

Myopia Treatment Study 2 (MTS2)

**A Randomized Placebo-Controlled Trial of Spectacles with
Highly Aspherical Lenslets or 0.05% Atropine to Slow
Progression of Myopia in Children**

Statistical Analysis Plan

15 July 2025

Version History

This SAP was written with reference to protocol version 1.0. If the protocol is subsequently updated, then this SAP will be reviewed to ensure consistency with the new protocol. The SAP will not be revised unless the protocol changes require modification of the analyses.

Version	Protocol Version	Author	Approver	Effective Date	Study Stage
1.0	1.0	Rui Wu	Wesley Beaulieu	15 Jul 2025	The first participant has not yet been enrolled.

Version	Revision Description
1.0	Original Version

Approvals

Role	Digital Signature or Handwritten Signature/Date
Author (Statistician)	Rui Wu Digitally signed by Rui Wu DN: cn=Rui Wu ou=North Wing Reason: I am the author of this document Location: Date: 2025-07-15 09:55:04:00
Approver (Senior Statistician)	Wesley Beaulieu I agree to the terms defined by the placement of my signature in this document 2025-07-15 08:46-04:00

1 **1. Study Overview**

2 The primary objective of MTS2 is to compare the effectiveness of 0.05% atropine eye drops
3 versus placebo and of HAL lenses vs. single vision lenses for slowing myopia progression
4 (change in axial length) over a two-year treatment period in children aged 5 to less than 12 years
5 with spherical equivalent refractive error (SER) myopia of 0.75 D to 6.00 D and at least 0.75 D
6 myopia in both principal meridians of each eye at the time of enrollment. On-treatment follow-
7 up visits are at 6, 12, 18, and 24 months (primary). Randomized treatment stops at 24 months,
8 and participants return at 30 months to assess for rebound effects. Complete eligibility criteria
9 and study procedures are described in the study protocol.

10 Participants will be randomized 1:1:1:1 to placebo eye drops + single vision lenses, 0.05%
11 atropine eye drops + single vision lenses, HAL lenses + placebo eye drops, or HAL lenses +
12 0.05% atropine eye drops. Randomization is stratified by baseline age (5 to <9 years, 9 to <12
13 years). Analyses involving the combination group (HAL lenses + 0.05% atropine eye drops) are
14 considered exploratory. Sample size has been set at 87 per group (261 total); details are in the
15 study protocol.

16 **2. Consistency with the Protocol**

17 The author of this document has confirmed the analyses described here are consistent with the
18 version of the protocol indicated on the version history page except for the following:

- 19 • Flat corneal radius, anterior chamber depth, and lens thickness will not be collected and
20 therefore the analyses of these outcomes have been removed.
- 21 • Monocular amplitude of accommodation will be analyzed at 18 and 30 months in
22 addition to 6, 12, and 24 months.
- 23 • The Barnard unconditional exact test will be used to compare binary safety outcomes
24 instead of the Fisher exact test.
- 25 • The adaptive false discovery rate procedure will be used to account for multiplicity in
26 exploratory analyses.

27 A subsequent protocol amendment will reflect these changes. Should there be any further
28 discrepancy between the associated protocol and this SAP, the content of the SAP shall prevail.

29 **3. Statistical Hypotheses**

30 A test of superiority will be used to evaluate two hypotheses for the change in axial length from
31 baseline at the 24-month visit (primary outcome):

- 32 • Between spectacles with single vision lenses + nightly placebo eye drops (hereafter
33 **PLACEBO** group) and spectacles with HAL lenses + nightly placebo eye drop (hereafter
34 **HAL** group)
- 35 • Between **PLACEBO** group and spectacles with single vision lenses + nightly atropine
36 0.05% eye drop (hereafter **ATROPINE** group)

37 Since two treatments with different mechanisms of action are being compared to a shared control
38 group, no adjustment for multiplicity is necessary (Section 16).

