medical Dictionary of
1718 Regulatory Activities (MedDRA) by treatment group. The severity, frequency, and relationship to
1719 study treatment will also be tabulated. There will be no formal statistical comparison of adverse
1720 events.

1721
1722 The proportion of participants with loss of ≥ 2 logMAR lines of binocular near visual acuity at any
1723 visit after randomization will be tabulated for each group and compared using Fisher's Exact Test.

1724
1725 The proportion of participants with loss of ≥ 2 logMAR lines of monocular distance visual acuity in
1726 best correction at any visit after randomization will be tabulated for each group and compared using
1727 Fisher's Exact Test.

1728
1729 **8.10 Intervention Adherence**
1730 Adherence to study eyedrops (atropine and placebo eyedrop) and spectacles (SVL and HAL lenses)
1731 based on calendars brought to each follow-up visit will be tabulated in each treatment group.

1732
1733 **8.11 Protocol Adherence and Retention**
1734 Protocol deviations and visit completion rates (excluding participant deaths) will be tabulated for
1735 each treatment group.

1736
1737 **8.12 Baseline Descriptive Statistics**
1738 The following baseline characteristics will be tabulated according to treatment group:

- 1739 • Age
- 1740 • Sex
- 1741 • Race
- 1742 • Ethnicity
- 1743 • Iris color
- 1744 • Number of biological parents with myopia
- 1745 • Distance visual acuity in habitual refractive correction

1747 **8.13 Planned Interim Analyses**

1748 There are no formal planned interim analyses for this study. The Data and Safety Monitoring
1749 Committee will review safety and efficacy data approximately every 6 months; they have the
1750 authority to recommend stopping the trial if deemed necessary.

1751 **8.14 Subgroup Analyses**

1752 Subgroup analyses will be considered exploratory. The treatment group difference for change in
1753 axial length and change in SER from baseline to 24 within the following subgroups will be
1754 estimated with a 95% confidence interval:

- 1756 • Sex
- 1757 • Race/Ethnicity
- 1758 • Brown iris vs. non-brown iris
- 1759 • Age (continuous)
- 1760 • Axial Length (continuous)
- 1761 • SER (continuous)

1762 These planned subgroup analyses will modify the primary and secondary analyses by including the
1763 baseline factor and the baseline factor by treatment interaction. In general, statistical power will be
1764 low for detecting interactions unless the interaction is very large.

1765 Subgroup analyses will be interpreted with caution, particularly if the corresponding overall
1766 analysis does not demonstrate a significant treatment group difference.

1767 **8.15 Multiple Comparison/Multiplicity**

1768 For the primary outcome of axial length, two tests of superiority will be conducted: ATROPINE vs
1769 PLACEBO and HAL vs PLACEBO. The tests will be performed independently, and each will be
1770 conducted with an alpha level of 0.05.

1771 Although two pairwise comparisons are being evaluated, there will be no formal adjustment to the
1772 familywise error rate. Because the primary objective of this trial is to compare each of two active
1773 treatments (atropine eye drops and HAL lenses), which likely have different mechanisms of action,
1774 with a shared PLACEBO control group (not with one another), a multiplicity adjustment is not
1775 needed.⁵²⁻⁵⁴ The risk of a false positive finding with this approach is lower than if the two
1776 hypotheses were evaluated in two studies with different control groups.⁵² The same logic applies to
1777 secondary, exploratory, safety, and subgroup analyses.

1778 For the secondary outcomes (Section 8.4.2), the familywise error rate will be controlled with a
1779 hierarchical (i.e., fixed sequence) approach. If the null hypothesis for the primary outcome (axial
1780 length) is rejected (for either HAL vs PLACEBO or ATROPINE vs PLACBO), then the first
1781 secondary outcome (change in SER at 24 months) will be compared without further adjustment to
1782 the type 1 error rate.⁵⁵ If the primary outcome null hypothesis is not rejected, then the comparison of
1783 the change in SER at 24 months will be considered exploratory; a 95% confidence interval (without
1784 adjustment for multiplicity) will be presented, and a *p*-value will not be presented. Subsequent
1785 secondary outcomes will be tested in the order listed in Section 8.4.2.