39 **3.1. ATROPINE Versus PLACEBO**

40 The 0.05% atropine versus placebo eyedrops hypothesis is evaluated in the cohort using single-
41 vision lenses.

42 • Null Hypothesis (H_0): There is *no difference* in the primary outcome between the
43 PLACEBO group and the ATROPINE group.

44 • Alternative Hypothesis (H_a): There *is a nonzero difference* in the primary outcome
45 between the PLACEBO group and the ATROPINE group.

46 **3.2. HAL Versus PLACEBO**

47 The HAL vs. single vision lenses hypothesis is evaluated in the cohort using placebo eye drops.

48 • Null Hypothesis (H_0): There is *no difference* in the primary outcome between the
49 PLACEBO group and the HAL group.

50 • Alternative Hypothesis (H_a): There *is a nonzero difference* in the primary outcome
51 between the PLACEBO group and the HAL group.

52 **4. Outcome Measures**

53 **4.1. Primary Efficacy Outcome**

54 • Change in axial length from baseline at 24 months

55 **4.2. Secondary Efficacy Outcomes**

56 • Change in spherical equivalent refractive error (SER) from baseline at 24 months
57 • Change in axial length from baseline at 30 months
58 • Change in SER from baseline at 30 months
59 • Change in axial length from baseline at 18 months
60 • Change in SER from baseline at 18 months
61 • Change in axial length from baseline at 12 months
62 • Change in SER from baseline at 12 months
63 • Change in axial length from baseline at 6 months
64 • Change in SER from baseline at 6 months

65 **4.3. Exploratory Outcomes**

66 • Change in monocular amplitude of accommodation from baseline at 6, 12, 18, 24, and 30
67 months
68 • Change in pupil size from baseline at 6, 12, 18, 24, and 30 months

- Change in axial length over 24 months (area under the curve)
- Change in axial length from 12 to 24 months
- Change in axial length from 24 to 30 months
- Change in SER over 24 months (area under the curve)
- Change in SER from 12 to 24 months
- Change in SER from 24 to 30 months
- Child and parent Treatment Impact Questionnaire scores at 6 months and 24 months.

5. Analysis Cohorts

- Intention-To-Treat (ITT) Analysis Cohort: all randomized participants, irrespective of treatment received, will be analyzed according to treatment assignment.
- Safety Analysis Cohort: participants who receive at least one dose of the randomly assigned study medication (placebo or 0.05% atropine) or wear the randomly assigned spectacles (HAL or SVL) for any amount of time.

The primary analysis will follow the ITT principle. It will include all randomized participants. The data from the ITT cohort will be analyzed according to the group to which the participants were assigned through randomization, regardless of treatment received.

6. Visit Windows

For primary, secondary, exploratory, and subgroup analyses, visits must be completed within the specified visit windows for data to be included. The table below defines the visit windows.

Table 1. Analysis Windows

Visit	Target Day	Target Window	Analysis Window
6 months	Randomization + 183 days	± 2 weeks 169 to 197 days	± 3 months 91 to 273 days
12 months	Randomization + 365 days	± 2 weeks 335 to 379 days	± 3 months 273 to 454 days
18 months	Randomization + 548 days	± 2 weeks 534 to 562 days	± 3 months 454 to 638 days
24 months	Randomization + 731 days	± 2 weeks 717 to 745 days	± 3 months 638 to 821 days
30 months	Randomization + 913 days	± 2 weeks 899 to 927 days	± 3 months 821 to 1003

7. Primary Efficacy Outcome

The average of three separate axial length measurements visits will be calculated for each eye at baseline and all follow-up visits. If fewer than three measurements are available for an eye at a

93 timepoint, the mean of available measurements will be used to calculate the mean axial length
94 for each eye. The mean of the right and left eyes will be used for analysis. The change in mean
95 axial length from baseline to the 24-month visit will be used as the primary outcome.