1786 No formal adjustments for multiple exploratory outcomes will be made, and *P* values will not be
1787 presented for exploratory outcome analyses (Section 8.8). However, for changes in monocular
1788 amplitude of accommodation (Section 8.8.2), additional ocular parameters (Section 0), and pupil

1795 size (Section 8.8.4), the adaptive false discovery rate⁵⁶ procedure will be used to adjust the 95%
1796 confidence intervals for the analysis of multiple time points (i.e., one adjustment for the 3 amplitude
1797 comparisons and a separate adjustment for the 3 pupil size comparisons).

1798
1799 There will be no formal adjustment for safety analyses because type 2 errors (false negatives) are of
1800 greater concern than type 1 errors (false positives).

1801
1802 The adaptive false discovery rate will be used to adjust for multiple subgroup analyses. Both
1803 interaction P values and within-group 95% confidence intervals will be adjusted. P values for
1804 interactions will only be presented if the overall analysis indicates a significant effect.

1805
1806 **8.16 Additional Tabulations and Analyses**

- 1807 • A flow chart accounting for all participants for all visits and phone calls will be developed.
- 1808 • Visit and phone contact completion rates for each follow-up visit will be tabulated.
- 1809 • Proportion of participants with a change in myopia of ≥ 0.50 D and ≥ 1.0 D from baseline to
1810 12, 24, and 30 months.
- 1811 • Proportion of participants with a change in axial length ≥ 0.25 mm and ≥ 0.50 mm from
1812 baseline to 12, 24, and 30 months.

1813
1814 **8.17 Exploratory Analyses in COMBINED Atropine + HAL Lenses Group**

1815 Exploratory comparisons between the COMBINED group and the ATROPINE, HAL, and
1816 PLACEBO groups will parallel the analyses conducted for the ATROPINE vs PLACEBO and HAL
1817 vs PLACEBO comparisons. An exploratory analysis pooling across cells in the factorial design will
1818 be conducted if prespecified criteria suggesting absence of an interaction are met. Details will be
1819 provided in the SAP.

Chapter 9: Data Collection and Monitoring

9.1 Case Report Forms and Other Data Collection

The main study data are collected on electronic case report forms (eCRFs). When data are directly collected in real-time in electronic case report forms, this will be considered the source data. For any data points for which the eCRF is not considered source (e.g., lab results that are transcribed from a printed report into the eCRF; other data that are not directly entered in real-time), the original source documentation must be maintained in the participant's study chart or medical record. This source must be readily verifiable against the values entered into eCRF. Even where all study data are directly entered into the eCRFs at office visits, evidence of interaction with a live participant must be recorded (e.g., office note, visit record, etc.).

Electronic device data files are obtained from the study software and individual hardware components. These electronic device files are considered the primary source documentation. Each participating site will maintain appropriate medical and research records for this trial, in compliance with ICH E6 and regulatory and institutional requirements for the protection of confidentiality of participants.

9.2 Study Records Retention

Study documents should be retained for a minimum of three (3) years after completion of the final grant reporting, or for two (2) years after a marketing application is approved for the investigational product(s); or, if an application is not approved, until two (2) years after shipment and delivery of the product for investigational use is discontinued and the FDA has been so notified. These documents should be retained for a longer period, however, if required by local regulations or institutional requirements. No records will be destroyed without the written consent of the sponsor. It is the responsibility of the sponsor to inform the investigator when these documents no longer need to be retained.

9.3 Quality Assurance and Monitoring

Designated personnel from the JCHR will be responsible for maintaining quality assurance (QA) and quality control (QC) systems to ensure that the clinical portion of the trial is conducted and data are generated, documented, and reported in compliance with the protocol adhering to Good Clinical Practice (GCP) and the applicable regulatory requirements, as well as to ensure that the rights and wellbeing of trial participants are protected and that the reported trial data are accurate, complete, and verifiable. Adverse events will be prioritized for monitoring.

A risk-based monitoring (RBM) plan will be developed and revised as needed during the study, consistent with the FDA's "Guidance for Industry Oversight of Clinical Investigations — A Risk-Based Approach to Monitoring" (August 2013). This plan describes in detail who will conduct the monitoring, at what frequency monitoring will be done, at what level of detail monitoring will be performed, and the distribution of monitoring reports.

The data of most importance for monitoring at the site are informed consent/assent, participant eligibility, and adverse events. Therefore, the RBM plan will focus on these areas. Whenever possible, remote monitoring will be conducted in real-time supplemented by on-site monitoring to evaluate the accuracy and completeness of the key study data.

Elements of the RBM may include:

- Qualification assessment, training, and certification for sites and site personnel
- Oversight of Institutional Review Board (IRB) coverage and informed consent procedures
- Central (remote) data monitoring: validation of data entry, data edits/audit trail, protocol review of entered data and edits, statistical monitoring, study closeout
- On-site monitoring (site visits): source data verification, site visit report
- Agent/Device accountability
- Communications with site staff
- Patient retention and visit completion
- Quality control reports
- Management of noncompliance
- Documenting monitoring activities
- Adverse event reporting and monitoring

JCHR representatives or their designees may visit the study facilities at any time to maintain current and personal knowledge of the study through review of the records, comparison with source documents, observation, and discussion of the conduct and progress of the study. The investigational site will provide direct access to all trial related sites, source data/documents, and reports for monitoring and auditing by the sponsor and inspection by local and regulatory authorities.

9.4 Protocol Deviations

A protocol deviation is noncompliance with the clinical trial protocol, GCP, or clinical procedure requirements. Noncompliance may be on the part of the participant, the investigator, or the study site staff. As a result of deviations, the site must develop and implement corrective actions promptly.

The site PI and study staff are responsible for knowing and adhering to their local requirements. Further details about the handling of protocol deviations will be included in the Monitoring Plan.

1896 **Chapter 10: Ethics/Protection of Human Participants**

1897 **10.1 Ethical Standard**

1899 The investigator will ensure that this study is conducted in full conformity with Regulations for the
1900 Protection of Human Participants of Research codified in 45 CFR Part 46, 21 CFR Part 50, 21 CFR
1901 Part 56, and/or the ICH E6.

1902 **10.2 Institutional Review Boards**

1904 The protocol, informed consent form(s), recruitment materials, and all participant materials will be
1905 submitted to the JCHR IRB for review and approval. Approval of both the protocol and the consent
1906 form must be obtained before any participant is enrolled. Any amendment to the protocol will
1907 require review and approval by the JCHR IRB before the changes are implemented to the study. All
1908 changes to the consent form will be JCHR IRB approved; a determination will be made regarding
1909 whether previously consented participants need to be re-consented.

1910 **10.3 Informed Consent, Assent, and HIPAA Authorization Process**

1913 **10.3.1 Procedures and Documentation**

1914 Informed consent is a process that is initiated prior to the individual's agreeing to participate, or
1915 allowing their child to participate, in the study and continues throughout study participation. Assent
1916 is the process by which a child is informed of the study and has the right and requirement to provide
1917 affirmative agreement to participate (verbally or in writing as required by the overseeing IRB).
1918 HIPAA Authorization is the process by which the parent/participant provides their approval to
1919 allow their protection health information to be collected and shared as specified in a similarly
1920 named document, or within the applicable section of the consent form. Extensive discussion of risks
1921 and possible benefits of participation will be provided to the participants and their parent(s).
1922 Consent, assent and HIPAA forms will be IRB-approved and the parent(s)/participant will be asked
1923 to read and review the document(s) as applicable. The investigator will explain the research study to
1924 the parent(s)/participant and answer any questions that may arise. All parents/participants will
1925 receive a verbal explanation in terms suited to their comprehension of the purposes, procedures, and
1926 potential risks of the study and of their rights as research participants. Parents/participants will have
1927 the opportunity to carefully review the written form(s) and ask questions prior to signing.