96 The primary analysis will be a treatment group comparison of change in axial length from
97 baseline at 24-month visit, using a longitudinal discrete-time mixed effects model using axial
98 length at randomization, 6, 12, 18, and 24 months as the dependent variable and adjusting for age
99 to account for confounding due to potential imbalances between groups and to increase statistical
100 power.^{1,2} Denominator degrees of freedom will be estimated using the Kenward-Roger method
101 (DDFM=KR2 in SAS/STAT version 15.2).³ Non-independence due to repeated measures on the
102 same participant will be accounted for using an unstructured covariance matrix. The treatment
103 group difference (active treatment – placebo) for change in mean axial length from baseline to 24
104 months, 95% confidence interval, and P value for the null hypothesis of no difference will be
105 calculated based on the model estimates at 24 months. Within-group summary statistics (mean
106 and standard deviation) will be calculated from observed data.

107 The model assumptions for the mixed model will be assessed qualitatively without formal
108 statistical testing. The linearity assumption of the continuous baseline covariates (SER and age)
109 will be evaluated using scatterplots (dependent variable versus independent variables and
110 residuals versus fitted values). If the assumption of linearity is seriously violated, then a
111 transformation or median split will be considered. Normality and homoscedasticity will be
112 assessed using plots of residuals (QQ plot, histogram, scatterplot of residuals versus fitted
113 values). With equal sample sizes in each treatment group, the assumption of equal variance is not
114 critical for the treatment group comparison. If assumptions are seriously violated, then
115 alternative, robust approaches will be considered (e.g., M-estimation, generalized linear model
116 using the t distribution, and/or heteroscedasticity consistent standard errors). Linearity and
117 normality are not expected to be violated given prior experience in a recent study.⁴

118 There will be no explicit imputation of outcome data for exams not completed or completed
119 outside of the analysis window, as the mixed model will produce an unbiased estimate of
120 treatment effect via direct maximum likelihood if the missing outcome data are missing at
121 random (MAR). Intercurrent events will be handled using the treatment policy strategy in which
122 observed data are used regardless of whether the intercurrent event occurs (e.g., death,
123 withdrawal, loss to follow-up, cessation of treatment, receipt of non-randomized treatment,
124 etc.).⁵

125 **7.1. Sensitivity Analysis**

126 Sensitivity analyses will be performed to assess the robustness of the primary outcome.

127 **7.1.1. Complete Case Analysis**

128 A sensitivity analysis will be conducted to compare the mean change in axial length from
129 baseline to 24 months between the treatment groups using an analysis of covariance (ANCOVA)
130 model, adjusting for age and baseline axial length. This analysis will be limited to participants
131 completing the 24-month visit and will not include imputation for missing data.

132 **7.1.2. Tipping Point Analysis**

133 A multiple imputation with a shift parameter that adjusts the imputed values will be performed
134 with treatment group, age, and axial length at randomization, 6, 12, 18, and 24 weeks in the
135 imputation model. The imputed data will be estimated from observations in the same treatment
136 group (i.e., stratified by treatment group)⁶. A shift will be applied to each group and the
137 estimated treatment effect will be displayed as a function of the two shifts. The tipping points
138 where the significance changes direction (from significant to non-significant or *vice versa*) will
139 be reported and clinical judgement will decide if the tipping points are plausible with a clear
140 justification.

141 **7.1.3. Confounding**

142 Imbalances between groups in important covariates are not expected to be of sufficient
143 magnitude to produce confounding. The primary analysis described above includes a pre-
144 specified list of covariates identified in prior work as associated with the outcome. As a
145 sensitivity analysis, any baseline demographic or clinical characteristics observed to be
146 imbalanced between treatment groups will be added as covariates to the analyses of the primary
147 outcome. The determination of a meaningful baseline imbalance will be based on clinical
148 judgement and not a p-value. All variables obtained on a continuous scale will be entered into
149 the model as continuous variables, unless it is determined that a variable does not have a linear
150 relationship with the outcome. In such a case, categorization and/or transformation will be
151 explored.

152 **8. Secondary Efficacy Outcomes**

153 Secondary outcome will use the ITT analysis cohort and test the null hypothesis between
154 treatment groups.

155 **8.1. Change in Spherical Equivalent Error from Baseline at 24 Months**

156 The mean SER of each eye at baseline and all follow-up visits, measured by the masked
157 examiner using cycloplegic autorefraction, will be calculated as the average of the three separate
158 readings from autorefraction. If fewer than three readings are available, the average of available
159 readings will be used. The mean of the right and left eyes will be used for analysis. The other
160 aspects of the analysis are the same as outlined in the primary analyses (Section 5).

161 **8.2. Change in Axial Length from Baseline at 30 Months**

162 The same method described for the primary outcome (Section 5) will be used, but data from 6,
163 12, 18, 24, and 30 months will be included in the model.

164 **8.3. Change in Spherical Equivalent Refractive Error from Baseline at 30 Months**

165 The same method as described in Section 8.1 will be used but with data from 6, 12, 18, 24, and
166 30 months included in the model.

167 **8.4. Changes in Axial Length and Spherical Equivalent Refractive Error at 6, 12, and 18
168 Months**

169 The same methods described in Section 5 and Section 8.1 will be used.

170 **9. Exploratory Outcomes**

171 Exploratory outcomes will use the ITT cohort and test the null hypothesis of no difference
172 between treatment groups.

173 **9.1. Change in Monocular Amplitude of Accommodation at 6, 12, 18, 24, and 30 Months**

174 Change in the monocular amplitude of accommodation at 6, 12, and 24 months will be analyzed
175 using a discrete-time longitudinal mixed effects model adjusted for age similar to the primary
176 outcome (Section 5).

177 **9.2. Change in Pupil Size at 6, 12, 18, 24, and 30 Months**

178 The change in pupil size at 6, 12, and 24 months will be analyzed using a discrete-time
179 longitudinal mixed effects model adjusted for age similar to the primary outcome (Section 7).

180 **9.3. Change in Axial Length Over 24 Months (Area Under the Curve)**

181 The change in axial length over 24 months (area under the curve) will be calculated and
182 compared between treatment groups using the same discrete-time longitudinal mixed effects
183 model used for the analyses of the primary outcome (Section 5). The area under the curve can be
184 interpreted as a weighted average of the change in axial length at each visit with weights
185 proportional to the time between visits. AUC will be calculated by linear combination of model
186 estimates using the trapezoidal rule and the following formula:

$$187 AUC = \sum_{i=1}^n \left(\frac{X_i + X_{i+1}}{2} \times m \right)$$

188 Where X_i is the axial length measured at the i^{th} visit, m is the number of months between visits i
189 and $i+1$, and n is the number of outcome visits included in the analysis. In this analysis there are
190 $n = 5$ visits total: 0, 6, 12, 18, and 24 months. For presentation, AUC will be divided by the
191 number of months between baseline and the n^{th} visit (i.e., 24) so that the value shown will have
192 units of millimeters rather than millimeter-months.

193 **9.4. Change in Axial Length from 12 to 24 Months**

194 The change in axial length from 12 to 24 months will be calculated and compared between
195 treatment groups using the same discrete-time longitudinal mixed effects model used for the
196 analyses of the primary outcome (Section 7).

197 **9.5. Change in Axial Length from 24 to 30 Months**
198 The change in axial length from 24 to 30 months will be calculated and compared between
199 treatment groups using the same discrete-time longitudinal mixed effects model used for the
200 analyses of the secondary outcome of change axial length from 24 to 30 months (Section 8.2).

201 **9.6. Change in Spherical Equivalent Refractive Error Over 24 Months**
202 The change in SER over 24 months will be analyzed using the same methods as axial length
203 (Section 9.3).