1928 The parents/participants should have the opportunity to discuss the study with their surrogates or
1929 think about it prior to agreeing to participate. The parent(s)/participant will sign the applicable
1930 forms prior to any procedures being done or data being collected for the study. The
1931 parents/participants may withdraw consent, assent or HIPAA Authorization at any time throughout
1932 the course of the study. A copy of the forms will be given to the parents/participants for their
1933 records. The rights and welfare of the participants will be protected by emphasizing that the quality
1934 of their medical care and benefits to which they are otherwise entitled will not be adversely affected
1935 if they decline to participate in this study or withdraw at a later date.

1938 **10.3.2 Participant and Data Confidentiality**

1939 Parent/participant confidentiality is strictly held in trust by the participating investigators, their staff,
1940 and the sponsor(s) and their agents. This confidentiality is extended to include testing of biological
1941 samples and genetic tests in addition to the clinical information relating to participants. Therefore,
1942 the study protocol, documentation, data, and all other information generated will be held in strict

1943 confidence. No information concerning the study or the data from the study will be released to any
1944 unauthorized third party without prior written approval of the sponsor.
1945
1946 The study monitor, other authorized representatives of the sponsor, representatives of the IRB,
1947 regulatory agencies, or company supplying the study product may inspect all documents and
1948 records required to be maintained by the investigator, including but not limited to medical records
1949 (office, clinic, or hospital) and pharmacy records for the participants in this study. The clinical study
1950 site will permit access to such records.
1951
1952 The study participant's contact information will be securely stored at each clinical site for internal
1953 use during the study. At the end of the study, all records will remain in a secure location for as long
1954 as dictated by the reviewing IRB, institutional policies, or sponsor requirements.
1955
1956 Study participant research data for statistical analysis and scientific reporting will be transmitted to
1957 and stored at the Jaeb Center for Health Research. This will not include the participant's contact or
1958 identifying information. Instead, individual participants and their research data will be identified by
1959 a unique study identification number. The study data entry and management systems used by
1960 clinical sites and Jaeb Center for Health Research staff will be secured and password protected.
1961
1962 At the end of the study, all study databases will be de-identified and archived at the Jaeb Center for
1963 Health Research.
1964
1965 To further protect the privacy of study participants, a Certificate of Confidentiality is provided from
1966 the NIH. This certificate protects identifiable research information from forced disclosure. It allows
1967 the investigator and others who have access to research records to refuse to disclose identifying
1968 information on research participation in any civil, criminal, administrative, legislative, or other
1969 proceeding, whether at the federal, state, or local level. By protecting researchers and institutions
1970 from being compelled to disclose information that would identify research participants, Certificates
1971 of Confidentiality help achieve the research objectives and promote participation in studies by
1972 helping assure confidentiality and privacy to participants.
1973
1974 **10.3.3 Future Use of Data**
1975 Data collected for this study will be analyzed and stored at the Jaeb Center for Health Research.
1976 After the study is completed, the de-identified, archived data will be made available to the public as
1977 specified in the consent form(s).

Chapter 11: References

1978

1979

1980 1. Drover JR, Felius J, Cheng CS, Morale SE, Wyatt L, Birch EE. Normative pediatric visual acuity using single surrounded HOTV optotypes on the Electronic Visual Acuity Tester following the Amblyopia Treatment Study protocol. *J AAPOS*. 2008;12(2):145-9.

1981

1982

1983 2. Pan Y, Tarczy-Hornoch K, Cotter SA, et al. Visual acuity norms in pre-school children: the Multi-Ethnic Pediatric Eye Disease Study. *Optom Vis Sci*. 2009;86(6):607-12.

1984

1985 3. Pan CW, Ramamurthy D, Saw SM. Worldwide prevalence and risk factors for myopia. *Ophthalmic & Physiological Optics*. 2012;32(1):3-16.

1986

1987 4. Foster PJ, Jiang Y. Epidemiology of myopia. *Eye (Lond)*. 2014;28(2):202-208.