204 **9.7. Change in Spherical Equivalent Refractive Error from 12 to 24 Months**
205 The change in SER from 12 to 24 months will be calculated and compared between treatment
206 groups using the same discrete-time longitudinal mixed effects model used for the analyses of
207 the secondary outcome in SER (Section 8.1).

208 **9.8. Change in Spherical Equivalent Refractive Error from 24 to 30 Months**
209 The change in SER from 24 to 30 months will be calculated and compared between treatment
210 groups using the same discrete-time longitudinal mixed effects model used for the analyses of
211 the secondary outcome in SER (Section 8.3).

212 **9.9. Treatment Impact Questionnaire**
213 The Treatment Impact Questionnaire (TIQ) will be used as a quantitative measure to evaluate
214 opinions regarding the burdens and impact of the randomized treatment at 6 months and 24
215 months (as questions for the child – the Child TIQ and the parent themselves – the Parent TIQ).
216 The Child-TIQ and Parent-TIQ will undergo separate factor analysis to determine the number of
217 domains for each TIQ. Each domain will be refined through the evaluation of misfitting items
218 and will then be Rasch scored.
219 The Rasch scores will be compared between the two treatment groups using a t test to generate a
220 mean difference and 95% CI. If assumptions of the t test are seriously violated (normality and
221 homoscedasticity) then the Wilcoxon Rank-Sum test with Hodges-Lehmann estimator and 95%
222 confidence interval will be used.
223 Note that because the TIQ is not administered at baseline (because treatment has not been
224 started), there will be no adjustment for baseline score in any analysis.

225 **10. Safety Analyses**
226 Safety analyses will be performed among participants who receive at least one dose of their
227 randomly assigned study medication (placebo or 0.05% atropine) or wear their randomly
228 assigned spectacles (HAL or SVL) for any amount of time. Adverse events will be coded and
229 tabulated based on the Medical Dictionary of Regulatory Activities (MedDRA) by treatment

230 group. The severity, frequency, and relationship to study treatment will also be tabulated. There
231 will be no formal statistical comparison of adverse events.

232 The number and proportion of participants experiencing the following outcomes at any time post
233 randomization will be tabulated for each group and compared using the Barnard Unconditional
234 Exact Test; risk differences and 95% CIs will be estimated using the exact Mid-P method of
235 Agresti and Min.⁷:

- 236 • Loss of \geq 2 logMAR lines of binocular near visual acuity
- 237 • Loss of \geq 2 logMAR lines of monocular distance visual acuity

238 These analyses will include all randomized participants without regard to visit completion
239 because loss to follow-up is expected to be low based on prior experience in a recent RCT.⁴

240 **11. Intervention Adherence**

241 Adherence to study eyedrops (atropine and placebo eyedrop) and spectacles (SVL and HAL
242 lenses) based on calendars brought to each follow-up visit will be tabulated in each treatment
243 group.

244 **12. Protocol Adherence and Retention**

245 Protocol deviations and visit completion rates (excluding participant deaths) will be tabulated for
246 each treatment group.

247 **13. Baseline Descriptive Statistics**

248 The baseline characteristics will be tabulated according to treatment group. At a minimum, the
249 following will be included:

- 250 • Age
- 251 • Sex
- 252 • Race
- 253 • Ethnicity
- 254 • Iris color
- 255 • Number of biological parents with myopia
- 256 • Distance visual acuity in habitual refractive correction
- 257 • Axial length
- 258 • SER

259 **14. Planned Interim Analyses**

260 There are no formal planned interim analyses for this study. The Data and Safety Monitoring
261 Committee will review safety and efficacy data approximately every 6 months and can
262 recommend stopping the trial if deemed necessary.

263 **15. Subgroup Analyses**

264 Subgroup analyses, i.e., assessments of effect modification (interaction), will be conducted for
265 the primary outcome, change in axial length at 24 months, and the key secondary outcome,
266 change in SER at 24 months. These analyses will be considered exploratory. Subgroup analyses
267 will be interpreted with caution, particularly if the corresponding overall analysis does not
268 demonstrate a significant treatment group difference. The general approach for these analyses
269 will be to add an interaction term for the subgroup factor by treatment into the analysis models
270 described in Section 7 and Section 8.1. The P value for an interaction effect will be shown only if
271 there are a minimum of 10 observations per level and treatment group. Statistical power for
272 detecting interactions is expected to be low. Within-subgroup means, standard deviations,
273 adjusted treatment differences, and 95% confidence intervals will be calculated for the following
274 factors:

- 275 • Sex
- 276 • Race/Ethnicity
- 277 • Iris color
 - 278 ○ Brown vs not brown
- 279 • Age
 - 280 ○ 5 to <9 vs 9 to <12
- 281 • Axial Length
- 282 • SER

283 For continuous factors, the interaction P value will be calculated using the continuous version
284 and within-subgroup means, standard deviations, differences, and 95% confidence intervals will
285 be calculated based on a median split.

286 **16. Multiple Comparison/Multiplicity**

287 For the primary outcome of axial length, two tests of superiority will be conducted: ATROPINE
288 vs PLACEBO and HAL vs PLACEBO. The tests will be performed independently, and each will
289 be conducted with an alpha level of 0.05.

290 Although two pairwise comparisons are being evaluated, there will be no formal adjustment to
291 the familywise error rate. Because the primary objective of this trial is to compare each of two
292 active treatments (atropine eye drops and HAL lenses), which likely have different mechanisms
293 of action, with a shared PLACEBO control group (not with one another), a multiplicity
294 adjustment is not needed.⁸⁻¹⁰ The risk of a false positive finding with this approach is lower than
295 if the two hypotheses were evaluated in two studies with different control groups.⁸ The same
296 logic applies to secondary, exploratory, safety, and subgroup analyses.

297 For the secondary outcomes (Section 8), the familywise error rate will be controlled with a
298 hierarchical (i.e., fixed sequence) approach. If the null hypothesis for the primary outcome (axial
299 length) is rejected (for either HAL vs PLACEBO or ATROPINE vs PLACEBO), then the first
300 secondary outcome (change in SER at 24 months) will be compared without further adjustment
301 to the type 1 error rate.¹¹ If the primary outcome null hypothesis is not rejected, then the

302 comparison of the change in SER at 24 months will be considered exploratory; a 95% confidence
303 interval (without adjustment for multiplicity) will be presented, and a *p*-value will not be
304 presented. Subsequent secondary outcomes will be tested in the order listed in Section 2.

305 For exploratory outcomes, the adaptive two-stage step-up procedure of Benjamini, Krieger, and
306 Yekutieli¹² will be used to control the false discovery rate at 5% by adjusting both the 95%
307 confidence intervals and P values for the analysis of multiple outcomes. The categories/families
308 for FDR adjustment will be as follows:

309

- 310 • Pupil size and accommodation
- 311 • SER and axial length
- 312 • Treatment Impact Questionnaire

313

314 There will be no formal adjustment for safety analyses because type 2 errors (false negatives) are
315 of greater concern than type 1 errors (false positives).

316 The adaptive two-stage step up procedure¹² will be used to control the false discovery rate at 5%
317 to adjust for multiple subgroup analyses. Both interaction P values and within-group 95%
318 confidence intervals will be adjusted; interaction P values and within-group 95% CIs will be
319 considered separate families of tests. P values for interactions will only be presented if the
320 overall analysis indicates a significant effect.

321 **17. Missing Data**

322 In general, the procedure for handling missing data is outlined in each section. Where not
323 otherwise specified, missing data will be excluded, and only complete cases will be analyzed.