1988 5. French AN, Morgan IG, Burlutsky G, Mitchell P, Rose KA. Prevalence and 5- to 6-year incidence and progression of myopia and hyperopia in Australian schoolchildren. *Ophthalmology*. 2013;120(7):1482-1491.

1989

1990

1991 6. Giordano L, Friedman DS, Repka MX, et al. Prevalence of refractive error among preschool children in an urban population: the Baltimore Pediatric Eye Disease Study. *Ophthalmology*. 2009;116(4):739-46, 746 e1-4.

1992

1993

1994 7. Multi-Ethnic Pediatric Eye Disease Study Group. Prevalence of myopia, hyperopia, and astigmatism in non-Hispanic white and Asian children: multi-ethnic pediatric eye disease study. *Ophthalmology*. 2013;120(10):2109-2116.

1995

1996

1997 8. Multi-Ethnic Pediatric Eye Disease Study Group. Prevalence of myopia and hyperopia in 6- to 72-month-old african american and Hispanic children: the multi-ethnic pediatric eye disease study. *Ophthalmology*. 2010;117(1):140-147 e3.

1998

1999

2000 9. Theophanous C, Modjtahedi BS, Batech M, Marlin DS, Luong TQ, Fong DS. Myopia prevalence and risk factors in children. *Clin Ophthalmol*. 2018;12:(doi)(eCollection 2018.):1581-1587.

2001

2002

2003 10. Vitale S, Sperduto RD, Ferris FL, 3rd. Increased prevalence of myopia in the United States between 1971-1972 and 1999-2004. *Arch Ophthalmol*. 2009;127(12):1632-1639.

2004

2005 11. Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. *Ophthalmology*. 2016;123(5):1036-42.

2006

2007 12. Liang J, Pu Y, Chen J, et al. Global prevalence, trend and projection of myopia in children and adolescents from 1990 to 2050: a comprehensive systematic review and meta-analysis. *Br J Ophthalmol*. 2024;

2008

2009

2010 13. Lawrenson JG, Shah R, Huntjens B, et al. Interventions for myopia control in children: a living systematic review and network meta-analysis. *Cochrane Database Syst Rev*. 2023;2(2):Cd014758.

2011

2012

2013 14. Grodum K, Heijl A, Bengtsson B. Refractive error and glaucoma. *Acta Ophthalmol Scand*. 2001;79(6):560-566.

2014

2015 15. Tano Y. Pathologic myopia: where are we now? *Am J Ophthalmol*. 2002;134(5):645-660.

2016

2017 16. Willis JR, Vitale S, Morse L, et al. The Prevalence of Myopic Choroidal Neovascularization in the United States: Analysis of the IRIS((R)) Data Registry and NHANES. *Ophthalmology*. 2016;123(8):1771-82.

2018

2019 17. Huang J, Wen D, Wang Q, et al. Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis. *Ophthalmology*. 2016;123(4):697-708.

2020

2021 18. National Academies of Sciences E, Medicine, Division of B, et al. The National Academies Collection: Reports funded by National Institutes of Health. *Myopia: Causes, Prevention, and Treatment of an Increasingly Common Disease*. National Academies Press (US)

2022

2023

2024 Copyright 2024 by the National Academy of Sciences. All rights reserved.; 2024.

2025 19. Repka MX, Weise KK, Chandler DL, et al. Low-dose 0.01% atropine eye drops vs placebo
2026 for myopia control: A randomized clinical trial. *JAMA Ophthalmol*. 2023;141(8):756-765.

2027 20. Lee SS, Lingham G, Blaszkowska M, et al. Low-concentration atropine eyedrops for
2028 myopia control in a multi-racial cohort of Australian children: A randomised clinical trial. *Clin Exp
2029 Ophthalmol*. 2022;

2030 21. Zadnik K, Schulman E, Flitcroft I, et al. Efficacy and Safety of 0.01% and 0.02% Atropine
2031 for the Treatment of Pediatric Myopia Progression Over 3 Years: A Randomized Clinical Trial.
2032 *JAMA Ophthalmol*. 2023;141(10):990-999.

2033 22. Loughman J, Kobia-Acquah E, Lingham G, et al. Myopia outcome study of atropine in
2034 children: Two-year result of daily 0.01% atropine in a European population. *Acta Ophthalmol*.
2035 2023;11(10):15761.

2036 23. Loughman J, Lingham G, Nkansah EK, Kobia-Acquah E, Flitcroft DI. Efficacy and Safety
2037 of Different Atropine Regimens for the Treatment of Myopia in Children: Three-Year Results of the
2038 MOSAIC Randomized Clinical Trial. *JAMA Ophthalmol*. 2025;143(2):134-144.

2039 24. Shih YF, Chen CH, Chou AC, Ho TC, Lin LL, Hung PT. Effects of different concentrations
2040 of atropine on controlling myopia in myopic children. *J Ocul Pharmacol Ther*. 1999;15(1):85-90.

2041 25. Shih YF, Hsiao CK, Chen CJ, Chang CW, Hung PT, Lin LL. An intervention trial on
2042 efficacy of atropine and multi-focal glasses in controlling myopic progression. *Acta Ophthalmol
2043 Scand*. 2001;79(3):233-236.

2044 26. Chia A, Chua WH, Cheung YB, et al. Atropine for the treatment of childhood myopia:
2045 safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the Treatment of Myopia 2).
2046 *Ophthalmology*. 2012;119(2):347-354.

2047 27. Chua WH, Balakrishnan V, Chan YH, et al. Atropine for the treatment of childhood myopia.
2048 *Ophthalmology*. 2006;113(12):2285-91.

2049 28. Yam JC, Jiang Y, Tang SM, et al. Low-concentration Atropine for Myopia Progression
2050 (LAMP) study: A Randomized, double-blinded, placebo-controlled trial of 0.05%, 0.025%, and
2051 0.01% atropine eye drops in myopia control. *Ophthalmology*. 2019;126(1):113-124.

2052 29. Yam JC, Li FF, Zhang X, et al. Two-year clinical trial of the Low-concentration Atropine
2053 for Myopia Progression (LAMP) study: Phase 2 report. *Ophthalmology*. 2020;127(7):910-919.

2054 30. Zhu Q, Tang GY, Hua ZJ, et al. 0.05% atropine on control of myopia progression in Chinese
2055 school children: a randomized 3-year clinical trial. *Int J Ophthalmol*. 2023;16(6)(eCollection
2056 2023):939-946. .

2057 31. Li FF, Kam KW, Zhang Y, et al. Differential effects on ocular biometrics by 0.05%,
2058 0.025%, and 0.01% atropine: Low-concentration atropine for myopia progression study.
2059 *Ophthalmology*. 2020;127(12):1603-1611

2060 32. Schaeffel F, Glasser A, Howland HC. Accommodation, refractive error and eye growth in
2061 chickens. *Vision Res*. 1988;28(5):639-57.

2062 33. Troilo D, Smith EL, 3rd, Nickla DL, et al. IMI - Report on Experimental Models of
2063 Emmetropization and Myopia. *Invest Ophthalmol Vis Sci*. 2019;60(3):M31-M88.

2064 34. Smith EL, 3rd, Hung LF, Huang J. Relative peripheral hyperopic defocus alters central
2065 refractive development in infant monkeys. *Vision Res*. 2009;49(19):2386-92.

2066 35. Tse DY, Lam CS, Guggenheim JA, et al. Simultaneous defocus integration during refractive
2067 development. *Invest Ophthalmol Vis Sci*. 2007;48(12):5352-9.

2068 36. Woods J, Guthrie SE, Keir N, et al. Inhibition of defocus-induced myopia in chickens. *Invest
2069 Ophthalmol Vis Sci*. 2013;54(4):2662-8.

2070 37. Irving EL, Yakobchuk-Stanger C. Myopia progression control lens reverses induced myopia
2071 in chicks. *Ophthalmic & Physiological Optics*. 2017;37(5):576-584.