324 **18. Additional Tabulations and Analyses**

- 325 • A flow chart accounting for all participants for all visits and phone calls will be
326 developed.
- 327 • Visit and phone contact completion rates for each follow-up visit will be tabulated.
- 328 • Proportion of participants with a change in myopia of ≥ 0.50 D, ≥ 0.75 D, and ≥ 1.0 D
329 from baseline to 12, 24, and 30 months.
- 330 • Proportion of participants with a change in axial length ≥ 0.25 mm, ≥ 0.375 mm, and \geq
331 0.50 mm from baseline to 12, 24, and 30 months.

332 **19. Exploratory Analyses in COMBINED Atropine + HAL Lenses Group**

333 Exploratory comparisons between the COMBINED group and the ATROPINE, HAL, and
334 PLACEBO groups will parallel the analyses conducted for the ATROPINE vs PLACEBO and
335 HAL vs PLACEBO comparisons described above. These comparisons will inform design of
336 future studies.

337 **19.1. Analysis of Main Effects**

338 An exploratory analysis of change in axial length from baseline to 24 months (Section 7) will be
339 repeated by pooling across cells in the factorial design (i.e., testing main effects) if the estimated
340 interaction effect is less than the hypothesized mean difference of 0.17 mm based on the 95%
341 confidence interval (e.g., the 95% CI excludes +/- 0.17 mm). The interaction effect will be
342 estimated from a longitudinal mixed effects linear model with independent variables for baseline
343 age, atropine (yes vs no), HAL (yes vs no), and the interaction of atropine vs HAL. The
344 interaction effect will be tested based on the estimated marginal means as follows:

345

346 $-0.17 \text{ mm} < \bar{x}_{\text{PLACEBO}+\text{SVL}} - \bar{x}_{\text{PLACEBO}+\text{HAL}} - \bar{x}_{\text{ATROPINE}+\text{SVL}} + \bar{x}_{\text{ATROPINE}+\text{HAL}} < 0.17 \text{ mm}$

347

348 If the interaction effect is less than the hypothesized mean difference and there is a significant
349 main effect for either atropine or HAL ($P < .05$) in the above analysis of change in axial length,
350 then a similar exploratory analysis will be conducted for change in SER from baseline to 24
351 months (Section 8.1) but without testing for interaction. The study is expected to have greater
352 power to detect differences in axial length than SER; additionally, SER and axial length are
353 expected to be highly correlated. Therefore, the test for interaction will be more reliable in the
354 axial length analysis.

355 **20. Example Analysis Code**

356 The code in the following sections is an example of how analyses may be performed in
357 SAS/STAT version 15.2 or a comparable statistical package.

358 **20.1. Primary Analysis**

```
359 proc sort data=visitPts;
360   by PtID month;
361 run;
362
363 proc mixed data=visitPts plots=(VCIRYPANEL);
364   where month IN (0, 6, 12, 18, 24);
365   class PtID TrtGroup month;
366   model meanSER = TrtGroup|month ageRand|month / s ddfm=kr2;
367   repeated month / type=un subject=PtID r rcorr;
368   slice TrtGroup*month / diff cl sliceby=month plots=none;
369 run; title;
```