2072 38. Bao J, Yang A, Huang Y, et al. One-year myopia control efficacy of spectacle lenses with
2073 aspherical lenslets. *Br J Ophthalmol*. 2022;106(8):1171-1176.

2074 39. Bao J, Huang Y, Li X, et al. Spectacle lenses with aspherical lenslets for myopia control vs
2075 single-vision spectacle lenses: A randomized clinical trial. *JAMA Ophthalmol.* 2022;140(5):472-
2076 478.

2077 40. Sankaridurg P, Weng R, Tran H, et al. Spectacle Lenses With Highly Aspherical Lenslets
2078 for Slowing Myopia: A Randomized, Double-Blind, Cross-Over Clinical Trial. *Am J Ophthalmol.*
2079 2023;247:18-24.

2080 41. Vagge A, Frattolillo A, Nucci P, et al. Highly Aspherical Lenslet Target (HALT) technology
2081 in combination with low-dose atropine to control myopia progression. *Invest Ophthalmol Vis Sci.*
2082 2024;65(7):2739-2739.

2083 42. Sim B. Combining the Essilor® Stellest® lens with atropine – Q&A with Dr Bryan Sim.
2084 MyopiaProfile. 2024. <https://www.myopiaprofile.com/articles/Combining-Essilor-Etellest-with-Atropine-Bryan-Sim>

2086 43. Li SM, Wu SS, Kang MT, et al. Atropine slows myopia progression more in Asian than
2087 white children by meta-analysis. *Optom Vis Sci.* 2014;91(3):342-350.

2088 44. Tideman JW, Snabel MC, Tedja MS, et al. Association of axial length with risk of
2089 uncorrectable visual impairment for Europeans with myopia. *JAMA Ophthalmol.*
2090 2016;134(12):1355-1363.

2091 45. Haarman AEG, Enthoven CA, Tideman JW, Tedja MS, Verhoeven VJM, Klaver CCW.
2092 The complications of myopia: A review and meta-analysis. *Invest Ophthalmol Vis Sci.*
2093 2020;61(4):49.

2094 46. Flitcroft DI. The complex interactions of retinal, optical and environmental factors in
2095 myopia aetiology. *Prog Retin Eye Res.* 2012;31(6):622-60.

2096 47. Vongphanit J, Mitchell P, Wang JJ. Prevalence and progression of myopic retinopathy in an
2097 older population. *Ophthalmology.* 2002;109(4):704-11.

2098 48. Bullimore MA, Brennan NA. Myopia control: Why each diopter matters. *Optom Vis Sci.*
2099 2019;96(6):463-465.

2100 49. Bullimore MA, Brennan NA. Efficacy in myopia control-The impact of rebound.
2101 *Ophthalmic & Physiological Optics.* 2024;

2102 50. World Medical Association. World Medical Association Declaration of Helsinki: Ethical
2103 principles for medical research involving human subjects. *JAMA.* 2013;310(20):2191-2194.

2104 51. Food and Drug Administration. FDA Regulations Relating to Good Clinical Practice and
2105 Clinical Trials. 2021.

2106 52. Howard DR, Brown JM, Todd S, Gregory WM. Recommendations on multiple testing
2107 adjustment in multi-arm trials with a shared control group. *Stat Methods Med Res.* 2018;27(5):1513-
2108 1530.

2109 53. Juszczak E, Altman DG, Hopewell S, Schulz K. Reporting of Multi-Arm Parallel-Group
2110 Randomized Trials: Extension of the CONSORT 2010 Statement. *JAMA.* 2019;321(16):1610-1620.

2111 54. Parker RA, Weir CJ. Non-adjustment for multiple testing in multi-arm trials of distinct
2112 treatments: Rationale and justification. *Clin Trials.* 2020;17(5):562-566.

2113 55. Dmitrienko A, D'Agostino RB, Sr. Multiplicity Considerations in Clinical Trials. *New
2114 England Journal of Medicine.* 2018;378(22):2115-2122.

2115 56. Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the
2116 false discovery rate. *Biometrika.* 2006;93(3):491-507.

2117