370 **20.2. Area Under the Curve Analysis**

```
371 proc sort data=visitPts;
372   by PtID month;
373 run;
374
375 proc mixed data=visitPts plots=(VCIRYPANEL);
376   where month IN (0, 6, 12, 18, 24);
```

```

377      class PtID TrtGroup month Gender;
378      model meanSER = TrtGroup|month ageRand|month / s ddfm=kr2;
379      repeated month / type=un subject=PtID r rcorr;
380      lsmeans TrtGroup*month;
381      lsmeans TrtGroup*month "24-m AUC Atropine"
382          3 6 6 6 3 0 0 0 0 / divisor = 24 cl;
383      lsmeans TrtGroup*month "24-m AUC Placebo"
384          0 0 0 0 0 3 6 6 3 / divisor = 24 cl;
385      lsmeans TrtGroup*month "24-m AUC Difference (Atropine - Placebo)"
386          3 6 6 6 3 -3 -6 -6 -6 -3 / divisor = 24 cl;
387      run; title;

388  20.3. Subgroup Analysis
389  proc sort data=visitPts;
390      by PtID month;
391  run;
392
393  proc mixed data=visitPts plots=(VCIRYPANEL);
394      where month IN (0, 6, 12, 18, 24);
395      class PtID TrtGroup month Gender;
396      model meanSER = TrtGroup|month ageRand|month Gender|TrtGroup|month / s
397      ddfm=kr2;
398      repeated month / type=un subject=PtID r rcorr;
399      slice TrtGroup*month*Gender / diff cl sliceby=month*Gender plots=none;
400      lsmeans trtGroup*month*Gender "Difference of Differences (Interaction)"
401          0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 -1 1;
402  run; title;

```

403 **21. References**

404 1. Weise KK, Repka MX, Zhu Y, et al. Baseline factors associated with myopia progression and
405 axial elongation over 30 months in children 5 to 12 years of age. *Optom Vis Sci*. Oct 1 2024;101(10):619-
406 626. doi:10.1097/OPX.00000000000002187

407 2. Food and Drug Administration. Adjusting for covariates in randomized clinical trials for drugs
408 and biological products: guidance for industry. US Department of Health and Human Services; 2023.

409 3. Kenward MG, Roger JH. An Improved Approximation to the Precision of Fixed Effects from
410 Restricted Maximum Likelihood. *Computational Statistics and Data Analysis*. 2009;(53):2583-2595.

411 4. Repka MX, Weise KK, Chandler DL, et al. Low-dose 0.01% atropine eye drops vs placebo for
412 myopia control: A randomized clinical trial. *JAMA Ophthalmol*. Aug 1 2023;141(8):756-765.
413 doi:10.1001/jamaophthalmol.2023.2855

414 5. Food and Drug Administration. E9(R1) Statistical Principles for Clinical Trials: Addendum:
415 Estimands and Sensitivity Analysis in Clinical Trials. 2021.

416 6. Sullivan TR, White IR, Salter AB, Ryan P, Lee KJ. Should multiple imputation be the method of
417 choice for handling missing data in randomized trials? *Stat Methods Med Res*. Sep 2018;27(9):2610-2626.
418 doi:10.1177/0962280216683570

419 7. Fagerland MW, Lydersen S, Laake P. Recommended confidence intervals for two independent
420 binomial proportions. *Stat Methods Med Res*. Apr 2015;24(2):224-54. doi:10.1177/096228021415469

421 8. Howard DR, Brown JM, Todd S, Gregory WM. Recommendations on multiple testing
422 adjustment in multi-arm trials with a shared control group. *Stat Methods Med Res*. May 2018;27(5):1513-
423 1530. doi:10.1177/0962280216664759

424 9. Juszczak E, Altman DG, Hopewell S, Schulz K. Reporting of Multi-Arm Parallel-Group
425 Randomized Trials: Extension of the CONSORT 2010 Statement. *Jama*. Apr 23 2019;321(16):1610-
426 1620. doi:10.1001/jama.2019.3087

427 10. Parker RA, Weir CJ. Non-adjustment for multiple testing in multi-arm trials of distinct
428 treatments: Rationale and justification. *Clin Trials*. Oct 2020;17(5):562-566.
429 doi:10.1177/1740774520941419

430 11. Dmitrienko A, D'Agostino RB, Sr. Multiplicity Considerations in Clinical Trials. *N Engl J Med*.
431 May 31 2018;378(22):2115-2122. doi:10.1056/NEJMra1709701

432 12. Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false
433 discovery rate. *Biometrika*. 2006;93(3):491-507. doi:10.1093/biomet/93.3.491

434